DIST1L1
FILE INFORMATION
FILENAME(S): DIST1L1
FILE TYPE(S): PRG
FILE SIZE: 5.9K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
0ddef55652809dd9d9e95236dca7f770e06a1f2ab5f39b91d18c7ea6b1db0ab0
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST1L1 | PRG | Radd Maxx | 17 | 10 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 44 49 53 54 41 4E 43 45 20 54 55 54 | A@qDISTANCE TUT| 00000010: 4F 52 49 41 4C 20 2D 2D 20 50 41 52 54 20 31 2E |ORIAL -- PART 1.| 00000020: 5C 6E 54 68 69 73 20 69 73 20 61 20 54 75 74 6F |\nThis is a Tuto| 00000030: 72 69 61 6C 20 6F 6E 20 44 69 73 74 61 6E 63 65 |rial on Distance| 00000040: 20 50 72 6F 62 6C 65 6D 73 2E 20 49 66 20 79 6F | Problems. If yo| 00000050: 75 20 66 69 6E 64 20 61 20 71 75 65 73 74 69 6F |u find a questio| 00000060: 6E 20 63 6F 6E 66 75 73 69 6E 67 2C 20 75 73 65 |n confusing, use| 00000070: 20 74 68 65 20 60 48 45 4C 50 27 20 6B 65 79 2E | the `HELP' key.| 00000080: 40 70 49 66 20 74 68 65 20 54 75 74 6F 72 69 61 |@pIf the Tutoria| 00000090: 6C 20 73 65 65 6D 73 20 74 6F 6F 20 65 61 73 79 |l seems too easy| 000000A0: 2C 20 75 73 65 20 74 68 65 20 60 53 6B 69 70 20 |, use the `Skip | 000000B0: 50 72 6F 62 6C 65 6D 27 20 6B 65 79 2E 5C 6E 20 |Problem' key.\n | 000000C0: 20 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 | (Press any key| 000000D0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 68 | to continue.)@h| 000000E0: 54 68 65 72 65 20 61 72 65 20 61 6C 77 61 79 73 |There are always| 000000F0: 20 74 77 6F 20 6C 65 76 65 6C 73 20 6F 66 20 27 | two levels of '| 00000100: 48 45 4C 50 27 20 61 76 61 69 6C 61 62 6C 65 2E |HELP' available.| 00000110: 20 54 68 65 20 73 65 63 6F 6E 64 20 6C 65 76 65 | The second leve| 00000120: 6C 20 70 72 6F 76 69 64 65 73 20 74 68 65 20 63 |l provides the c| 00000130: 6F 72 72 65 63 74 20 61 6E 73 77 65 72 2E 40 68 |orrect answer.@h| 00000140: 54 68 65 20 60 53 6B 69 70 20 50 72 6F 62 6C 65 |The `Skip Proble| 00000150: 6D 27 20 6B 65 79 20 77 69 6C 6C 20 74 61 6B 65 |m' key will take| 00000160: 20 79 6F 75 20 74 6F 20 74 68 65 20 6E 65 78 74 | you to the next| 00000170: 20 70 72 6F 62 6C 65 6D 2C 20 6F 72 20 74 6F 20 | problem, or to | 00000180: 74 68 65 20 6E 65 78 74 20 70 61 72 74 20 6F 66 |the next part of| 00000190: 20 74 68 65 20 54 75 74 6F 72 69 61 6C 2E 40 69 | the Tutorial.@i| 000001A0: 28 30 29 40 6A 44 69 73 74 61 6E 63 65 20 50 72 |(0)@jDistance Pr| 000001B0: 6F 62 6C 65 6D 73 20 67 65 6E 65 72 61 6C 6C 79 |oblems generally| 000001C0: 20 63 6F 6D 70 61 72 65 20 74 68 65 20 6D 6F 74 | compare the mot| 000001D0: 69 6F 6E 20 6F 66 20 74 77 6F 20 6F 62 6A 65 63 |ion of two objec| 000001E0: 74 73 3A 40 64 67 30 34 26 64 28 35 2C 52 61 74 |ts:@dg04&d(5,Rat| 000001F0: 65 29 26 64 28 31 30 2C 54 69 6D 65 29 20 26 64 |e)&d(10,Time) &d| 00000200: 28 31 35 2C 44 69 73 74 29 20 26 63 28 32 2C 44 |(15,Dist) &c(2,D| 00000210: 6F 67 29 26 63 28 33 2C 43 61 74 29 26 64 28 34 |og)&c(3,Cat)&d(4| 00000220: 2C 54 6F 74 61 6C 29 26 64 28 30 2C 48 6F 77 20 |,Total)&d(0,How | 00000230: 66 61 72 20 61 70 61 72 74 20 61 72 65 20 74 68 |far apart are th| 00000240: 65 20 70 65 74 73 20 61 66 74 65 72 20 31 20 68 |e pets after 1 h| 00000250: 6F 75 72 3F 20 57 68 65 6E 20 77 69 6C 6C 20 74 |our? When will t| 00000260: 68 65 79 20 6D 65 65 74 3F 5C 6E 57 68 65 6E 20 |hey meet?\nWhen | 00000270: 77 69 6C 6C 20 74 68 65 20 44 6F 67 20 63 61 74 |will the Dog cat| 00000280: 63 68 20 74 68 65 20 43 61 74 3F 29 40 6A 44 69 |ch the Cat?)@jDi| 00000290: 73 74 61 6E 63 65 20 50 72 6F 62 6C 65 6D 73 20 |stance Problems | 000002A0: 61 72 65 20 65 61 73 79 20 74 6F 20 64 69 61 67 |are easy to diag| 000002B0: 72 61 6D 2C 20 61 6E 64 2C 20 74 68 65 72 65 66 |ram, and, theref| 000002C0: 6F 72 65 2C 20 68 65 6C 70 20 74 68 65 20 73 74 |ore, help the st| 000002D0: 75 64 65 6E 74 20 74 6F 20 70 69 63 74 75 72 65 |udent to picture| 000002E0: 20 61 6C 67 65 62 72 61 69 63 20 72 65 6C 61 74 | algebraic relat| 000002F0: 69 6F 6E 73 68 69 70 73 2E 40 64 63 61 72 73 26 |ionships.@dcars&| 00000300: 64 28 30 2C 54 77 6F 20 63 61 72 73 20 73 74 61 |d(0,Two cars sta| 00000310: 72 74 20 61 74 20 74 68 65 20 73 61 6D 65 20 74 |rt at the same t| 00000320: 69 6D 65 20 68 65 61 64 65 64 20 69 6E 20 6F 70 |ime headed in op| 00000330: 70 6F 73 69 74 65 20 64 69 72 65 63 74 69 6F 6E |posite direction| 00000340: 73 2E 29 40 64 72 75 6E 26 64 28 30 2C 54 77 6F |s.)@drun&d(0,Two| 00000350: 20 72 75 6E 6E 65 72 73 20 73 74 61 72 74 20 61 | runners start a| 00000360: 74 20 64 69 66 66 65 72 65 6E 74 20 74 69 6D 65 |t different time| 00000370: 73 5C 2C 20 68 65 61 64 65 64 20 69 6E 20 74 68 |s\, headed in th| 00000380: 65 20 73 61 6D 65 20 64 69 72 65 63 74 69 6F 6E |e same direction| 00000390: 2E 29 40 64 73 77 69 6D 6D 65 72 26 64 28 30 2C |.)@dswimmer&d(0,| 000003A0: 4F 72 5C 2C 20 74 77 6F 20 73 77 69 6D 6D 65 72 |Or\, two swimmer| 000003B0: 73 20 73 74 61 72 74 20 73 77 69 6D 6D 69 6E 67 |s start swimming| 000003C0: 20 74 6F 77 61 72 64 73 20 65 61 63 68 20 6F 74 | towards each ot| 000003D0: 68 65 72 20 61 74 20 74 68 65 20 73 61 6D 65 20 |her at the same | 000003E0: 74 69 6D 65 2E 29 20 40 6A 54 6F 20 73 6F 6C 76 |time.) @jTo solv| 000003F0: 65 20 44 69 73 74 61 6E 63 65 20 50 72 6F 62 6C |e Distance Probl| 00000400: 65 6D 73 20 79 6F 75 20 6D 75 73 74 20 6B 6E 6F |ems you must kno| 00000410: 77 20 52 61 74 65 2C 20 54 69 6D 65 2C 20 61 6E |w Rate, Time, an| 00000420: 64 20 44 69 73 74 61 6E 63 65 20 66 6F 72 20 65 |d Distance for e| 00000430: 61 63 68 20 6F 62 6A 65 63 74 20 69 6E 76 6F 6C |ach object invol| 00000440: 76 65 64 2E 40 64 67 30 35 26 64 28 34 2C 52 61 |ved.@dg05&d(4,Ra| 00000450: 74 65 29 26 64 28 38 2C 54 69 6D 65 29 26 64 28 |te)&d(8,Time)&d(| 00000460: 31 32 2C 44 69 73 74 29 26 64 28 30 2C 54 68 65 |12,Dist)&d(0,The| 00000470: 20 67 65 6E 65 72 61 6C 20 65 71 75 61 74 69 6F | general equatio| 00000480: 6E 20 74 68 61 74 20 72 65 6C 61 74 65 73 20 6B |n that relates k| 00000490: 65 79 20 71 75 61 6E 74 69 74 69 65 73 20 69 6E |ey quantities in| 000004A0: 20 61 20 77 6F 72 64 20 70 72 6F 62 6C 65 6D 20 | a word problem | 000004B0: 69 73 20 63 61 6C 6C 65 64 20 61 6E 20 60 45 71 |is called an `Eq| 000004C0: 75 61 74 69 6F 6E 20 49 64 65 61 27 2E 26 71 52 |uation Idea'.&qR| 000004D0: 61 74 65 2C 20 54 69 6D 65 2C 20 61 6E 64 20 44 |ate, Time, and D| 000004E0: 69 73 74 61 6E 63 65 26 71 29 26 64 28 30 2C 54 |istance&q)&d(0,T| 000004F0: 68 65 20 60 45 71 75 61 74 69 6F 6E 20 49 64 65 |he `Equation Ide| 00000500: 61 27 20 74 6F 20 66 69 6E 64 20 74 68 65 20 64 |a' to find the d| 00000510: 69 73 74 61 6E 63 65 20 61 6E 20 6F 62 6A 65 63 |istance an objec| 00000520: 74 20 74 72 61 76 65 6C 73 20 69 73 3A 5C 6E 20 |t travels is:\n | 00000530: 20 20 20 20 20 52 61 74 65 20 2A 20 54 69 6D 65 | Rate * Time| 00000540: 20 3D 20 44 69 73 74 61 6E 63 65 2E 29 26 63 28 | = Distance.)&c(| 00000550: 31 36 2C 52 61 74 65 20 2A 20 54 69 6D 65 20 3D |16,Rate * Time =| 00000560: 20 44 69 73 74 61 6E 63 65 29 26 64 28 30 2C 49 | Distance)&d(0,I| 00000570: 66 20 79 6F 75 20 74 72 61 76 65 6C 20 61 74 20 |f you travel at | 00000580: 61 20 63 65 72 74 61 69 6E 20 52 61 74 65 20 66 |a certain Rate f| 00000590: 6F 72 20 61 20 73 65 74 20 61 6D 6F 75 6E 74 20 |or a set amount | 000005A0: 6F 66 20 54 69 6D 65 5C 2C 20 74 68 65 20 44 69 |of Time\, the Di| 000005B0: 73 74 61 6E 63 65 20 74 72 61 76 65 6C 6C 65 64 |stance travelled| 000005C0: 20 69 73 3A 20 20 52 61 74 65 20 2A 20 54 69 6D | is: Rate * Tim| 000005D0: 65 2E 29 20 26 64 28 31 2C 55 6E 69 74 2F 4D 65 |e.) &d(1,Unit/Me| 000005E0: 61 73 29 26 63 28 32 2C 4F 62 6A 65 63 74 29 40 |as)&c(2,Object)@| 000005F0: 6A 44 69 73 74 61 6E 63 65 20 70 72 6F 62 6C 65 |jDistance proble| 00000600: 6D 73 20 75 73 65 20 64 69 66 66 65 72 65 6E 74 |ms use different| 00000610: 20 55 6E 69 74 73 20 6F 66 20 4D 65 61 73 75 72 | Units of Measur| 00000620: 65 2E 26 64 28 30 2C 4D 61 6B 65 20 73 75 72 65 |e.&d(0,Make sure| 00000630: 20 55 6E 69 74 73 20 6F 66 20 4D 65 61 73 75 72 | Units of Measur| 00000640: 65 20 61 72 65 20 75 6E 69 66 6F 72 6D 2E 20 49 |e are uniform. I| 00000650: 66 20 52 61 74 65 20 69 73 20 60 66 74 2F 73 65 |f Rate is `ft/se| 00000660: 63 27 5C 2C 20 74 68 65 6E 20 54 69 6D 65 20 69 |c'\, then Time i| 00000670: 73 20 69 6E 20 73 65 63 6F 6E 64 73 20 61 6E 64 |s in seconds and| 00000680: 20 44 69 73 74 61 6E 63 65 20 69 73 20 69 6E 20 | Distance is in | 00000690: 66 65 65 74 2E 29 26 64 28 35 2C 6D 69 2F 68 72 |feet.)&d(5,mi/hr| 000006A0: 29 26 64 28 39 2C 68 72 29 40 70 45 6E 74 65 72 |)&d(9,hr)@pEnter| 000006B0: 20 74 68 65 20 55 6E 69 74 20 6F 66 20 4D 65 61 | the Unit of Mea| 000006C0: 73 75 72 65 20 66 6F 72 20 44 69 73 74 61 6E 63 |sure for Distanc| 000006D0: 65 2E 20 4E 6F 74 65 3A 20 52 61 74 65 20 69 73 |e. Note: Rate is| 000006E0: 20 69 6E 20 6D 69 6C 65 73 20 70 65 72 20 68 6F | in miles per ho| 000006F0: 75 72 20 28 6D 69 2F 68 72 29 2C 20 61 6E 64 20 |ur (mi/hr), and | 00000700: 54 69 6D 65 20 69 73 20 69 6E 20 68 6F 75 72 73 |Time is in hours| 00000710: 20 28 68 72 29 2E 40 68 52 61 74 65 20 6F 66 20 | (hr).@hRate of | 00000720: 73 70 65 65 64 20 69 73 20 6D 65 61 73 75 72 65 |speed is measure| 00000730: 64 20 61 73 20 6D 69 6C 65 73 20 74 72 61 76 65 |d as miles trave| 00000740: 6C 6C 65 64 20 65 76 65 72 79 20 68 6F 75 72 2C |lled every hour,| 00000750: 20 73 6F 20 44 69 73 74 61 6E 63 65 20 77 6F 75 | so Distance wou| 00000760: 6C 64 20 62 65 20 6D 65 61 73 75 72 65 64 20 69 |ld be measured i| 00000770: 6E 20 6D 69 6C 65 73 2E 40 68 54 68 65 20 61 62 |n miles.@hThe ab| 00000780: 62 72 65 76 69 61 74 69 6F 6E 20 66 6F 72 20 6D |breviation for m| 00000790: 69 6C 65 73 20 69 73 20 60 6D 69 27 2E 20 45 6E |iles is `mi'. En| 000007A0: 74 65 72 20 60 6D 69 27 20 61 6E 64 20 70 72 65 |ter `mi' and pre| 000007B0: 73 73 20 74 68 65 20 3C 52 65 74 75 72 6E 3E 20 |ss the <Return> | 000007C0: 6B 65 79 2E 40 69 28 31 33 2C 63 32 2C 6D 69 29 |key.@i(13,c2,mi)| 000007D0: 40 73 26 64 28 35 2C 6D 65 2F 68 72 29 26 64 28 |@s&d(5,me/hr)&d(| 000007E0: 39 2C 68 72 29 26 64 28 31 33 2C 29 40 70 45 6E |9,hr)&d(13,)@pEn| 000007F0: 74 65 72 20 74 68 65 20 55 6E 69 74 20 6F 66 20 |ter the Unit of | 00000800: 4D 65 61 73 75 72 65 20 66 6F 72 20 44 69 73 74 |Measure for Dist| 00000810: 61 6E 63 65 2C 20 69 66 20 52 61 74 65 20 69 73 |ance, if Rate is| 00000820: 20 69 6E 20 6D 65 74 65 72 73 20 70 65 72 20 68 | in meters per h| 00000830: 6F 75 72 20 28 6D 65 2F 68 72 29 2C 20 61 6E 64 |our (me/hr), and| 00000840: 20 54 69 6D 65 20 69 73 20 69 6E 20 68 6F 75 72 | Time is in hour| 00000850: 73 20 28 68 72 29 2E 40 68 52 61 74 65 20 6F 66 |s (hr).@hRate of| 00000860: 20 73 70 65 65 64 20 69 73 20 6D 65 61 73 75 72 | speed is measur| 00000870: 65 64 20 61 73 20 6D 65 74 65 72 73 20 74 72 61 |ed as meters tra| 00000880: 76 65 6C 6C 65 64 20 65 76 65 72 79 20 68 6F 75 |velled every hou| 00000890: 72 2C 20 73 6F 20 44 69 73 74 61 6E 63 65 20 77 |r, so Distance w| 000008A0: 6F 75 6C 64 20 62 65 20 6D 65 61 73 75 72 65 64 |ould be measured| 000008B0: 20 69 6E 20 6D 65 74 65 72 73 2E 40 68 54 68 65 | in meters.@hThe| 000008C0: 20 61 62 62 72 65 76 69 61 74 69 6F 6E 20 66 6F | abbreviation fo| 000008D0: 72 20 6D 65 74 65 72 73 20 69 73 20 60 6D 65 27 |r meters is `me'| 000008E0: 2E 20 45 6E 74 65 72 20 60 6D 65 27 20 61 6E 64 |. Enter `me' and| 000008F0: 20 70 72 65 73 73 20 74 68 65 20 3C 52 65 74 75 | press the <Retu| 00000900: 72 6E 3E 20 6B 65 79 2E 40 69 28 31 33 2C 63 32 |rn> key.@i(13,c2| 00000910: 2C 6D 65 29 26 64 28 35 2C 6B 6D 2F 68 72 29 26 |,me)&d(5,km/hr)&| 00000920: 64 28 39 2C 20 29 26 64 28 31 33 2C 20 29 40 70 |d(9, )&d(13, )@p| 00000930: 45 6E 74 65 72 20 74 68 65 20 55 6E 69 74 20 6F |Enter the Unit o| 00000940: 66 20 4D 65 61 73 75 72 65 20 66 6F 72 20 44 69 |f Measure for Di| 00000950: 73 74 61 6E 63 65 2C 20 69 66 20 52 61 74 65 20 |stance, if Rate | 00000960: 69 73 20 69 6E 20 6B 69 6C 6F 6D 65 74 65 72 73 |is in kilometers| 00000970: 20 70 65 72 20 68 6F 75 72 20 28 6B 6D 2F 68 72 | per hour (km/hr| 00000980: 29 2E 40 68 52 61 74 65 20 6F 66 20 73 70 65 65 |).@hRate of spee| 00000990: 64 20 69 73 20 6D 65 61 73 75 72 65 64 20 61 73 |d is measured as| 000009A0: 20 6B 69 6C 6F 6D 65 74 65 72 73 20 74 72 61 76 | kilometers trav| 000009B0: 65 6C 6C 65 64 20 65 76 65 72 79 20 68 6F 75 72 |elled every hour| 000009C0: 2C 20 73 6F 20 44 69 73 74 61 6E 63 65 20 77 6F |, so Distance wo| 000009D0: 75 6C 64 20 62 65 20 6D 65 61 73 75 72 65 64 20 |uld be measured | 000009E0: 69 6E 20 6B 69 6C 6F 6D 65 74 65 72 73 2E 40 68 |in kilometers.@h| 000009F0: 54 68 65 20 61 62 62 72 65 76 69 61 74 69 6F 6E |The abbreviation| 00000A00: 20 66 6F 72 20 6B 69 6C 6F 6D 65 74 65 72 73 20 | for kilometers | 00000A10: 69 73 20 60 6B 6D 27 2E 20 45 6E 74 65 72 20 60 |is `km'. Enter `| 00000A20: 6B 6D 27 20 61 6E 64 20 70 72 65 73 73 20 74 68 |km' and press th| 00000A30: 65 20 3C 52 65 74 75 72 6E 3E 20 6B 65 79 2E 40 |e <Return> key.@| 00000A40: 69 28 31 33 2C 63 32 2C 6B 6D 29 26 64 28 39 2C |i(13,c2,km)&d(9,| 00000A50: 6D 69 6E 29 26 64 28 30 2C 49 66 20 54 69 6D 65 |min)&d(0,If Time| 00000A60: 20 69 73 20 67 69 76 65 6E 20 69 6E 20 6D 69 6E | is given in min| 00000A70: 75 74 65 73 2C 20 74 68 65 72 65 20 69 73 20 6E |utes, there is n| 00000A80: 6F 20 75 6E 69 74 20 69 6E 20 63 6F 6D 6D 6F 6E |o unit in common| 00000A90: 20 77 69 74 68 20 74 68 65 20 52 61 74 65 2E 20 | with the Rate. | 00000AA0: 48 6F 77 20 63 61 6E 20 79 6F 75 20 66 69 78 20 |How can you fix | 00000AB0: 74 68 69 73 3F 29 26 64 28 30 2C 55 73 65 20 68 |this?)&d(0,Use h| 00000AC0: 6F 75 72 73 20 28 68 72 29 20 61 73 20 74 68 65 |ours (hr) as the| 00000AD0: 20 55 6E 69 74 20 6F 66 20 4D 65 61 73 75 72 65 | Unit of Measure| 00000AE0: 2C 20 61 6E 64 20 6D 75 6C 74 69 70 6C 79 20 74 |, and multiply t| 00000AF0: 68 65 20 54 69 6D 65 20 67 69 76 65 6E 20 69 6E |he Time given in| 00000B00: 20 74 68 65 20 70 72 6F 62 6C 65 6D 20 62 79 20 | the problem by | 00000B10: 36 30 2E 29 26 64 28 39 2C 68 72 29 26 64 28 31 |60.)&d(9,hr)&d(1| 00000B20: 30 2C 5F 5F 20 2A 20 36 30 29 26 64 28 30 2C 49 |0,__ * 60)&d(0,I| 00000B30: 74 20 69 73 20 65 73 73 65 6E 74 69 61 6C 20 74 |t is essential t| 00000B40: 6F 20 68 61 76 65 20 61 6C 6C 20 55 6E 69 74 73 |o have all Units| 00000B50: 20 6F 66 20 4D 65 61 73 75 72 65 20 61 67 72 65 | of Measure agre| 00000B60: 65 2E 29 20 2A 2F 40 63 40 6A 48 65 72 65 20 69 |e.) */@c@jHere i| 00000B70: 73 20 73 6F 6D 65 20 70 72 61 63 74 69 63 65 20 |s some practice | 00000B80: 69 6E 20 73 69 6D 70 6C 65 20 44 69 73 74 61 6E |in simple Distan| 00000B90: 63 65 20 50 72 6F 62 6C 65 6D 73 20 77 69 74 68 |ce Problems with| 00000BA0: 20 6F 6E 65 20 6F 62 6A 65 63 74 2E 40 70 41 74 | one object.@pAt| 00000BB0: 20 61 6E 79 20 74 69 6D 65 2C 20 74 6F 20 70 72 | any time, to pr| 00000BC0: 6F 63 65 65 64 20 74 6F 20 74 68 65 20 6E 65 78 |oceed to the nex| 00000BD0: 74 20 70 61 72 74 20 6F 66 20 74 68 65 20 54 75 |t part of the Tu| 00000BE0: 74 6F 72 69 61 6C 2C 20 75 73 65 20 74 68 65 20 |torial, use the | 00000BF0: 22 53 6B 69 70 20 50 72 6F 62 6C 65 6D 22 20 6F |"Skip Problem" o| 00000C00: 70 74 69 6F 6E 2E 20 28 41 6E 79 20 6B 65 79 20 |ption. (Any key | 00000C10: 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 68 54 |to continue.)@hT| 00000C20: 68 65 72 65 20 61 72 65 20 74 68 72 65 65 20 70 |here are three p| 00000C30: 61 72 74 73 20 74 6F 20 74 68 65 20 44 69 73 74 |arts to the Dist| 00000C40: 61 6E 63 65 20 54 75 74 6F 72 69 61 6C 2E 40 68 |ance Tutorial.@h| 00000C50: 54 68 65 20 22 53 6B 69 70 20 50 72 6F 62 6C 65 |The "Skip Proble| 00000C60: 6D 22 20 6F 70 74 69 6F 6E 20 74 61 6B 65 73 20 |m" option takes | 00000C70: 79 6F 75 20 74 6F 20 74 68 65 20 6E 65 78 74 20 |you to the next | 00000C80: 70 72 6F 62 6C 65 6D 2C 20 6F 72 20 74 6F 20 74 |problem, or to t| 00000C90: 68 65 20 6E 65 78 74 20 70 61 72 74 20 6F 66 20 |he next part of | 00000CA0: 74 68 65 20 54 75 74 6F 72 69 61 6C 2E 40 69 28 |the Tutorial.@i(| 00000CB0: 30 29 20 40 6A 41 20 42 6C 75 65 20 43 61 72 20 |0) @jA Blue Car | 00000CC0: 2E 2E 2E 26 63 28 32 2C 42 6C 75 65 20 43 61 72 |...&c(2,Blue Car| 00000CD0: 29 26 64 28 30 2C 5C 66 30 36 48 6F 77 20 66 61 |)&d(0,\f06How fa| 00000CE0: 73 74 20 64 6F 65 73 20 69 74 20 67 6F 3F 5C 6E |st does it go?\n| 00000CF0: 5C 66 30 36 48 6F 77 20 6C 6F 6E 67 20 64 6F 65 |\f06How long doe| 00000D00: 73 20 69 74 20 74 72 61 76 65 6C 3F 5C 6E 5C 66 |s it travel?\n\f| 00000D10: 30 36 48 6F 77 20 66 61 72 20 64 6F 65 73 20 69 |06How far does i| 00000D20: 74 20 67 6F 3F 29 40 6A 41 20 42 6C 75 65 20 43 |t go?)@jA Blue C| 00000D30: 61 72 20 74 72 61 76 65 6C 73 20 61 74 20 36 30 |ar travels at 60| 00000D40: 20 6D 69 6C 65 73 20 70 65 72 20 68 6F 75 72 20 | miles per hour | 00000D50: 28 6D 69 2F 68 72 29 20 2E 2E 2E 26 64 28 35 2C |(mi/hr) ...&d(5,| 00000D60: 6D 69 2F 68 72 29 40 70 5C 66 30 38 45 6E 74 65 |mi/hr)@p\f08Ente| 00000D70: 72 20 74 68 65 20 52 61 74 65 3A 5C 6E 5C 66 30 |r the Rate:\n\f0| 00000D80: 38 48 6F 77 20 66 61 73 74 20 64 6F 65 73 20 69 |8How fast does i| 00000D90: 74 20 67 6F 3F 5C 6E 5C 66 30 38 5B 36 30 20 6D |t go?\n\f08[60 m| 00000DA0: 69 2F 68 72 5D 40 68 60 36 30 20 6D 69 2F 68 72 |i/hr]@h`60 mi/hr| 00000DB0: 27 20 6D 65 61 6E 73 20 74 68 61 74 20 74 68 65 |' means that the| 00000DC0: 20 63 61 72 20 67 6F 65 73 20 36 30 20 6D 69 6C | car goes 60 mil| 00000DD0: 65 73 20 74 68 65 20 31 73 74 20 68 6F 75 72 2C |es the 1st hour,| 00000DE0: 20 61 6E 6F 74 68 65 72 20 36 30 20 6D 69 6C 65 | another 60 mile| 00000DF0: 73 20 74 68 65 20 32 6E 64 20 68 6F 75 72 2C 20 |s the 2nd hour, | 00000E00: 61 6E 64 20 73 6F 20 6F 6E 2E 40 68 45 6E 74 65 |and so on.@hEnte| 00000E10: 72 20 60 36 30 20 6D 69 2F 68 72 27 20 61 6E 64 |r `60 mi/hr' and| 00000E20: 20 70 72 65 73 73 20 74 68 65 20 3C 52 65 74 75 | press the <Retu| 00000E30: 72 6E 3E 20 6B 65 79 2E 40 69 28 36 2C 69 2C 36 |rn> key.@i(6,i,6| 00000E40: 30 29 26 64 28 36 2C 36 30 20 6D 69 2F 68 72 29 |0)&d(6,60 mi/hr)| 00000E50: 20 40 73 26 64 28 30 2C 52 61 74 65 20 6F 66 20 | @s&d(0,Rate of | 00000E60: 73 70 65 65 64 2C 20 69 6E 20 74 68 69 73 20 70 |speed, in this p| 00000E70: 72 6F 62 6C 65 6D 2C 20 69 73 20 64 65 74 65 72 |roblem, is deter| 00000E80: 6D 69 6E 65 64 20 62 79 20 74 68 65 20 6D 69 6C |mined by the mil| 00000E90: 65 73 20 74 72 61 76 65 6C 6C 65 64 20 69 6E 20 |es travelled in | 00000EA0: 31 20 68 6F 75 72 20 28 6D 69 2F 68 72 29 2E 29 |1 hour (mi/hr).)| 00000EB0: 40 6A 41 20 42 6C 75 65 20 43 61 72 20 74 72 61 |@jA Blue Car tra| 00000EC0: 76 65 6C 73 20 61 74 20 36 30 20 6D 69 6C 65 73 |vels at 60 miles| 00000ED0: 20 70 65 72 20 68 6F 75 72 20 28 6D 69 2F 68 72 | per hour (mi/hr| 00000EE0: 29 20 66 6F 72 20 31 20 68 6F 75 72 20 28 68 72 |) for 1 hour (hr| 00000EF0: 29 2E 26 64 28 39 2C 68 72 29 40 70 5C 66 30 36 |).&d(9,hr)@p\f06| 00000F00: 45 6E 74 65 72 20 74 68 65 20 54 69 6D 65 3A 5C |Enter the Time:\| 00000F10: 6E 5C 66 30 36 48 6F 77 20 6C 6F 6E 67 20 64 6F |n\f06How long do| 00000F20: 65 73 20 69 74 20 74 72 61 76 65 6C 3F 20 5B 31 |es it travel? [1| 00000F30: 20 68 72 5D 40 68 54 68 65 20 63 61 72 20 74 72 | hr]@hThe car tr| 00000F40: 61 76 65 6C 73 20 66 6F 72 20 31 20 68 6F 75 72 |avels for 1 hour| 00000F50: 2E 5C 6E 45 6E 74 65 72 20 60 31 20 68 72 27 2E |.\nEnter `1 hr'.| 00000F60: 40 68 54 68 65 20 63 61 72 20 74 72 61 76 65 6C |@hThe car travel| 00000F70: 73 20 66 6F 72 20 31 20 68 6F 75 72 2E 5C 6E 45 |s for 1 hour.\nE| 00000F80: 6E 74 65 72 20 60 31 20 68 72 27 20 61 6E 64 20 |nter `1 hr' and | 00000F90: 70 72 65 73 73 20 74 68 65 20 3C 52 65 74 75 72 |press the <Retur| 00000FA0: 6E 3E 20 6B 65 79 2E 40 69 28 31 30 2C 69 2C 31 |n> key.@i(10,i,1| 00000FB0: 29 26 64 28 31 30 2C 31 20 68 72 29 26 64 28 30 |)&d(10,1 hr)&d(0| 00000FC0: 2C 54 69 6D 65 20 69 73 20 75 73 75 61 6C 6C 79 |,Time is usually| 00000FD0: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 68 6F 75 | measured in hou| 00000FE0: 72 73 20 28 68 72 29 5C 2C 20 6D 69 6E 75 74 65 |rs (hr)\, minute| 00000FF0: 73 20 28 6D 69 6E 29 5C 2C 20 6F 72 20 73 65 63 |s (min)\, or sec| 00001000: 6F 6E 64 73 20 28 73 65 63 29 2E 29 40 6A 41 20 |onds (sec).)@jA | 00001010: 42 6C 75 65 20 43 61 72 20 74 72 61 76 65 6C 73 |Blue Car travels| 00001020: 20 61 74 20 36 30 20 6D 69 6C 65 73 20 70 65 72 | at 60 miles per| 00001030: 20 68 6F 75 72 20 28 6D 69 2F 68 72 29 20 66 6F | hour (mi/hr) fo| 00001040: 72 20 31 20 68 6F 75 72 20 28 68 72 29 2E 20 48 |r 1 hour (hr). H| 00001050: 6F 77 20 6D 61 6E 79 20 6D 69 6C 65 73 20 28 6D |ow many miles (m| 00001060: 69 29 20 64 6F 65 73 20 69 74 20 67 6F 3F 26 64 |i) does it go?&d| 00001070: 28 31 33 2C 6D 69 29 40 70 45 6E 74 65 72 20 61 |(13,mi)@pEnter a| 00001080: 20 76 61 72 69 61 62 6C 65 20 66 6F 72 20 74 68 | variable for th| 00001090: 65 20 75 6E 6B 6E 6F 77 6E 3A 20 20 28 48 6F 77 |e unknown: (How| 000010A0: 20 66 61 72 20 64 6F 65 73 20 69 74 20 67 6F 3F | far does it go?| 000010B0: 29 20 20 5B 78 5D 40 68 55 73 65 20 61 20 76 61 |) [x]@hUse a va| 000010C0: 72 69 61 62 6C 65 2C 20 73 75 63 68 20 61 73 20 |riable, such as | 000010D0: 60 78 27 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |`x' to represent| 000010E0: 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 74 72 | the distance tr| 000010F0: 61 76 65 6C 6C 65 64 2E 40 68 45 6E 74 65 72 20 |avelled.@hEnter | 00001100: 74 68 65 20 6C 65 74 74 65 72 20 60 78 27 20 61 |the letter `x' a| 00001110: 6E 64 20 70 72 65 73 73 20 74 68 65 20 3C 52 65 |nd press the <Re| 00001120: 74 75 72 6E 3E 20 6B 65 79 2E 40 69 28 31 34 2C |turn> key.@i(14,| 00001130: 69 2C 26 76 29 40 73 26 63 28 31 36 2C 45 71 75 |i,&v)@s&c(16,Equ| 00001140: 61 74 69 6F 6E 20 49 64 65 61 29 26 64 28 30 2C |ation Idea)&d(0,| 00001150: 54 68 65 20 45 71 75 61 74 69 6F 6E 20 49 64 65 |The Equation Ide| 00001160: 61 20 6E 65 65 64 73 20 74 6F 20 62 65 20 65 6E |a needs to be en| 00001170: 74 65 72 65 64 2E 20 28 49 6E 20 74 68 65 20 54 |tered. (In the T| 00001180: 75 74 6F 72 69 61 6C 5C 2C 20 74 68 65 20 70 72 |utorial\, the pr| 00001190: 6F 67 72 61 6D 20 64 6F 65 73 20 74 68 69 73 20 |ogram does this | 000011A0: 66 6F 72 20 79 6F 75 2E 29 29 26 63 28 31 36 2C |for you.))&c(16,| 000011B0: 52 61 74 65 20 20 2A 20 20 54 69 6D 65 20 20 3D |Rate * Time =| 000011C0: 20 20 44 69 73 74 61 6E 63 65 29 26 64 28 30 2C | Distance)&d(0,| 000011D0: 4E 65 78 74 2C 20 69 74 20 69 73 20 6E 65 63 65 |Next, it is nece| 000011E0: 73 73 61 72 79 20 74 6F 20 73 75 62 73 74 69 74 |ssary to substit| 000011F0: 75 74 65 20 65 78 70 72 65 73 73 69 6F 6E 73 20 |ute expressions | 00001200: 66 6F 72 20 52 61 74 65 5C 2C 20 54 69 6D 65 5C |for Rate\, Time\| 00001210: 2C 20 61 6E 64 20 44 69 73 74 61 6E 63 65 20 69 |, and Distance i| 00001220: 6E 20 74 68 65 20 45 71 75 61 74 69 6F 6E 20 49 |n the Equation I| 00001230: 64 65 61 2E 29 26 63 28 31 36 2C 36 30 20 20 20 |dea.)&c(16,60 | 00001240: 2A 20 20 54 69 6D 65 20 20 3D 20 20 44 69 73 74 |* Time = Dist| 00001250: 61 6E 63 65 29 26 64 28 30 2C 54 68 65 20 52 61 |ance)&d(0,The Ra| 00001260: 74 65 20 69 73 20 36 30 20 6D 69 2F 68 72 2C 20 |te is 60 mi/hr, | 00001270: 73 6F 20 60 36 30 27 20 69 73 20 73 75 62 73 74 |so `60' is subst| 00001280: 69 74 75 74 65 64 20 66 6F 72 20 27 52 61 74 65 |ituted for 'Rate| 00001290: 27 2E 29 26 63 28 31 36 2C 36 30 20 20 20 2A 20 |'.)&c(16,60 * | 000012A0: 20 20 31 20 20 20 20 3D 20 20 44 69 73 74 61 6E | 1 = Distan| 000012B0: 63 65 29 26 64 28 30 2C 54 68 65 20 54 69 6D 65 |ce)&d(0,The Time| 000012C0: 20 69 73 20 31 20 68 72 2C 20 73 6F 20 60 31 27 | is 1 hr, so `1'| 000012D0: 20 69 73 20 73 75 62 73 74 69 74 75 74 65 64 20 | is substituted | 000012E0: 66 6F 72 20 60 54 69 6D 65 27 2E 29 26 63 28 31 |for `Time'.)&c(1| 000012F0: 36 2C 36 30 20 20 20 2A 20 20 20 31 20 20 20 20 |6,60 * 1 | 00001300: 3D 20 20 20 20 20 26 76 29 26 64 28 30 2C 41 6E |= &v)&d(0,An| 00001310: 64 20 44 69 73 74 61 6E 63 65 20 69 73 20 72 65 |d Distance is re| 00001320: 70 72 65 73 65 6E 74 65 64 20 62 79 20 74 68 65 |presented by the| 00001330: 20 76 61 72 69 61 62 6C 65 20 60 26 76 27 5C 2C | variable `&v'\,| 00001340: 20 73 6F 20 60 26 76 27 20 69 73 20 73 75 62 73 | so `&v' is subs| 00001350: 74 69 74 75 74 65 64 20 66 6F 72 20 60 44 69 73 |tituted for `Dis| 00001360: 74 61 6E 63 65 27 2E 29 26 63 28 31 36 2C 36 30 |tance'.)&c(16,60| 00001370: 20 3D 20 26 76 29 26 64 28 30 2C 4E 65 78 74 5C | = &v)&d(0,Next\| 00001380: 2C 20 74 68 65 20 65 71 75 61 74 69 6F 6E 20 69 |, the equation i| 00001390: 73 20 73 6F 6C 76 65 64 20 66 6F 72 20 60 26 76 |s solved for `&v| 000013A0: 27 2E 29 40 70 45 6E 74 65 72 20 74 68 65 20 61 |'.)@pEnter the a| 000013B0: 6E 73 77 65 72 20 6F 6E 20 74 68 65 20 63 68 61 |nswer on the cha| 000013C0: 72 74 2E 20 20 5B 36 30 5D 40 68 36 30 20 2A 20 |rt. [60]@h60 * | 000013D0: 31 20 3D 20 26 76 2C 20 73 6F 20 26 76 20 3D 20 |1 = &v, so &v = | 000013E0: 36 30 2E 40 68 45 6E 74 65 72 20 60 36 30 27 20 |60.@hEnter `60' | 000013F0: 61 6E 64 20 70 72 65 73 73 20 74 68 65 20 3C 52 |and press the <R| 00001400: 65 74 75 72 6E 3E 20 6B 65 79 2E 40 69 28 31 34 |eturn> key.@i(14| 00001410: 2C 69 2C 36 30 29 26 64 28 31 34 2C 36 30 29 26 |,i,60)&d(14,60)&| 00001420: 64 28 30 2C 49 66 20 61 20 63 61 72 20 74 72 61 |d(0,If a car tra| 00001430: 76 65 6C 73 20 36 30 20 6D 69 6C 65 73 20 65 61 |vels 60 miles ea| 00001440: 63 68 20 68 6F 75 72 20 66 6F 72 20 6F 6E 65 20 |ch hour for one | 00001450: 68 6F 75 72 5C 2C 20 74 68 65 6E 20 69 74 20 67 |hour\, then it g| 00001460: 6F 65 73 20 36 30 20 6D 69 6C 65 73 2E 29 20 40 |oes 60 miles.) @| 00001470: 6A 41 74 20 36 30 20 6D 69 6C 65 73 20 70 65 72 |jAt 60 miles per| 00001480: 20 68 6F 75 72 2C 20 68 6F 77 20 66 61 72 20 64 | hour, how far d| 00001490: 6F 65 73 20 74 68 65 20 42 6C 75 65 20 43 61 72 |oes the Blue Car| 000014A0: 20 67 6F 20 69 6E 20 6F 6E 65 20 68 61 6C 66 20 | go in one half | 000014B0: 68 6F 75 72 3F 26 64 28 31 30 2C 31 2F 32 20 68 |hour?&d(10,1/2 h| 000014C0: 72 29 26 64 28 31 34 2C 26 76 29 26 64 28 31 36 |r)&d(14,&v)&d(16| 000014D0: 2C 29 26 64 28 30 2C 29 26 64 28 30 2C 49 66 20 |,)&d(0,)&d(0,If | 000014E0: 74 68 65 20 63 61 72 20 67 6F 65 73 20 36 30 20 |the car goes 60 | 000014F0: 6D 69 6C 65 73 20 70 65 72 20 68 6F 75 72 2C 20 |miles per hour, | 00001500: 74 68 65 6E 20 69 74 20 74 72 61 76 65 6C 73 20 |then it travels | 00001510: 36 30 20 6D 69 6C 65 73 20 69 6E 20 6F 6E 65 20 |60 miles in one | 00001520: 68 6F 75 72 2E 20 49 6E 20 68 61 6C 66 20 61 6E |hour. In half an| 00001530: 20 68 6F 75 72 20 69 74 20 67 6F 65 73 20 68 61 | hour it goes ha| 00001540: 6C 66 20 61 73 20 66 61 72 2E 29 40 70 45 6E 74 |lf as far.)@pEnt| 00001550: 65 72 20 68 6F 77 20 66 61 72 20 74 68 65 20 63 |er how far the c| 00001560: 61 72 20 77 6F 75 6C 64 20 67 6F 20 69 6E 20 68 |ar would go in h| 00001570: 61 6C 66 20 61 6E 20 68 6F 75 72 2E 20 5B 52 65 |alf an hour. [Re| 00001580: 6D 65 6D 62 65 72 2C 20 75 73 65 20 74 68 65 20 |member, use the | 00001590: 48 45 4C 50 20 6B 65 79 20 69 66 20 79 6F 75 20 |HELP key if you | 000015A0: 6E 65 65 64 20 69 74 2E 5D 40 68 49 66 20 61 20 |need it.]@hIf a | 000015B0: 63 61 72 20 74 72 61 76 65 6C 73 20 61 74 20 61 |car travels at a| 000015C0: 20 63 6F 6E 73 74 61 6E 74 20 73 70 65 65 64 20 | constant speed | 000015D0: 61 6E 64 20 67 6F 65 73 20 36 30 20 6D 69 6C 65 |and goes 60 mile| 000015E0: 73 20 69 6E 20 61 6E 20 68 6F 75 72 2C 20 69 74 |s in an hour, it| 000015F0: 20 77 6F 75 6C 64 20 74 72 61 76 65 6C 20 33 30 | would travel 30| 00001600: 20 6D 69 6C 65 73 20 69 6E 20 68 61 6C 66 20 61 | miles in half a| 00001610: 6E 20 68 6F 75 72 2E 40 68 48 61 6C 66 20 6F 66 |n hour.@hHalf of| 00001620: 20 36 30 20 69 73 20 33 30 2E 20 45 6E 74 65 72 | 60 is 30. Enter| 00001630: 20 60 33 30 27 20 61 6E 64 20 70 72 65 73 73 20 | `30' and press | 00001640: 74 68 65 20 3C 52 65 74 75 72 6E 3E 20 6B 65 79 |the <Return> key| 00001650: 2E 2E 40 69 28 31 34 2C 69 2C 33 30 29 20 40 6A |..@i(14,i,30) @j| 00001660: 41 74 20 36 30 20 6D 69 6C 65 73 20 70 65 72 20 |At 60 miles per | 00001670: 68 6F 75 72 2C 20 68 6F 77 20 66 61 72 20 64 6F |hour, how far do| 00001680: 65 73 20 74 68 65 20 42 6C 75 65 20 63 61 72 20 |es the Blue car | 00001690: 67 6F 20 69 6E 20 31 20 6D 69 6E 75 74 65 3F 26 |go in 1 minute?&| 000016A0: 64 28 31 30 2C 31 20 6D 69 6E 29 26 64 28 31 34 |d(10,1 min)&d(14| 000016B0: 2C 26 76 29 26 64 28 30 2C 29 40 70 41 6E 20 68 |,&v)&d(0,)@pAn h| 000016C0: 6F 75 72 20 69 73 20 36 30 20 6D 69 6E 75 74 65 |our is 60 minute| 000016D0: 73 2E 20 45 6E 74 65 72 20 68 6F 77 20 66 61 72 |s. Enter how far| 000016E0: 20 74 68 65 20 63 61 72 20 67 6F 65 73 20 69 6E | the car goes in| 000016F0: 20 61 20 6D 69 6E 75 74 65 2E 20 5B 52 65 6D 65 | a minute. [Reme| 00001700: 6D 62 65 72 2C 20 75 73 65 20 74 68 65 20 48 45 |mber, use the HE| 00001710: 4C 50 20 6B 65 79 20 69 66 20 79 6F 75 20 6E 65 |LP key if you ne| 00001720: 65 64 20 69 74 2E 5D 40 68 49 66 20 61 20 63 61 |ed it.]@hIf a ca| 00001730: 72 20 74 72 61 76 65 6C 73 20 61 74 20 61 20 63 |r travels at a c| 00001740: 6F 6E 73 74 61 6E 74 20 73 70 65 65 64 2C 20 61 |onstant speed, a| 00001750: 6E 64 20 67 6F 65 73 20 36 30 20 6D 69 6C 65 73 |nd goes 60 miles| 00001760: 20 69 6E 20 61 6E 20 68 6F 75 72 2C 20 69 74 20 | in an hour, it | 00001770: 77 6F 75 6C 64 20 74 72 61 76 65 6C 20 61 20 6D |would travel a m| 00001780: 69 6C 65 20 65 76 65 72 79 20 6D 69 6E 75 74 65 |ile every minute| 00001790: 2E 40 68 36 30 20 6D 69 6C 65 73 20 64 69 76 69 |.@h60 miles divi| 000017A0: 64 65 64 20 62 79 20 36 30 20 69 73 20 31 20 6D |ded by 60 is 1 m| 000017B0: 69 6C 65 2E 20 45 6E 74 65 72 20 60 31 27 2E 40 |ile. Enter `1'.@| 000017C0: 69 28 31 34 2C 69 2C 31 29 20 7C 6F |i(14,i,1) |o |
A@QDISTANCE TUTORIAL -- PART 1.\NTHIS I S A TUTORIAL ON DISTANCE PROBLEMS. IF YO U FIND A QUESTION CONFUSING, USE THE `HE LP' KEY.@PIF THE TUTORIAL SEEMS TOO EASY , USE THE `SKIP PROBLEM' KEY.\N (PRESS ANY KEY TO CONTINUE.)@HTHERE ARE ALWAYS TWO LEVELS OF 'HELP' AVAILABLE. THE SEC OND LEVEL PROVIDES THE CORRECT ANSWER.@H THE `SKIP PROBLEM' KEY WILL TAKE YOU TO THE NEXT PROBLEM, OR TO THE NEXT PART OF THE TUTORIAL.@I(0)@JDISTANCE PROBLEMS G ENERALLY COMPARE THE MOTION OF TWO OBJEC TS:@DG04&D(5,RATE)&D(10,TIME) &D(15,DIST ) &C(2,DOG)&C(3,CAT)&D(4,TOTAL)&D(0,HOW FAR APART ARE THE PETS AFTER 1 HOUR? WHE N WILL THEY MEET?\NWHEN WILL THE DOG CAT CH THE CAT?)@JDISTANCE PROBLEMS ARE EASY TO DIAGRAM, AND, THEREFORE, HELP THE ST UDENT TO PICTURE ALGEBRAIC RELATIONSHIPS .@DCARS&D(0,TWO CARS START AT THE SAME T IME HEADED IN OPPOSITE DIRECTIONS.)@DRUN &D(0,TWO RUNNERS START AT DIFFERENT TIME S\, HEADED IN THE SAME DIRECTION.)@DSWIM MER&D(0,OR\, TWO SWIMMERS START SWIMMING TOWARDS EACH OTHER AT THE SAME TIME.) @ JTO SOLVE DISTANCE PROBLEMS YOU MUST KNO W RATE, TIME, AND DISTANCE FOR EACH OBJE CT INVOLVED.@DG05&D(4,RATE)&D(8,TIME)&D( 12,DIST)&D(0,THE GENERAL EQUATION THAT R ELATES KEY QUANTITIES IN A WORD PROBLEM IS CALLED AN `EQUATION IDEA'.&QRATE, TIM E, AND DISTANCE&Q)&D(0,THE `EQUATION IDE A' TO FIND THE DISTANCE AN OBJECT TRAVEL S IS:\N RATE * TIME = DISTANCE.)&C( 16,RATE * TIME = DISTANCE)&D(0,IF YOU TR AVEL AT A CERTAIN RATE FOR A SET AMOUNT OF TIME\, THE DISTANCE TRAVELLED IS: RA TE * TIME.) &D(1,UNIT/MEAS)&C(2,OBJECT)@ JDISTANCE PROBLEMS USE DIFFERENT UNITS O F MEASURE.&D(0,MAKE SURE UNITS OF MEASUR E ARE UNIFORM. IF RATE IS `FT/SEC'\, THE N TIME IS IN SECONDS AND DISTANCE IS IN FEET.)&D(5,MI/HR)&D(9,HR)@PENTER THE UNI T OF MEASURE FOR DISTANCE. NOTE: RATE IS IN MILES PER HOUR (MI/HR), AND TIME IS IN HOURS (HR).@HRATE OF SPEED IS MEASURE D AS MILES TRAVELLED EVERY HOUR, SO DIST ANCE WOULD BE MEASURED IN MILES.@HTHE AB BREVIATION FOR MILES IS `MI'. ENTER `MI' AND PRESS THE <RETURN> KEY.@I(13,C2,MI) @S&D(5,ME/HR)&D(9,HR)&D(13,)@PENTER THE UNIT OF MEASURE FOR DISTANCE, IF RATE IS IN METERS PER HOUR (ME/HR), AND TIME IS IN HOURS (HR).@HRATE OF SPEED IS MEASUR ED AS METERS TRAVELLED EVERY HOUR, SO DI STANCE WOULD BE MEASURED IN METERS.@HTHE ABBREVIATION FOR METERS IS `ME'. ENTER `ME' AND PRESS THE <RETURN> KEY.@I(13,C2 ,ME)&D(5,KM/HR)&D(9, )&D(13, )@PENTER TH E UNIT OF MEASURE FOR DISTANCE, IF RATE IS IN KILOMETERS PER HOUR (KM/HR).@HRATE OF SPEED IS MEASURED AS KILOMETERS TRAV ELLED EVERY HOUR, SO DISTANCE WOULD BE M EASURED IN KILOMETERS.@HTHE ABBREVIATION FOR KILOMETERS IS `KM'. ENTER `KM' AND PRESS THE <RETURN> KEY.@I(13,C2,KM)&D(9, MIN)&D(0,IF TIME IS GIVEN IN MINUTES, TH ERE IS NO UNIT IN COMMON WITH THE RATE. HOW CAN YOU FIX THIS?)&D(0,USE HOURS (HR ) AS THE UNIT OF MEASURE, AND MULTIPLY T HE TIME GIVEN IN THE PROBLEM BY 60.)&D(9 ,HR)&D(10,__ * 60)&D(0,IT IS ESSENTIAL T O HAVE ALL UNITS OF MEASURE AGREE.) */@C @JHERE IS SOME PRACTICE IN SIMPLE DISTAN CE PROBLEMS WITH ONE OBJECT.@PAT ANY TIM E, TO PROCEED TO THE NEXT PART OF THE TU TORIAL, USE THE "SKIP PROBLEM" OPTION. ( ANY KEY TO CONTINUE.)@HTHERE ARE THREE P ARTS TO THE DISTANCE TUTORIAL.@HTHE "SKI P PROBLEM" OPTION TAKES YOU TO THE NEXT PROBLEM, OR TO THE NEXT PART OF THE TUTO RIAL.@I(0) @JA BLUE CAR ...&C(2,BLUE CAR )&D(0,\F06HOW FAST DOES IT GO?\N\F06HOW LONG DOES IT TRAVEL?\N\F06HOW FAR DOES I T GO?)@JA BLUE CAR TRAVELS AT 60 MILES P ER HOUR (MI/HR) ...&D(5,MI/HR)@P\F08ENTE R THE RATE:\N\F08HOW FAST DOES IT GO?\N\ F08[60 MI/HR]@H`60 MI/HR' MEANS THAT THE CAR GOES 60 MILES THE 1ST HOUR, ANOTHER 60 MILES THE 2ND HOUR, AND SO ON.@HENTE R `60 MI/HR' AND PRESS THE <RETURN> KEY. @I(6,I,60)&D(6,60 MI/HR) @S&D(0,RATE OF SPEED, IN THIS PROBLEM, IS DETERMINED BY THE MILES TRAVELLED IN 1 HOUR (MI/HR).) @JA BLUE CAR TRAVELS AT 60 MILES PER HOU R (MI/HR) FOR 1 HOUR (HR).&D(9,HR)@P\F06 ENTER THE TIME:\N\F06HOW LONG DOES IT TR AVEL? [1 HR]@HTHE CAR TRAVELS FOR 1 HOUR .\NENTER `1 HR'.@HTHE CAR TRAVELS FOR 1 HOUR.\NENTER `1 HR' AND PRESS THE <RETUR N> KEY.@I(10,I,1)&D(10,1 HR)&D(0,TIME IS USUALLY MEASURED IN HOURS (HR)\, MINUTE S (MIN)\, OR SECONDS (SEC).)@JA BLUE CAR TRAVELS AT 60 MILES PER HOUR (MI/HR) FO R 1 HOUR (HR). HOW MANY MILES (MI) DOES IT GO?&D(13,MI)@PENTER A VARIABLE FOR TH E UNKNOWN: (HOW FAR DOES IT GO?) [X]@H USE A VARIABLE, SUCH AS `X' TO REPRESENT THE DISTANCE TRAVELLED.@HENTER THE LETT ER `X' AND PRESS THE <RETURN> KEY.@I(14, I,&V)@S&C(16,EQUATION IDEA)&D(0,THE EQUA TION IDEA NEEDS TO BE ENTERED. (IN THE T UTORIAL\, THE PROGRAM DOES THIS FOR YOU. ))&C(16,RATE * TIME = DISTANCE)&D(0, NEXT, IT IS NECESSARY TO SUBSTITUTE EXPR ESSIONS FOR RATE\, TIME\, AND DISTANCE I N THE EQUATION IDEA.)&C(16,60 * TIME = DISTANCE)&D(0,THE RATE IS 60 MI/HR, SO `60' IS SUBSTITUTED FOR 'RATE'.)&C(16 ,60 * 1 = DISTANCE)&D(0,THE TIME IS 1 HR, SO `1' IS SUBSTITUTED FOR `TIM E'.)&C(16,60 * 1 = &V)&D(0,AN D DISTANCE IS REPRESENTED BY THE VARIABL E `&V'\, SO `&V' IS SUBSTITUTED FOR `DIS TANCE'.)&C(16,60 = &V)&D(0,NEXT\, THE EQ UATION IS SOLVED FOR `&V'.)@PENTER THE A NSWER ON THE CHART. [60]@H60 * 1 = &V, SO &V = 60.@HENTER `60' AND PRESS THE <R ETURN> KEY.@I(14,I,60)&D(14,60)&D(0,IF A CAR TRAVELS 60 MILES EACH HOUR FOR ONE HOUR\, THEN IT GOES 60 MILES.) @JAT 60 M ILES PER HOUR, HOW FAR DOES THE BLUE CAR GO IN ONE HALF HOUR?&D(10,1/2 HR)&D(14, &V)&D(16,)&D(0,)&D(0,IF THE CAR GOES 60 MILES PER HOUR, THEN IT TRAVELS 60 MILES IN ONE HOUR. IN HALF AN HOUR IT GOES HA LF AS FAR.)@PENTER HOW FAR THE CAR WOULD GO IN HALF AN HOUR. [REMEMBER, USE THE HELP KEY IF YOU NEED IT.]@HIF A CAR TRAV ELS AT A CONSTANT SPEED AND GOES 60 MILE S IN AN HOUR, IT WOULD TRAVEL 30 MILES I N HALF AN HOUR.@HHALF OF 60 IS 30. ENTER `30' AND PRESS THE <RETURN> KEY..@I(14, I,30) @JAT 60 MILES PER HOUR, HOW FAR DO ES THE BLUE CAR GO IN 1 MINUTE?&D(10,1 M IN)&D(14,&V)&D(0,)@PAN HOUR IS 60 MINUTE S. ENTER HOW FAR THE CAR GOES IN A MINUT E. [REMEMBER, USE THE HELP KEY IF YOU NE ED IT.]@HIF A CAR TRAVELS AT A CONSTANT SPEED, AND GOES 60 MILES IN AN HOUR, IT WOULD TRAVEL A MILE EVERY MINUTE.@H60 MI LES DIVIDED BY 60 IS 1 MILE. ENTER `1'.@ I(14,I,1) |O
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL