COIN4L2
FILE INFORMATION
FILENAME(S): COIN4L2
FILE TYPE(S): PRG
FILE SIZE: 6.1K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
03caf54e08af36d384c06f84835a008d3a9796ecf04bbd349829ded0c8c3b08c
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | COIN4L2 | PRG | Radd Maxx | 14 | 0 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 40 71 7B 7D 40 64 67 30 31 26 64 28 31 | A @q{}@dg01&d(1|
00000010: 2C 7B 7D 29 26 64 28 32 2C 7B 7D 29 26 64 28 33 |,{})&d(2,{})&d(3|
00000020: 2C 7B 7D 29 26 64 28 34 2C 54 6F 74 2E 29 26 64 |,{})&d(4,Tot.)&d|
00000030: 28 35 2C 56 61 6C 2F 75 6E 69 74 29 26 64 28 31 |(5,Val/unit)&d(1|
00000040: 30 2C 23 20 63 6F 69 6E 73 29 26 64 28 31 35 2C |0,# coins)&d(15,|
00000050: 56 61 6C 75 65 29 40 72 52 45 41 44 26 64 28 30 |Value)@rREAD&d(0|
00000060: 2C 52 65 61 64 20 74 68 65 20 77 68 6F 6C 65 20 |,Read the whole |
00000070: 70 72 6F 62 6C 65 6D 2E 20 54 68 69 6E 6B 3A 20 |problem. Think: |
00000080: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
00000090: 74 73 3F 20 57 68 61 74 20 69 73 20 62 65 69 6E |ts? What is bein|
000000A0: 67 20 61 73 6B 65 64 3F 29 40 72 44 41 54 41 20 |g asked?)@rDATA |
000000B0: 45 4E 54 52 59 40 70 53 74 61 72 74 20 66 69 6C |ENTRY@pStart fil|
000000C0: 6C 69 6E 67 20 69 6E 20 69 6E 66 6F 72 6D 61 74 |ling in informat|
000000D0: 69 6F 6E 20 6F 6E 20 74 68 65 20 63 68 61 72 74 |ion on the chart|
000000E0: 2E 20 54 68 65 20 63 75 72 73 6F 72 20 77 69 6C |. The cursor wil|
000000F0: 6C 20 73 68 6F 77 20 79 6F 75 20 77 68 69 63 68 |l show you which|
00000100: 20 62 6F 78 20 74 6F 20 77 6F 72 6B 20 6F 6E 2E | box to work on.|
00000110: 40 68 57 68 61 74 20 69 73 20 74 68 65 20 76 61 |@hWhat is the va|
00000120: 6C 75 65 20 70 65 72 20 75 6E 69 74 20 6F 66 20 |lue per unit of |
00000130: 61 20 7B 7D 3F 40 68 54 68 65 20 76 61 6C 75 65 |a {}?@hThe value|
00000140: 20 6F 66 20 61 20 7B 7D 20 69 6E 20 63 65 6E 74 | of a {} in cent|
00000150: 73 2C 20 69 73 20 27 7B 7D 27 2E 40 69 28 7B 7D |s, is '{}'.@i({}|
00000160: 2C 7B 7D 2C 7B 7D 29 26 64 28 7B 7D 2C 7B 7D 20 |,{},{})&d({},{} |
00000170: 63 65 6E 74 73 29 40 68 57 68 61 74 20 69 73 20 |cents)@hWhat is |
00000180: 74 68 65 20 76 61 6C 75 65 20 70 65 72 20 75 6E |the value per un|
00000190: 69 74 20 6F 66 20 61 20 7B 7D 3F 40 68 54 68 65 |it of a {}?@hThe|
000001A0: 20 76 61 6C 75 65 20 6F 66 20 61 20 7B 7D 20 69 | value of a {} i|
000001B0: 6E 20 63 65 6E 74 73 2C 20 69 73 20 27 7B 7D 27 |n cents, is '{}'|
000001C0: 2E 40 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 26 64 28 |.@i({},{},{})&d(|
000001D0: 7B 7D 2C 7B 7D 20 63 65 6E 74 73 29 40 68 57 68 |{},{} cents)@hWh|
000001E0: 61 74 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 |at is the value |
000001F0: 70 65 72 20 75 6E 69 74 20 6F 66 20 61 20 7B 7D |per unit of a {}|
00000200: 3F 40 68 54 68 65 20 76 61 6C 75 65 20 6F 66 20 |?@hThe value of |
00000210: 61 20 7B 7D 20 69 6E 20 63 65 6E 74 73 2C 20 69 |a {} in cents, i|
00000220: 73 20 27 7B 7D 27 2E 40 69 28 7B 7D 2C 7B 7D 2C |s '{}'.@i({},{},|
00000230: 7B 7D 29 26 64 28 7B 7D 2C 7B 7D 20 63 65 6E 74 |{})&d({},{} cent|
00000240: 73 29 40 68 43 68 6F 6F 73 65 20 61 20 76 61 72 |s)@hChoose a var|
00000250: 69 61 62 6C 65 20 74 6F 20 72 65 70 72 65 73 65 |iable to represe|
00000260: 6E 74 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 |nt the number of|
00000270: 20 7B 7D 2E 40 68 43 68 6F 6F 73 65 20 61 20 73 | {}.@hChoose a s|
00000280: 69 6E 67 6C 65 20 6C 65 74 74 65 72 2C 20 73 75 |ingle letter, su|
00000290: 63 68 20 61 73 20 27 7B 7D 27 2C 20 74 6F 20 72 |ch as '{}', to r|
000002A0: 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E 75 6D |epresent the num|
000002B0: 62 65 72 20 6F 66 20 7B 7D 2E 40 69 28 7B 7D 2C |ber of {}.@i({},|
000002C0: 69 2C 26 76 29 40 68 52 65 70 72 65 73 65 6E 74 |i,&v)@hRepresent|
000002D0: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B | the number of {|
000002E0: 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 20 22 26 |} in terms of "&|
000002F0: 76 22 20 28 74 68 65 20 6E 75 6D 62 65 72 20 6F |v" (the number o|
00000300: 66 20 7B 7D 29 2E 40 68 53 69 6E 63 65 20 7B 7D |f {}).@hSince {}|
00000310: 2E 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 52 65 |.@i({},i,{})@hRe|
00000320: 70 72 65 73 65 6E 74 20 74 68 65 20 6E 75 6D 62 |present the numb|
00000330: 65 72 20 6F 66 20 7B 7D 20 69 6E 20 74 65 72 6D |er of {} in term|
00000340: 73 20 6F 66 20 22 26 76 22 20 28 74 68 65 20 6E |s of "&v" (the n|
00000350: 75 6D 62 65 72 20 6F 66 20 7B 7D 29 2E 40 68 53 |umber of {}).@hS|
00000360: 69 6E 63 65 20 7B 7D 2E 40 69 28 7B 7D 2C 69 2C |ince {}.@i({},i,|
00000370: 7B 7D 29 40 68 52 65 70 72 65 73 65 6E 74 20 74 |{})@hRepresent t|
00000380: 68 65 20 74 6F 74 61 6C 20 76 61 6C 75 65 20 69 |he total value i|
00000390: 6E 20 63 65 6E 74 73 2C 20 6F 66 20 61 6C 6C 20 |n cents, of all |
000003A0: 74 68 65 20 63 6F 69 6E 73 2E 40 68 7B 7D 2E 40 |the coins.@h{}.@|
000003B0: 69 28 31 39 2C 7B 7D 2C 7B 7D 29 40 72 50 41 52 |i(19,{},{})@rPAR|
000003C0: 54 53 40 70 46 69 6C 6C 20 69 6E 20 74 68 65 20 |TS@pFill in the |
000003D0: 69 6E 66 6F 72 6D 61 74 69 6F 6E 20 79 6F 75 20 |information you |
000003E0: 6E 65 65 64 20 74 6F 20 77 72 69 74 65 20 79 6F |need to write yo|
000003F0: 75 72 20 65 71 75 61 74 69 6F 6E 2E 40 68 57 72 |ur equation.@hWr|
00000400: 69 74 65 20 61 6E 20 65 78 70 72 65 73 73 69 6F |ite an expressio|
00000410: 6E 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 |n to represent t|
00000420: 68 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 20 |he value of the |
00000430: 7B 7D 2E 40 68 76 61 6C 2F 75 6E 69 74 20 5C 66 |{}.@hval/unit \f|
00000440: 30 39 2A 7B 7D 20 76 61 6C 2E 20 5C 6E 7B 7D 20 |09*{} val. \n{} |
00000450: 76 61 6C 2E 40 69 28 31 36 2C 69 2C 7B 7D 29 40 |val.@i(16,i,{})@|
00000460: 68 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 |hWrite an expres|
00000470: 73 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E |sion to represen|
00000480: 74 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 74 |t the value of t|
00000490: 68 65 20 7B 7D 2E 40 68 76 61 6C 2F 75 6E 69 74 |he {}.@hval/unit|
000004A0: 20 5C 66 30 39 2A 20 7B 7D 20 76 61 6C 2E 20 5C | \f09* {} val. \|
000004B0: 6E 7B 7D 20 76 61 6C 2E 40 69 28 31 37 2C 69 2C |n{} val.@i(17,i,|
000004C0: 7B 7D 29 40 68 57 72 69 74 65 20 61 6E 20 65 78 |{})@hWrite an ex|
000004D0: 70 72 65 73 73 69 6F 6E 20 74 6F 20 72 65 70 72 |pression to repr|
000004E0: 65 73 65 6E 74 20 74 68 65 20 76 61 6C 75 65 20 |esent the value |
000004F0: 6F 66 20 74 68 65 20 7B 7D 2E 40 68 76 61 6C 2F |of the {}.@hval/|
00000500: 75 6E 69 74 20 5C 66 30 39 2A 20 7B 7D 20 76 61 |unit \f09* {} va|
00000510: 6C 2E 20 5C 6E 7B 7D 20 76 61 6C 2E 40 69 28 31 |l. \n{} val.@i(1|
00000520: 38 2C 69 2C 7B 7D 29 40 72 57 48 4F 4C 45 40 70 |8,i,{})@rWHOLE@p|
00000530: 57 72 69 74 65 20 61 6E 20 65 71 75 61 74 69 6F |Write an equatio|
00000540: 6E 20 74 6F 20 73 68 6F 77 20 74 68 65 20 72 65 |n to show the re|
00000550: 6C 61 74 69 6F 6E 20 6F 66 20 74 68 65 20 70 61 |lation of the pa|
00000560: 72 74 73 20 28 7B 7D 29 20 74 6F 20 74 68 65 20 |rts ({}) to the |
00000570: 77 68 6F 6C 65 20 28 54 6F 74 61 6C 29 2E 40 68 |whole (Total).@h|
00000580: 55 73 65 20 74 68 65 20 62 6F 74 74 6F 6D 20 6C |Use the bottom l|
00000590: 69 6E 65 20 6F 66 20 74 68 65 20 63 68 61 72 74 |ine of the chart|
000005A0: 20 74 6F 20 66 6F 72 6D 20 74 68 65 20 65 71 75 | to form the equ|
000005B0: 61 74 69 6F 6E 2E 40 68 28 7B 7D 20 76 61 6C 75 |ation.@h({} valu|
000005C0: 65 29 20 2B 20 28 7B 7D 20 76 61 6C 75 65 29 20 |e) + ({} value) |
000005D0: 2B 20 28 7B 7D 20 76 61 6C 75 65 29 20 3D 20 54 |+ ({} value) = T|
000005E0: 6F 74 61 6C 20 76 61 6C 75 65 2C 20 73 6F 20 60 |otal value, so `|
000005F0: 7B 7D 27 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 73 |{}'@i({},i,{})@s|
00000600: 40 72 43 4F 4D 50 55 54 45 40 70 53 6F 6C 76 65 |@rCOMPUTE@pSolve|
00000610: 20 74 68 65 20 65 71 75 61 74 69 6F 6E 20 66 6F | the equation fo|
00000620: 72 20 22 26 76 22 2E 20 55 73 65 20 70 65 6E 63 |r "&v". Use penc|
00000630: 69 6C 20 61 6E 64 20 70 61 70 65 72 2C 20 6F 72 |il and paper, or|
00000640: 20 75 73 65 20 74 68 65 20 63 61 6C 63 75 6C 61 | use the calcula|
00000650: 74 6F 72 2E 40 68 52 65 6D 65 6D 62 65 72 20 74 |tor.@hRemember t|
00000660: 6F 20 63 6F 6D 62 69 6E 65 20 6C 69 6B 65 20 74 |o combine like t|
00000670: 65 72 6D 73 20 61 6E 64 20 64 69 73 74 72 69 62 |erms and distrib|
00000680: 75 74 65 20 69 66 20 6E 65 63 65 73 73 61 72 79 |ute if necessary|
00000690: 2E 20 49 73 6F 6C 61 74 65 20 22 26 76 22 20 6F |. Isolate "&v" o|
000006A0: 6E 20 6F 6E 65 20 73 69 64 65 20 6F 66 20 74 68 |n one side of th|
000006B0: 65 20 65 71 75 61 74 69 6F 6E 2E 40 68 54 68 65 |e equation.@hThe|
000006C0: 20 43 61 6C 63 75 6C 61 74 6F 72 20 73 6F 6C 76 | Calculator solv|
000006D0: 65 73 20 65 71 75 61 74 69 6F 6E 73 20 66 6F 72 |es equations for|
000006E0: 20 79 6F 75 20 61 6E 64 20 64 69 73 70 6C 61 79 | you and display|
000006F0: 73 20 74 68 65 20 73 74 65 70 73 20 69 6E 20 74 |s the steps in t|
00000700: 68 65 20 73 6F 6C 75 74 69 6F 6E 2E 40 69 28 7B |he solution.@i({|
00000710: 7D 2C 69 2C 7B 7D 29 40 73 40 70 4E 6F 77 20 65 |},i,{})@s@pNow e|
00000720: 6E 74 65 72 20 79 6F 75 72 20 61 6E 73 77 65 72 |nter your answer|
00000730: 73 2E 20 52 65 6D 65 6D 62 65 72 20 77 68 61 74 |s. Remember what|
00000740: 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 2E | is being asked.|
00000750: 20 26 71 7B 7D 26 71 40 68 54 68 65 20 6E 75 6D | &q{}&q@hThe num|
00000760: 62 65 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 |ber of {} is the|
00000770: 20 76 61 6C 75 65 20 6F 66 20 22 7B 7D 22 2E 40 | value of "{}".@|
00000780: 68 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B |hThe number of {|
00000790: 7D 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F |} is the value o|
000007A0: 66 20 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 |f {}@i({},i,{})@|
000007B0: 68 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B |hThe number of {|
000007C0: 7D 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F |} is the value o|
000007D0: 66 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E |f the expression|
000007E0: 20 22 7B 7D 22 2E 40 68 54 68 65 20 6E 75 6D 62 | "{}".@hThe numb|
000007F0: 65 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 20 |er of {} is the |
00000800: 76 61 6C 75 65 20 6F 66 20 74 68 65 20 65 78 70 |value of the exp|
00000810: 72 65 73 73 69 6F 6E 20 22 7B 7D 22 2E 20 7B 7D |ression "{}". {}|
00000820: 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 54 68 65 |@i({},i,{})@hThe|
00000830: 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 20 69 73 | number of {} is|
00000840: 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 74 68 | the value of th|
00000850: 65 20 65 78 70 72 65 73 73 69 6F 6E 20 22 7B 7D |e expression "{}|
00000860: 22 2E 40 68 54 68 65 20 6E 75 6D 62 65 72 20 6F |".@hThe number o|
00000870: 66 20 7B 7D 20 69 73 20 74 68 65 20 76 61 6C 75 |f {} is the valu|
00000880: 65 20 6F 66 20 74 68 65 20 65 78 70 72 65 73 73 |e of the express|
00000890: 69 6F 6E 20 7B 7D 2E 40 69 28 7B 7D 2C 69 2C 7B |ion {}.@i({},i,{|
000008A0: 7D 29 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 |})@rCHECK@pRerea|
000008B0: 64 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 |d the problem. C|
000008C0: 68 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 |heck your answer|
000008D0: 73 2E 20 45 76 61 6C 75 61 74 65 20 74 68 65 20 |s. Evaluate the |
000008E0: 72 65 6D 61 69 6E 69 6E 67 20 65 78 70 72 65 73 |remaining expres|
000008F0: 73 69 6F 6E 73 20 69 6E 20 74 68 65 20 63 68 61 |sions in the cha|
00000900: 72 74 2E 40 68 53 75 62 73 74 69 74 75 74 65 20 |rt.@hSubstitute |
00000910: 66 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 |for "&v" in the |
00000920: 65 78 70 72 65 73 73 69 6F 6E 2E 20 54 68 65 6E |expression. Then|
00000930: 20 63 61 6C 63 75 6C 61 74 65 20 74 68 65 20 72 | calculate the r|
00000940: 65 73 75 6C 74 2E 40 68 7B 7D 2E 40 69 28 7B 7D |esult.@h{}.@i({}|
00000950: 2C 69 2C 7B 7D 29 40 68 53 75 62 73 74 69 74 75 |,i,{})@hSubstitu|
00000960: 74 65 20 66 6F 72 20 22 26 76 22 20 69 6E 20 74 |te for "&v" in t|
00000970: 68 65 20 65 78 70 72 65 73 73 69 6F 6E 2E 20 54 |he expression. T|
00000980: 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 20 74 68 |hen calculate th|
00000990: 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D 2E 40 69 |e result.@h{}.@i|
000009A0: 28 7B 7D 2C 69 2C 7B 7D 29 40 68 53 75 62 73 74 |({},i,{})@hSubst|
000009B0: 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 |itute for "&v" i|
000009C0: 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E |n the expression|
000009D0: 2E 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 |. Then calculate|
000009E0: 20 74 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D | the result.@h{}|
000009F0: 2E 40 69 28 7B 7D 2C 69 2C 7B 7D 29 26 64 28 30 |.@i({},i,{})&d(0|
00000A00: 2C 43 68 65 63 6B 20 79 6F 75 72 20 77 6F 72 6B |,Check your work|
00000A10: 2E 20 41 64 64 20 74 68 65 20 76 61 6C 75 65 73 |. Add the values|
00000A20: 20 6F 66 20 61 6C 6C 20 74 68 65 20 63 6F 69 6E | of all the coin|
00000A30: 73 2E 20 44 6F 65 73 20 74 68 65 20 73 75 6D 20 |s. Does the sum |
00000A40: 65 71 75 61 6C 20 74 68 65 20 54 6F 74 61 6C 20 |equal the Total |
00000A50: 76 61 6C 75 65 3F 20 4E 6F 77 20 66 6F 72 20 61 |value? Now for a|
00000A60: 20 6E 65 77 20 70 72 6F 62 6C 65 6D 2E 29 40 66 | new problem.)@f|
00000A70: 53 75 65 20 68 61 73 20 73 61 76 65 64 20 24 34 |Sue has saved $4|
00000A80: 2E 31 30 20 69 6E 20 6E 69 63 6B 65 6C 73 2C 20 |.10 in nickels, |
00000A90: 64 69 6D 65 73 20 61 6E 64 20 71 75 61 72 74 65 |dimes and quarte|
00000AA0: 72 73 2E 20 53 68 65 20 68 61 73 20 66 69 76 65 |rs. She has five|
00000AB0: 20 6D 6F 72 65 20 64 69 6D 65 73 20 74 68 61 6E | more dimes than|
00000AC0: 20 6E 69 63 6B 65 6C 73 20 61 6E 64 20 73 69 78 | nickels and six|
00000AD0: 74 65 65 6E 20 66 65 77 65 72 20 71 75 61 72 74 |teen fewer quart|
00000AE0: 65 72 73 20 74 68 61 6E 20 6E 69 63 6B 65 6C 73 |ers than nickels|
00000AF0: 2E 20 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 |. How many of ea|
00000B00: 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 |ch type of coin |
00000B10: 64 6F 65 73 20 73 68 65 20 68 61 76 65 3F 00 4E |does she have?.N|
00000B20: 69 63 6B 65 6C 73 00 44 69 6D 65 73 00 51 75 61 |ickels.Dimes.Qua|
00000B30: 72 74 65 72 73 00 6E 69 63 6B 65 6C 00 6E 69 63 |rters.nickel.nic|
00000B40: 6B 65 6C 00 35 00 36 00 63 31 00 35 00 36 00 35 |kel.5.6.c1.5.6.5|
00000B50: 00 64 69 6D 65 00 64 69 6D 65 00 31 30 00 37 00 |.dime.dime.10.7.|
00000B60: 63 32 00 31 30 00 37 00 31 30 00 71 75 61 72 74 |c2.10.7.10.quart|
00000B70: 65 72 00 71 75 61 72 74 65 72 00 32 35 00 38 00 |er.quarter.25.8.|
00000B80: 63 32 00 32 35 00 38 00 32 35 00 6E 69 63 6B 65 |c2.25.8.25.nicke|
00000B90: 6C 73 00 6E 00 6E 69 63 6B 65 6C 73 00 31 31 00 |ls.n.nickels.11.|
00000BA0: 64 69 6D 65 73 00 6E 69 63 6B 65 6C 73 00 74 68 |dimes.nickels.th|
00000BB0: 65 72 65 20 61 72 65 20 26 68 66 69 76 65 20 6D |ere are &hfive m|
00000BC0: 6F 72 65 20 64 69 6D 65 73 20 74 68 61 6E 20 6E |ore dimes than n|
00000BD0: 69 63 6B 65 6C 73 26 68 2C 20 74 68 65 20 6E 75 |ickels&h, the nu|
00000BE0: 6D 62 65 72 20 6F 66 20 64 69 6D 65 73 20 3D 20 |mber of dimes = |
00000BF0: 60 26 76 2B 35 27 00 31 32 00 26 76 2B 35 00 71 |`&v+5'.12.&v+5.q|
00000C00: 75 61 72 74 65 72 73 00 6E 69 63 6B 65 6C 73 00 |uarters.nickels.|
00000C10: 74 68 65 72 65 20 61 72 65 20 26 68 73 69 78 74 |there are &hsixt|
00000C20: 65 65 6E 20 66 65 77 65 72 20 71 75 61 72 74 65 |een fewer quarte|
00000C30: 72 73 20 74 68 61 6E 20 6E 69 63 6B 65 6C 73 26 |rs than nickels&|
00000C40: 68 2C 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 |h, the number of|
00000C50: 20 71 75 61 72 74 65 72 73 20 3D 20 60 26 76 2D | quarters = `&v-|
00000C60: 31 36 27 00 31 33 00 26 76 2D 31 36 00 26 68 53 |16'.13.&v-16.&hS|
00000C70: 75 65 20 68 61 73 20 73 61 76 65 64 20 24 34 2E |ue has saved $4.|
00000C80: 31 30 26 68 2E 20 41 6E 64 20 24 34 2E 31 30 20 |10&h. And $4.10 |
00000C90: 3D 20 60 34 31 30 27 20 63 65 6E 74 73 00 69 00 |= `410' cents.i.|
00000CA0: 34 31 30 00 6E 69 63 6B 65 6C 73 00 28 23 20 6F |410.nickels.(# o|
00000CB0: 66 20 6E 69 63 6B 65 6C 73 29 20 5C 66 32 35 3D |f nickels) \f25=|
00000CC0: 20 6E 69 63 6B 65 6C 73 00 20 20 35 20 20 20 20 | nickels. 5 |
00000CD0: 20 5C 66 30 39 2A 20 20 20 20 20 20 26 76 20 20 | \f09* &v |
00000CE0: 20 20 20 20 20 20 5C 66 32 35 3D 20 6E 69 63 6B | \f25= nick|
00000CF0: 65 6C 73 00 35 26 76 00 64 69 6D 65 73 00 28 23 |els.5&v.dimes.(#|
00000D00: 20 6F 66 20 64 69 6D 65 73 29 20 5C 66 32 33 3D | of dimes) \f23=|
00000D10: 20 64 69 6D 65 73 00 20 31 30 20 20 20 20 20 5C | dimes. 10 \|
00000D20: 66 30 39 2A 20 20 20 20 28 26 76 2B 35 29 20 20 |f09* (&v+5) |
00000D30: 20 20 20 5C 66 32 33 3D 20 64 69 6D 65 73 00 31 | \f23= dimes.1|
00000D40: 30 28 26 76 2B 35 29 00 71 75 61 72 74 65 72 73 |0(&v+5).quarters|
00000D50: 00 28 23 20 71 75 61 72 74 65 72 73 29 5C 66 32 |.(# quarters)\f2|
00000D60: 33 20 3D 20 71 75 61 72 74 65 72 73 00 20 32 35 |3 = quarters. 25|
00000D70: 20 20 20 20 20 5C 66 30 39 2A 20 20 20 20 28 26 | \f09* (&|
00000D80: 76 2D 31 36 29 20 20 20 20 20 20 5C 66 32 33 20 |v-16) \f23 |
00000D90: 3D 20 71 75 61 72 74 65 72 73 00 32 35 28 26 76 |= quarters.25(&v|
00000DA0: 2D 31 36 29 00 6E 69 63 6B 65 6C 73 2C 20 64 69 |-16).nickels, di|
00000DB0: 6D 65 73 20 61 6E 64 20 71 75 61 72 74 65 72 73 |mes and quarters|
00000DC0: 00 6E 69 63 6B 65 6C 73 00 64 69 6D 65 73 00 71 |.nickels.dimes.q|
00000DD0: 75 61 72 74 65 72 73 00 35 26 76 2B 31 30 28 26 |uarters.5&v+10(&|
00000DE0: 76 2B 35 29 2B 32 35 28 26 76 2D 31 36 29 20 3D |v+5)+25(&v-16) =|
00000DF0: 20 34 31 30 00 32 30 00 35 26 76 2B 31 30 28 26 | 410.20.5&v+10(&|
00000E00: 76 2B 35 29 2B 32 35 28 26 76 2D 31 36 29 20 3D |v+5)+25(&v-16) =|
00000E10: 20 34 31 30 00 32 30 00 26 76 3D 31 39 00 48 6F | 410.20.&v=19.Ho|
00000E20: 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 20 74 |w many of each t|
00000E30: 79 70 65 20 6F 66 20 74 79 70 65 20 6F 66 20 63 |ype of type of c|
00000E40: 6F 69 6E 20 64 6F 65 73 20 73 68 65 20 68 61 76 |oin does she hav|
00000E50: 65 3F 00 6E 69 63 6B 65 6C 73 00 26 76 00 6E 69 |e?.nickels.&v.ni|
00000E60: 63 6B 65 6C 73 00 26 76 2E 20 26 76 20 3D 20 60 |ckels.&v. &v = `|
00000E70: 31 39 27 00 31 31 00 31 39 00 64 69 6D 65 73 00 |19'.11.19.dimes.|
00000E80: 26 76 2B 35 00 64 69 6D 65 73 00 26 76 2B 35 00 |&v+5.dimes.&v+5.|
00000E90: 26 76 2B 35 20 3D 20 31 39 2B 35 20 3D 20 60 32 |&v+5 = 19+5 = `2|
00000EA0: 34 27 00 31 32 00 32 34 00 71 75 61 72 74 65 72 |4'.12.24.quarter|
00000EB0: 73 00 26 76 2D 31 36 00 71 75 61 72 74 65 72 73 |s.&v-16.quarters|
00000EC0: 00 26 76 2D 31 36 2E 20 26 76 2D 31 36 20 3D 20 |.&v-16. &v-16 = |
00000ED0: 31 39 2D 31 36 20 3D 20 60 33 27 00 31 33 00 33 |19-16 = `3'.13.3|
00000EE0: 00 35 26 76 20 3D 20 35 2A 31 39 20 3D 20 60 39 |.5&v = 5*19 = `9|
00000EF0: 35 27 20 63 65 6E 74 73 00 31 36 00 39 35 00 31 |5' cents.16.95.1|
00000F00: 30 2A 28 26 76 2B 35 29 20 3D 20 31 30 2A 32 34 |0*(&v+5) = 10*24|
00000F10: 20 3D 20 60 32 34 30 27 20 63 65 6E 74 73 00 31 | = `240' cents.1|
00000F20: 37 00 32 34 30 00 32 35 2A 28 26 76 2D 31 36 29 |7.240.25*(&v-16)|
00000F30: 20 3D 20 32 35 2A 33 20 3D 20 60 37 35 27 20 63 | = 25*3 = `75' c|
00000F40: 65 6E 74 73 00 31 38 00 37 35 00 40 66 41 20 36 |ents.18.75.@fA 6|
00000F50: 33 20 63 65 6E 74 20 63 6F 69 6E 20 63 6F 6C 6C |3 cent coin coll|
00000F60: 65 63 74 69 6F 6E 20 63 6F 6E 74 61 69 6E 73 20 |ection contains |
00000F70: 6F 6E 65 20 66 65 77 65 72 20 6E 69 63 6B 65 6C |one fewer nickel|
00000F80: 73 20 74 68 61 6E 20 64 69 6D 65 73 20 61 6E 64 |s than dimes and|
00000F90: 20 74 77 69 63 65 20 61 73 20 6D 61 6E 79 20 70 | twice as many p|
00000FA0: 65 6E 6E 69 65 73 20 61 73 20 64 69 6D 65 73 2E |ennies as dimes.|
00000FB0: 20 48 6F 77 20 6D 61 6E 79 20 6E 69 63 6B 65 6C | How many nickel|
00000FC0: 73 2C 20 64 69 6D 65 73 20 61 6E 64 20 70 65 6E |s, dimes and pen|
00000FD0: 6E 69 65 73 20 61 72 65 20 74 68 65 72 65 3F 00 |nies are there?.|
00000FE0: 50 65 6E 6E 69 65 73 00 4E 69 63 6B 65 6C 73 00 |Pennies.Nickels.|
00000FF0: 44 69 6D 65 73 00 70 65 6E 6E 79 00 70 65 6E 6E |Dimes.penny.penn|
00001000: 79 00 31 00 36 00 63 31 00 31 00 36 00 31 00 6E |y.1.6.c1.1.6.1.n|
00001010: 69 63 6B 65 6C 00 6E 69 63 6B 65 6C 00 35 00 37 |ickel.nickel.5.7|
00001020: 00 63 31 00 35 00 37 00 35 00 64 69 6D 65 00 64 |.c1.5.7.5.dime.d|
00001030: 69 6D 65 00 31 30 00 38 00 63 32 00 31 30 00 38 |ime.10.8.c2.10.8|
00001040: 00 31 30 00 64 69 6D 65 73 00 64 00 64 69 6D 65 |.10.dimes.d.dime|
00001050: 73 00 31 33 00 70 65 6E 6E 69 65 73 00 64 69 6D |s.13.pennies.dim|
00001060: 65 73 00 74 68 65 72 65 20 61 72 65 20 26 68 74 |es.there are &ht|
00001070: 77 69 63 65 20 61 73 20 6D 61 6E 79 20 70 65 6E |wice as many pen|
00001080: 6E 69 65 73 20 61 73 20 64 69 6D 65 73 2E 26 68 |nies as dimes.&h|
00001090: 20 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 70 | The number of p|
000010A0: 65 6E 6E 69 65 73 20 3D 20 60 32 26 76 27 20 00 |ennies = `2&v' .|
000010B0: 31 31 00 32 26 76 00 6E 69 63 6B 65 6C 73 00 64 |11.2&v.nickels.d|
000010C0: 69 6D 65 73 00 74 68 65 72 65 20 61 72 65 20 26 |imes.there are &|
000010D0: 68 6F 6E 65 20 66 65 77 65 72 20 6E 69 63 6B 65 |hone fewer nicke|
000010E0: 6C 73 20 74 68 61 6E 20 64 69 6D 65 73 26 68 2C |ls than dimes&h,|
000010F0: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 6E | the number of n|
00001100: 69 63 6B 65 6C 73 20 69 73 20 60 26 76 2D 31 27 |ickels is `&v-1'|
00001110: 00 31 32 00 26 76 2D 31 00 26 68 41 20 36 33 20 |.12.&v-1.&hA 63 |
00001120: 63 65 6E 74 20 63 6F 69 6E 20 63 6F 6C 6C 65 63 |cent coin collec|
00001130: 74 69 6F 6E 26 68 20 69 73 20 77 6F 72 74 68 20 |tion&h is worth |
00001140: 60 36 33 27 20 63 65 6E 74 73 00 69 00 36 33 00 |`63' cents.i.63.|
00001150: 70 65 6E 6E 69 65 73 00 23 20 6F 66 20 70 65 6E |pennies.# of pen|
00001160: 6E 69 65 73 20 3D 20 70 65 6E 6E 69 65 73 27 00 |nies = pennies'.|
00001170: 20 20 31 20 20 20 20 20 5C 66 30 39 2A 20 20 20 | 1 \f09* |
00001180: 20 20 20 32 26 76 20 20 20 20 20 20 3D 20 70 65 | 2&v = pe|
00001190: 6E 6E 69 65 73 27 00 32 26 76 00 6E 69 63 6B 65 |nnies'.2&v.nicke|
000011A0: 6C 73 00 23 20 6F 66 20 6E 69 63 6B 65 6C 73 20 |ls.# of nickels |
000011B0: 3D 20 6E 69 63 6B 65 6C 73 27 00 20 20 35 20 20 |= nickels'. 5 |
000011C0: 20 20 20 5C 66 30 39 2A 20 20 20 20 28 26 76 2D | \f09* (&v-|
000011D0: 31 29 20 20 20 20 20 3D 20 6E 69 63 6B 65 6C 73 |1) = nickels|
000011E0: 27 00 35 28 26 76 2D 31 29 00 64 69 6D 65 73 00 |'.5(&v-1).dimes.|
000011F0: 23 20 6F 66 20 64 69 6D 65 73 20 3D 20 64 69 6D |# of dimes = dim|
00001200: 65 73 27 00 20 20 31 30 20 20 20 20 5C 66 30 39 |es'. 10 \f09|
00001210: 2A 20 20 20 20 20 20 26 76 20 20 20 20 20 3D 20 |* &v = |
00001220: 64 69 6D 65 73 27 00 31 30 26 76 00 70 65 6E 6E |dimes'.10&v.penn|
00001230: 69 65 73 2C 20 6E 69 63 6B 65 6C 73 20 61 6E 64 |ies, nickels and|
00001240: 20 64 69 6D 65 73 00 50 65 6E 6E 69 65 73 00 4E | dimes.Pennies.N|
00001250: 69 63 6B 65 6C 73 00 44 69 6D 65 73 00 32 26 76 |ickels.Dimes.2&v|
00001260: 2B 35 28 26 76 2D 31 29 2B 31 30 26 76 20 3D 20 |+5(&v-1)+10&v = |
00001270: 36 33 00 32 30 00 32 26 76 2B 35 28 26 76 2D 31 |63.20.2&v+5(&v-1|
00001280: 29 2B 31 30 26 76 20 3D 20 36 33 00 32 30 00 26 |)+10&v = 63.20.&|
00001290: 76 3D 34 00 48 6F 77 20 6D 61 6E 79 20 6E 69 63 |v=4.How many nic|
000012A0: 6B 65 6C 73 2C 20 64 69 6D 65 73 20 61 6E 64 20 |kels, dimes and |
000012B0: 70 65 6E 6E 69 65 73 20 61 72 65 20 74 68 65 72 |pennies are ther|
000012C0: 65 3F 00 64 69 6D 65 73 00 26 76 00 64 69 6D 65 |e?.dimes.&v.dime|
000012D0: 73 00 26 76 2E 20 26 76 20 3D 20 60 34 27 00 31 |s.&v. &v = `4'.1|
000012E0: 33 00 34 00 70 65 6E 6E 69 65 73 00 32 26 76 00 |3.4.pennies.2&v.|
000012F0: 70 65 6E 6E 69 65 73 00 32 26 76 00 32 26 76 20 |pennies.2&v.2&v |
00001300: 3D 20 32 2A 34 20 3D 20 60 38 27 00 31 31 00 38 |= 2*4 = `8'.11.8|
00001310: 00 6E 69 63 6B 65 6C 73 00 26 76 2D 31 00 6E 69 |.nickels.&v-1.ni|
00001320: 63 6B 65 6C 73 00 26 76 2D 31 2E 20 26 76 2D 31 |ckels.&v-1. &v-1|
00001330: 20 3D 20 34 2D 31 20 3D 20 60 33 27 00 31 32 00 | = 4-1 = `3'.12.|
00001340: 33 00 31 28 32 26 76 29 20 3D 20 31 2A 38 20 3D |3.1(2&v) = 1*8 =|
00001350: 20 60 38 27 20 63 65 6E 74 73 00 31 36 00 38 00 | `8' cents.16.8.|
00001360: 35 2A 28 26 76 2D 31 29 20 3D 20 35 2A 33 20 3D |5*(&v-1) = 5*3 =|
00001370: 20 60 31 35 27 20 63 65 6E 74 73 00 31 37 00 31 | `15' cents.17.1|
00001380: 35 00 31 30 2A 26 76 20 3D 20 31 30 2A 34 20 3D |5.10*&v = 10*4 =|
00001390: 20 60 34 30 27 20 63 65 6E 74 73 00 31 38 00 34 | `40' cents.18.4|
000013A0: 30 00 40 66 4D 72 2E 20 52 65 61 64 20 68 61 73 |0.@fMr. Read has|
000013B0: 20 61 20 63 6F 69 6E 20 6A 61 72 20 77 69 74 68 | a coin jar with|
000013C0: 20 74 77 6F 20 6C 65 73 73 20 70 65 6E 6E 69 65 | two less pennie|
000013D0: 73 20 74 68 61 6E 20 6E 69 63 6B 65 6C 73 20 61 |s than nickels a|
000013E0: 6E 64 20 66 6F 75 72 20 6C 65 73 73 20 71 75 61 |nd four less qua|
000013F0: 72 74 65 72 73 20 74 68 61 6E 20 6E 69 63 6B 65 |rters than nicke|
00001400: 6C 73 2E 20 54 68 65 20 74 6F 74 61 6C 20 76 61 |ls. The total va|
00001410: 6C 75 65 20 6F 66 20 74 68 65 20 63 6F 69 6E 73 |lue of the coins|
00001420: 20 69 73 20 24 31 2E 34 36 2E 20 48 6F 77 20 6D | is $1.46. How m|
00001430: 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 |any of each type|
00001440: 20 6F 66 20 63 6F 69 6E 20 64 6F 65 73 20 68 65 | of coin does he|
00001450: 20 68 61 76 65 3F 00 50 65 6E 6E 69 65 73 00 4E | have?.Pennies.N|
00001460: 69 63 6B 65 6C 73 00 51 75 61 72 74 65 72 73 00 |ickels.Quarters.|
00001470: 70 65 6E 6E 79 00 70 65 6E 6E 79 00 31 00 36 00 |penny.penny.1.6.|
00001480: 63 31 00 31 00 36 00 31 00 6E 69 63 6B 65 6C 00 |c1.1.6.1.nickel.|
00001490: 6E 69 63 6B 65 6C 00 35 00 37 00 63 31 00 35 00 |nickel.5.7.c1.5.|
000014A0: 37 00 35 00 71 75 61 72 74 65 72 00 71 75 61 72 |7.5.quarter.quar|
000014B0: 74 65 72 00 32 35 00 38 00 63 32 00 32 35 00 38 |ter.25.8.c2.25.8|
000014C0: 00 32 35 00 6E 69 63 6B 65 6C 73 00 6E 00 6E 69 |.25.nickels.n.ni|
000014D0: 63 6B 65 6C 73 00 31 32 00 70 65 6E 6E 69 65 73 |ckels.12.pennies|
000014E0: 00 6E 69 63 6B 65 6C 73 00 74 68 65 72 65 20 61 |.nickels.there a|
000014F0: 72 65 20 26 68 74 77 6F 20 6C 65 73 73 20 70 65 |re &htwo less pe|
00001500: 6E 6E 69 65 73 20 74 68 61 6E 20 6E 69 63 6B 65 |nnies than nicke|
00001510: 6C 73 26 68 2E 20 54 68 65 20 6E 75 6D 62 65 72 |ls&h. The number|
00001520: 20 6F 66 20 70 65 6E 6E 69 65 73 20 3D 20 60 26 | of pennies = `&|
00001530: 76 2D 32 27 00 31 31 00 26 76 2D 32 00 71 75 61 |v-2'.11.&v-2.qua|
00001540: 72 74 65 72 73 00 6E 69 63 6B 65 6C 73 00 74 68 |rters.nickels.th|
00001550: 65 72 65 20 61 72 65 20 26 68 66 6F 75 72 20 6C |ere are &hfour l|
00001560: 65 73 73 20 71 75 61 72 74 65 72 73 20 74 68 61 |ess quarters tha|
00001570: 6E 20 6E 69 63 6B 65 6C 73 26 68 2C 20 74 68 65 |n nickels&h, the|
00001580: 20 6E 75 6D 62 65 72 20 6F 66 20 71 75 61 72 74 | number of quart|
00001590: 65 72 73 20 3D 20 60 26 76 2D 20 34 27 00 31 33 |ers = `&v- 4'.13|
000015A0: 00 26 76 2D 34 00 26 68 54 68 65 20 74 6F 74 61 |.&v-4.&hThe tota|
000015B0: 6C 20 76 61 6C 75 65 20 6F 66 20 74 68 65 20 63 |l value of the c|
000015C0: 6F 69 6E 73 20 69 73 20 24 31 2E 34 36 26 68 2C |oins is $1.46&h,|
000015D0: 20 77 68 69 63 68 20 65 71 75 61 6C 73 20 60 31 | which equals `1|
000015E0: 34 36 27 20 63 65 6E 74 73 00 69 00 31 34 36 00 |46' cents.i.146.|
000015F0: 70 65 6E 6E 69 65 73 00 23 20 70 65 6E 6E 69 65 |pennies.# pennie|
00001600: 73 20 3D 20 70 65 6E 6E 69 65 73 27 00 20 20 31 |s = pennies'. 1|
00001610: 20 20 20 20 20 5C 66 30 39 2A 20 20 20 28 26 76 | \f09* (&v|
00001620: 2D 32 29 20 20 3D 20 70 65 6E 6E 69 65 73 27 00 |-2) = pennies'.|
00001630: 26 76 2D 32 00 6E 69 63 6B 65 6C 73 00 23 20 6E |&v-2.nickels.# n|
00001640: 69 63 6B 65 6C 73 20 3D 20 6E 69 63 6B 65 6C 73 |ickels = nickels|
00001650: 27 00 20 20 35 20 20 20 20 20 5C 66 30 39 2A 20 |'. 5 \f09* |
00001660: 20 20 20 20 20 26 76 20 20 20 20 3D 20 6E 69 63 | &v = nic|
00001670: 6B 65 6C 73 27 00 35 26 76 00 71 75 61 72 74 65 |kels'.5&v.quarte|
00001680: 72 73 00 23 20 71 75 61 72 74 65 72 73 3D 71 75 |rs.# quarters=qu|
00001690: 61 72 74 65 72 73 27 00 20 32 35 20 20 20 20 20 |arters'. 25 |
000016A0: 5C 66 30 39 2A 20 20 20 20 28 26 76 2D 34 29 20 |\f09* (&v-4) |
000016B0: 20 3D 20 71 75 61 72 74 65 72 73 27 00 32 35 28 | = quarters'.25(|
000016C0: 26 76 2D 34 29 00 70 65 6E 6E 69 65 73 2C 20 6E |&v-4).pennies, n|
000016D0: 69 63 6B 65 6C 73 20 61 6E 64 20 71 75 61 72 74 |ickels and quart|
000016E0: 65 72 73 00 70 65 6E 6E 69 65 73 00 6E 69 63 6B |ers.pennies.nick|
000016F0: 65 6C 73 00 71 75 61 72 74 65 72 73 00 28 26 76 |els.quarters.(&v|
00001700: 2D 32 29 2B 35 26 76 2B 32 35 28 26 76 2D 34 29 |-2)+5&v+25(&v-4)|
00001710: 20 3D 20 31 34 36 00 32 30 00 28 26 76 2D 32 29 | = 146.20.(&v-2)|
00001720: 2B 35 26 76 2B 32 35 28 26 76 2D 34 29 20 3D 20 |+5&v+25(&v-4) = |
00001730: 31 34 36 00 32 30 00 26 76 3D 38 00 48 6F 77 20 |146.20.&v=8.How |
00001740: 6D 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 |many of each typ|
00001750: 65 20 6F 66 20 63 6F 69 6E 20 64 6F 65 73 20 68 |e of coin does h|
00001760: 65 20 68 61 76 65 3F 00 6E 69 63 6B 65 6C 73 00 |e have?.nickels.|
00001770: 26 76 00 6E 69 63 6B 65 6C 73 00 26 76 2E 20 60 |&v.nickels.&v. `|
00001780: 26 76 20 3D 20 38 27 00 31 32 00 38 00 70 65 6E |&v = 8'.12.8.pen|
00001790: 6E 69 65 73 00 26 76 2D 32 00 70 65 6E 6E 69 65 |nies.&v-2.pennie|
000017A0: 73 00 26 76 2D 32 00 26 76 2D 32 20 3D 20 38 2D |s.&v-2.&v-2 = 8-|
000017B0: 32 20 3D 20 60 36 27 00 31 31 00 36 00 71 75 61 |2 = `6'.11.6.qua|
000017C0: 72 74 65 72 73 00 26 76 2D 34 00 71 75 61 72 74 |rters.&v-4.quart|
000017D0: 65 72 73 00 26 76 2D 34 2E 20 26 76 2D 34 20 3D |ers.&v-4. &v-4 =|
000017E0: 20 38 2D 34 20 3D 20 60 34 27 00 31 33 00 34 00 | 8-4 = `4'.13.4.|
000017F0: 31 28 26 76 2D 32 29 20 3D 20 31 2A 36 20 3D 20 |1(&v-2) = 1*6 = |
00001800: 60 36 27 20 63 65 6E 74 73 00 31 36 00 36 00 35 |`6' cents.16.6.5|
00001810: 2A 26 76 20 3D 20 35 2A 38 20 3D 20 60 34 30 27 |*&v = 5*8 = `40'|
00001820: 20 63 65 6E 74 73 00 31 37 00 34 30 00 32 35 28 | cents.17.40.25(|
00001830: 26 76 2D 34 29 20 3D 20 32 35 2A 34 20 3D 20 60 |&v-4) = 25*4 = `|
00001840: 31 30 30 27 20 63 65 6E 74 73 00 31 38 00 31 30 |100' cents.18.10|
00001850: 30 00 7C 77 |0.|w |
A @Q{}@DG01&D(1,{})&D(2,{})&D(3,{})&D(4
,TOT.)&D(5,VAL/UNIT)&D(10,# COINS)&D(15,
VALUE)@RREAD&D(0,READ THE WHOLE PROBLEM.
THINK: WHAT ARE THE FACTS? WHAT IS BEIN
G ASKED?)@RDATA ENTRY@PSTART FILLING IN
INFORMATION ON THE CHART. THE CURSOR WIL
L SHOW YOU WHICH BOX TO WORK ON.@HWHAT I
S THE VALUE PER UNIT OF A {}?@HTHE VALUE
OF A {} IN CENTS, IS '{}'.@I({},{},{})&
D({},{} CENTS)@HWHAT IS THE VALUE PER UN
IT OF A {}?@HTHE VALUE OF A {} IN CENTS,
IS '{}'.@I({},{},{})&D({},{} CENTS)@HWH
AT IS THE VALUE PER UNIT OF A {}?@HTHE V
ALUE OF A {} IN CENTS, IS '{}'.@I({},{},
{})&D({},{} CENTS)@HCHOOSE A VARIABLE TO
REPRESENT THE NUMBER OF {}.@HCHOOSE A S
INGLE LETTER, SUCH AS '{}', TO REPRESENT
THE NUMBER OF {}.@I({},I,&V)@HREPRESENT
THE NUMBER OF {} IN TERMS OF "&V" (THE
NUMBER OF {}).@HSINCE {}.@I({},I,{})@HRE
PRESENT THE NUMBER OF {} IN TERMS OF "&V
" (THE NUMBER OF {}).@HSINCE {}.@I({},I,
{})@HREPRESENT THE TOTAL VALUE IN CENTS,
OF ALL THE COINS.@H{}.@I(19,{},{})@RPAR
TS@PFILL IN THE INFORMATION YOU NEED TO
WRITE YOUR EQUATION.@HWRITE AN EXPRESSIO
N TO REPRESENT THE VALUE OF THE {}.@HVAL
/UNIT \F09*{} VAL. \N{} VAL.@I(16,I,{})@
HWRITE AN EXPRESSION TO REPRESENT THE VA
LUE OF THE {}.@HVAL/UNIT \F09* {} VAL. \
N{} VAL.@I(17,I,{})@HWRITE AN EXPRESSION
TO REPRESENT THE VALUE OF THE {}.@HVAL/
UNIT \F09* {} VAL. \N{} VAL.@I(18,I,{})@
RWHOLE@PWRITE AN EQUATION TO SHOW THE RE
LATION OF THE PARTS ({}) TO THE WHOLE (T
OTAL).@HUSE THE BOTTOM LINE OF THE CHART
TO FORM THE EQUATION.@H({} VALUE) + ({}
VALUE) + ({} VALUE) = TOTAL VALUE, SO `
{}'@I({},I,{})@S@RCOMPUTE@PSOLVE THE EQU
ATION FOR "&V". USE PENCIL AND PAPER, OR
USE THE CALCULATOR.@HREMEMBER TO COMBIN
E LIKE TERMS AND DISTRIBUTE IF NECESSARY
. ISOLATE "&V" ON ONE SIDE OF THE EQUATI
ON.@HTHE CALCULATOR SOLVES EQUATIONS FOR
YOU AND DISPLAYS THE STEPS IN THE SOLUT
ION.@I({},I,{})@S@PNOW ENTER YOUR ANSWER
S. REMEMBER WHAT IS BEING ASKED. &Q{}&Q@
HTHE NUMBER OF {} IS THE VALUE OF "{}".@
HTHE NUMBER OF {} IS THE VALUE OF {}@I({
},I,{})@HTHE NUMBER OF {} IS THE VALUE O
F THE EXPRESSION "{}".@HTHE NUMBER OF {}
IS THE VALUE OF THE EXPRESSION "{}". {}
@I({},I,{})@HTHE NUMBER OF {} IS THE VAL
UE OF THE EXPRESSION "{}".@HTHE NUMBER O
F {} IS THE VALUE OF THE EXPRESSION {}.@
I({},I,{})@RCHECK@PREREAD THE PROBLEM. C
HECK YOUR ANSWERS. EVALUATE THE REMAININ
G EXPRESSIONS IN THE CHART.@HSUBSTITUTE
FOR "&V" IN THE EXPRESSION. THEN CALCULA
TE THE RESULT.@H{}.@I({},I,{})@HSUBSTITU
TE FOR "&V" IN THE EXPRESSION. THEN CALC
ULATE THE RESULT.@H{}.@I({},I,{})@HSUBST
ITUTE FOR "&V" IN THE EXPRESSION. THEN C
ALCULATE THE RESULT.@H{}.@I({},I,{})&D(0
,CHECK YOUR WORK. ADD THE VALUES OF ALL
THE COINS. DOES THE SUM EQUAL THE TOTAL
VALUE? NOW FOR A NEW PROBLEM.)@FSUE HAS
SAVED $4.10 IN NICKELS, DIMES AND QUARTE
RS. SHE HAS FIVE MORE DIMES THAN NICKELS
AND SIXTEEN FEWER QUARTERS THAN NICKELS
. HOW MANY OF EACH TYPE OF COIN DOES SHE
HAVE?.NICKELS.DIMES.QUARTERS.NICKEL.NIC
KEL.5.6.C1.5.6.5.DIME.DIME.10.7.C2.10.7.
10.QUARTER.QUARTER.25.8.C2.25.8.25.NICKE
LS.N.NICKELS.11.DIMES.NICKELS.THERE ARE
&HFIVE MORE DIMES THAN NICKELS&H, THE NU
MBER OF DIMES = `&V+5'.12.&V+5.QUARTERS.
NICKELS.THERE ARE &HSIXTEEN FEWER QUARTE
RS THAN NICKELS&H, THE NUMBER OF QUARTER
S = `&V-16'.13.&V-16.&HSUE HAS SAVED $4.
10&H. AND $4.10 = `410' CENTS.I.410.NICK
ELS.(# OF NICKELS) \F25= NICKELS. 5
\F09* &V \F25= NICKELS.5&V.
DIMES.(# OF DIMES) \F23= DIMES. 10 \
F09* (&V+5) \F23= DIMES.10(&V+5).
QUARTERS.(# QUARTERS)\F23 = QUARTERS. 25
\F09* (&V-16) \F23 = QUARTE
RS.25(&V-16).NICKELS, DIMES AND QUARTERS
.NICKELS.DIMES.QUARTERS.5&V+10(&V+5)+25(
&V-16) = 410.20.5&V+10(&V+5)+25(&V-16) =
410.20.&V=19.HOW MANY OF EACH TYPE OF T
YPE OF COIN DOES SHE HAVE?.NICKELS.&V.NI
CKELS.&V. &V = `19'.11.19.DIMES.&V+5.DIM
ES.&V+5.&V+5 = 19+5 = `24'.12.24.QUARTER
S.&V-16.QUARTERS.&V-16. &V-16 = 19-16 =
`3'.13.3.5&V = 5*19 = `95' CENTS.16.95.1
0*(&V+5) = 10*24 = `240' CENTS.17.240.25
*(&V-16) = 25*3 = `75' CENTS.18.75.@FA 6
3 CENT COIN COLLECTION CONTAINS ONE FEWE
R NICKELS THAN DIMES AND TWICE AS MANY P
ENNIES AS DIMES. HOW MANY NICKELS, DIMES
AND PENNIES ARE THERE?.PENNIES.NICKELS.
DIMES.PENNY.PENNY.1.6.C1.1.6.1.NICKEL.NI
CKEL.5.7.C1.5.7.5.DIME.DIME.10.8.C2.10.8
.10.DIMES.D.DIMES.13.PENNIES.DIMES.THERE
ARE &HTWICE AS MANY PENNIES AS DIMES.&H
THE NUMBER OF PENNIES = `2&V' .11.2&V.N
ICKELS.DIMES.THERE ARE &HONE FEWER NICKE
LS THAN DIMES&H, THE NUMBER OF NICKELS I
S `&V-1'.12.&V-1.&HA 63 CENT COIN COLLEC
TION&H IS WORTH `63' CENTS.I.63.PENNIES.
# OF PENNIES = PENNIES'. 1 \F09*
2&V = PENNIES'.2&V.NICKELS.# OF
NICKELS = NICKELS'. 5 \F09* (&V-
1) = NICKELS'.5(&V-1).DIMES.# OF DIM
ES = DIMES'. 10 \F09* &V =
DIMES'.10&V.PENNIES, NICKELS AND DIMES.P
ENNIES.NICKELS.DIMES.2&V+5(&V-1)+10&V =
63.20.2&V+5(&V-1)+10&V = 63.20.&V=4.HOW
MANY NICKELS, DIMES AND PENNIES ARE THER
E?.DIMES.&V.DIMES.&V. &V = `4'.13.4.PENN
IES.2&V.PENNIES.2&V.2&V = 2*4 = `8'.11.8
.NICKELS.&V-1.NICKELS.&V-1. &V-1 = 4-1 =
`3'.12.3.1(2&V) = 1*8 = `8' CENTS.16.8.
5*(&V-1) = 5*3 = `15' CENTS.17.15.10*&V
= 10*4 = `40' CENTS.18.40.@FMR. READ HAS
A COIN JAR WITH TWO LESS PENNIES THAN N
ICKELS AND FOUR LESS QUARTERS THAN NICKE
LS. THE TOTAL VALUE OF THE COINS IS $1.4
6. HOW MANY OF EACH TYPE OF COIN DOES HE
HAVE?.PENNIES.NICKELS.QUARTERS.PENNY.PE
NNY.1.6.C1.1.6.1.NICKEL.NICKEL.5.7.C1.5.
7.5.QUARTER.QUARTER.25.8.C2.25.8.25.NICK
ELS.N.NICKELS.12.PENNIES.NICKELS.THERE A
RE &HTWO LESS PENNIES THAN NICKELS&H. TH
E NUMBER OF PENNIES = `&V-2'.11.&V-2.QUA
RTERS.NICKELS.THERE ARE &HFOUR LESS QUAR
TERS THAN NICKELS&H, THE NUMBER OF QUART
ERS = `&V- 4'.13.&V-4.&HTHE TOTAL VALUE
OF THE COINS IS $1.46&H, WHICH EQUALS `1
46' CENTS.I.146.PENNIES.# PENNIES = PENN
IES'. 1 \F09* (&V-2) = PENNIES'.
&V-2.NICKELS.# NICKELS = NICKELS'. 5
\F09* &V = NICKELS'.5&V.QUARTE
RS.# QUARTERS=QUARTERS'. 25 \F09*
(&V-4) = QUARTERS'.25(&V-4).PENNIES, N
ICKELS AND QUARTERS.PENNIES.NICKELS.QUAR
TERS.(&V-2)+5&V+25(&V-4) = 146.20.(&V-2)
+5&V+25(&V-4) = 146.20.&V=8.HOW MANY OF
EACH TYPE OF COIN DOES HE HAVE?.NICKELS.
&V.NICKELS.&V. `&V = 8'.12.8.PENNIES.&V-
2.PENNIES.&V-2.&V-2 = 8-2 = `6'.11.6.QUA
RTERS.&V-4.QUARTERS.&V-4. &V-4 = 8-4 = `
4'.13.4.1(&V-2) = 1*6 = `6' CENTS.16.6.5
*&V = 5*8 = `40' CENTS.17.40.25(&V-4) =
25*4 = `100' CENTS.18.100.|W
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL