_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST1L1

FILE INFORMATION

FILENAME(S): DIST1L1

FILE TYPE(S): PRG

FILE SIZE: 5.9K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

0ddef55652809dd9d9e95236dca7f770e06a1f2ab5f39b91d18c7ea6b1db0ab0

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST1L1 PRG Radd Maxx 17 10 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 40 71 44 49 53 54  41 4E 43 45 20 54 55 54  | A@qDISTANCE TUT|
00000010: 4F 52 49 41 4C 20 2D 2D  20 50 41 52 54 20 31 2E  |ORIAL -- PART 1.|
00000020: 5C 6E 54 68 69 73 20 69  73 20 61 20 54 75 74 6F  |\nThis is a Tuto|
00000030: 72 69 61 6C 20 6F 6E 20  44 69 73 74 61 6E 63 65  |rial on Distance|
00000040: 20 50 72 6F 62 6C 65 6D  73 2E 20 49 66 20 79 6F  | Problems. If yo|
00000050: 75 20 66 69 6E 64 20 61  20 71 75 65 73 74 69 6F  |u find a questio|
00000060: 6E 20 63 6F 6E 66 75 73  69 6E 67 2C 20 75 73 65  |n confusing, use|
00000070: 20 74 68 65 20 60 48 45  4C 50 27 20 6B 65 79 2E  | the `HELP' key.|
00000080: 40 70 49 66 20 74 68 65  20 54 75 74 6F 72 69 61  |@pIf the Tutoria|
00000090: 6C 20 73 65 65 6D 73 20  74 6F 6F 20 65 61 73 79  |l seems too easy|
000000A0: 2C 20 75 73 65 20 74 68  65 20 60 53 6B 69 70 20  |, use the `Skip |
000000B0: 50 72 6F 62 6C 65 6D 27  20 6B 65 79 2E 5C 6E 20  |Problem' key.\n |
000000C0: 20 20 28 50 72 65 73 73  20 61 6E 79 20 6B 65 79  |  (Press any key|
000000D0: 20 74 6F 20 63 6F 6E 74  69 6E 75 65 2E 29 40 68  | to continue.)@h|
000000E0: 54 68 65 72 65 20 61 72  65 20 61 6C 77 61 79 73  |There are always|
000000F0: 20 74 77 6F 20 6C 65 76  65 6C 73 20 6F 66 20 27  | two levels of '|
00000100: 48 45 4C 50 27 20 61 76  61 69 6C 61 62 6C 65 2E  |HELP' available.|
00000110: 20 54 68 65 20 73 65 63  6F 6E 64 20 6C 65 76 65  | The second leve|
00000120: 6C 20 70 72 6F 76 69 64  65 73 20 74 68 65 20 63  |l provides the c|
00000130: 6F 72 72 65 63 74 20 61  6E 73 77 65 72 2E 40 68  |orrect answer.@h|
00000140: 54 68 65 20 60 53 6B 69  70 20 50 72 6F 62 6C 65  |The `Skip Proble|
00000150: 6D 27 20 6B 65 79 20 77  69 6C 6C 20 74 61 6B 65  |m' key will take|
00000160: 20 79 6F 75 20 74 6F 20  74 68 65 20 6E 65 78 74  | you to the next|
00000170: 20 70 72 6F 62 6C 65 6D  2C 20 6F 72 20 74 6F 20  | problem, or to |
00000180: 74 68 65 20 6E 65 78 74  20 70 61 72 74 20 6F 66  |the next part of|
00000190: 20 74 68 65 20 54 75 74  6F 72 69 61 6C 2E 40 69  | the Tutorial.@i|
000001A0: 28 30 29 40 6A 44 69 73  74 61 6E 63 65 20 50 72  |(0)@jDistance Pr|
000001B0: 6F 62 6C 65 6D 73 20 67  65 6E 65 72 61 6C 6C 79  |oblems generally|
000001C0: 20 63 6F 6D 70 61 72 65  20 74 68 65 20 6D 6F 74  | compare the mot|
000001D0: 69 6F 6E 20 6F 66 20 74  77 6F 20 6F 62 6A 65 63  |ion of two objec|
000001E0: 74 73 3A 40 64 67 30 34  26 64 28 35 2C 52 61 74  |ts:@dg04&d(5,Rat|
000001F0: 65 29 26 64 28 31 30 2C  54 69 6D 65 29 20 26 64  |e)&d(10,Time) &d|
00000200: 28 31 35 2C 44 69 73 74  29 20 26 63 28 32 2C 44  |(15,Dist) &c(2,D|
00000210: 6F 67 29 26 63 28 33 2C  43 61 74 29 26 64 28 34  |og)&c(3,Cat)&d(4|
00000220: 2C 54 6F 74 61 6C 29 26  64 28 30 2C 48 6F 77 20  |,Total)&d(0,How |
00000230: 66 61 72 20 61 70 61 72  74 20 61 72 65 20 74 68  |far apart are th|
00000240: 65 20 70 65 74 73 20 61  66 74 65 72 20 31 20 68  |e pets after 1 h|
00000250: 6F 75 72 3F 20 57 68 65  6E 20 77 69 6C 6C 20 74  |our? When will t|
00000260: 68 65 79 20 6D 65 65 74  3F 5C 6E 57 68 65 6E 20  |hey meet?\nWhen |
00000270: 77 69 6C 6C 20 74 68 65  20 44 6F 67 20 63 61 74  |will the Dog cat|
00000280: 63 68 20 74 68 65 20 43  61 74 3F 29 40 6A 44 69  |ch the Cat?)@jDi|
00000290: 73 74 61 6E 63 65 20 50  72 6F 62 6C 65 6D 73 20  |stance Problems |
000002A0: 61 72 65 20 65 61 73 79  20 74 6F 20 64 69 61 67  |are easy to diag|
000002B0: 72 61 6D 2C 20 61 6E 64  2C 20 74 68 65 72 65 66  |ram, and, theref|
000002C0: 6F 72 65 2C 20 68 65 6C  70 20 74 68 65 20 73 74  |ore, help the st|
000002D0: 75 64 65 6E 74 20 74 6F  20 70 69 63 74 75 72 65  |udent to picture|
000002E0: 20 61 6C 67 65 62 72 61  69 63 20 72 65 6C 61 74  | algebraic relat|
000002F0: 69 6F 6E 73 68 69 70 73  2E 40 64 63 61 72 73 26  |ionships.@dcars&|
00000300: 64 28 30 2C 54 77 6F 20  63 61 72 73 20 73 74 61  |d(0,Two cars sta|
00000310: 72 74 20 61 74 20 74 68  65 20 73 61 6D 65 20 74  |rt at the same t|
00000320: 69 6D 65 20 68 65 61 64  65 64 20 69 6E 20 6F 70  |ime headed in op|
00000330: 70 6F 73 69 74 65 20 64  69 72 65 63 74 69 6F 6E  |posite direction|
00000340: 73 2E 29 40 64 72 75 6E  26 64 28 30 2C 54 77 6F  |s.)@drun&d(0,Two|
00000350: 20 72 75 6E 6E 65 72 73  20 73 74 61 72 74 20 61  | runners start a|
00000360: 74 20 64 69 66 66 65 72  65 6E 74 20 74 69 6D 65  |t different time|
00000370: 73 5C 2C 20 68 65 61 64  65 64 20 69 6E 20 74 68  |s\, headed in th|
00000380: 65 20 73 61 6D 65 20 64  69 72 65 63 74 69 6F 6E  |e same direction|
00000390: 2E 29 40 64 73 77 69 6D  6D 65 72 26 64 28 30 2C  |.)@dswimmer&d(0,|
000003A0: 4F 72 5C 2C 20 74 77 6F  20 73 77 69 6D 6D 65 72  |Or\, two swimmer|
000003B0: 73 20 73 74 61 72 74 20  73 77 69 6D 6D 69 6E 67  |s start swimming|
000003C0: 20 74 6F 77 61 72 64 73  20 65 61 63 68 20 6F 74  | towards each ot|
000003D0: 68 65 72 20 61 74 20 74  68 65 20 73 61 6D 65 20  |her at the same |
000003E0: 74 69 6D 65 2E 29 20 40  6A 54 6F 20 73 6F 6C 76  |time.) @jTo solv|
000003F0: 65 20 44 69 73 74 61 6E  63 65 20 50 72 6F 62 6C  |e Distance Probl|
00000400: 65 6D 73 20 79 6F 75 20  6D 75 73 74 20 6B 6E 6F  |ems you must kno|
00000410: 77 20 52 61 74 65 2C 20  54 69 6D 65 2C 20 61 6E  |w Rate, Time, an|
00000420: 64 20 44 69 73 74 61 6E  63 65 20 66 6F 72 20 65  |d Distance for e|
00000430: 61 63 68 20 6F 62 6A 65  63 74 20 69 6E 76 6F 6C  |ach object invol|
00000440: 76 65 64 2E 40 64 67 30  35 26 64 28 34 2C 52 61  |ved.@dg05&d(4,Ra|
00000450: 74 65 29 26 64 28 38 2C  54 69 6D 65 29 26 64 28  |te)&d(8,Time)&d(|
00000460: 31 32 2C 44 69 73 74 29  26 64 28 30 2C 54 68 65  |12,Dist)&d(0,The|
00000470: 20 67 65 6E 65 72 61 6C  20 65 71 75 61 74 69 6F  | general equatio|
00000480: 6E 20 74 68 61 74 20 72  65 6C 61 74 65 73 20 6B  |n that relates k|
00000490: 65 79 20 71 75 61 6E 74  69 74 69 65 73 20 69 6E  |ey quantities in|
000004A0: 20 61 20 77 6F 72 64 20  70 72 6F 62 6C 65 6D 20  | a word problem |
000004B0: 69 73 20 63 61 6C 6C 65  64 20 61 6E 20 60 45 71  |is called an `Eq|
000004C0: 75 61 74 69 6F 6E 20 49  64 65 61 27 2E 26 71 52  |uation Idea'.&qR|
000004D0: 61 74 65 2C 20 54 69 6D  65 2C 20 61 6E 64 20 44  |ate, Time, and D|
000004E0: 69 73 74 61 6E 63 65 26  71 29 26 64 28 30 2C 54  |istance&q)&d(0,T|
000004F0: 68 65 20 60 45 71 75 61  74 69 6F 6E 20 49 64 65  |he `Equation Ide|
00000500: 61 27 20 74 6F 20 66 69  6E 64 20 74 68 65 20 64  |a' to find the d|
00000510: 69 73 74 61 6E 63 65 20  61 6E 20 6F 62 6A 65 63  |istance an objec|
00000520: 74 20 74 72 61 76 65 6C  73 20 69 73 3A 5C 6E 20  |t travels is:\n |
00000530: 20 20 20 20 20 52 61 74  65 20 2A 20 54 69 6D 65  |     Rate * Time|
00000540: 20 3D 20 44 69 73 74 61  6E 63 65 2E 29 26 63 28  | = Distance.)&c(|
00000550: 31 36 2C 52 61 74 65 20  2A 20 54 69 6D 65 20 3D  |16,Rate * Time =|
00000560: 20 44 69 73 74 61 6E 63  65 29 26 64 28 30 2C 49  | Distance)&d(0,I|
00000570: 66 20 79 6F 75 20 74 72  61 76 65 6C 20 61 74 20  |f you travel at |
00000580: 61 20 63 65 72 74 61 69  6E 20 52 61 74 65 20 66  |a certain Rate f|
00000590: 6F 72 20 61 20 73 65 74  20 61 6D 6F 75 6E 74 20  |or a set amount |
000005A0: 6F 66 20 54 69 6D 65 5C  2C 20 74 68 65 20 44 69  |of Time\, the Di|
000005B0: 73 74 61 6E 63 65 20 74  72 61 76 65 6C 6C 65 64  |stance travelled|
000005C0: 20 69 73 3A 20 20 52 61  74 65 20 2A 20 54 69 6D  | is:  Rate * Tim|
000005D0: 65 2E 29 20 26 64 28 31  2C 55 6E 69 74 2F 4D 65  |e.) &d(1,Unit/Me|
000005E0: 61 73 29 26 63 28 32 2C  4F 62 6A 65 63 74 29 40  |as)&c(2,Object)@|
000005F0: 6A 44 69 73 74 61 6E 63  65 20 70 72 6F 62 6C 65  |jDistance proble|
00000600: 6D 73 20 75 73 65 20 64  69 66 66 65 72 65 6E 74  |ms use different|
00000610: 20 55 6E 69 74 73 20 6F  66 20 4D 65 61 73 75 72  | Units of Measur|
00000620: 65 2E 26 64 28 30 2C 4D  61 6B 65 20 73 75 72 65  |e.&d(0,Make sure|
00000630: 20 55 6E 69 74 73 20 6F  66 20 4D 65 61 73 75 72  | Units of Measur|
00000640: 65 20 61 72 65 20 75 6E  69 66 6F 72 6D 2E 20 49  |e are uniform. I|
00000650: 66 20 52 61 74 65 20 69  73 20 60 66 74 2F 73 65  |f Rate is `ft/se|
00000660: 63 27 5C 2C 20 74 68 65  6E 20 54 69 6D 65 20 69  |c'\, then Time i|
00000670: 73 20 69 6E 20 73 65 63  6F 6E 64 73 20 61 6E 64  |s in seconds and|
00000680: 20 44 69 73 74 61 6E 63  65 20 69 73 20 69 6E 20  | Distance is in |
00000690: 66 65 65 74 2E 29 26 64  28 35 2C 6D 69 2F 68 72  |feet.)&d(5,mi/hr|
000006A0: 29 26 64 28 39 2C 68 72  29 40 70 45 6E 74 65 72  |)&d(9,hr)@pEnter|
000006B0: 20 74 68 65 20 55 6E 69  74 20 6F 66 20 4D 65 61  | the Unit of Mea|
000006C0: 73 75 72 65 20 66 6F 72  20 44 69 73 74 61 6E 63  |sure for Distanc|
000006D0: 65 2E 20 4E 6F 74 65 3A  20 52 61 74 65 20 69 73  |e. Note: Rate is|
000006E0: 20 69 6E 20 6D 69 6C 65  73 20 70 65 72 20 68 6F  | in miles per ho|
000006F0: 75 72 20 28 6D 69 2F 68  72 29 2C 20 61 6E 64 20  |ur (mi/hr), and |
00000700: 54 69 6D 65 20 69 73 20  69 6E 20 68 6F 75 72 73  |Time is in hours|
00000710: 20 28 68 72 29 2E 40 68  52 61 74 65 20 6F 66 20  | (hr).@hRate of |
00000720: 73 70 65 65 64 20 69 73  20 6D 65 61 73 75 72 65  |speed is measure|
00000730: 64 20 61 73 20 6D 69 6C  65 73 20 74 72 61 76 65  |d as miles trave|
00000740: 6C 6C 65 64 20 65 76 65  72 79 20 68 6F 75 72 2C  |lled every hour,|
00000750: 20 73 6F 20 44 69 73 74  61 6E 63 65 20 77 6F 75  | so Distance wou|
00000760: 6C 64 20 62 65 20 6D 65  61 73 75 72 65 64 20 69  |ld be measured i|
00000770: 6E 20 6D 69 6C 65 73 2E  40 68 54 68 65 20 61 62  |n miles.@hThe ab|
00000780: 62 72 65 76 69 61 74 69  6F 6E 20 66 6F 72 20 6D  |breviation for m|
00000790: 69 6C 65 73 20 69 73 20  60 6D 69 27 2E 20 45 6E  |iles is `mi'. En|
000007A0: 74 65 72 20 60 6D 69 27  20 61 6E 64 20 70 72 65  |ter `mi' and pre|
000007B0: 73 73 20 74 68 65 20 3C  52 65 74 75 72 6E 3E 20  |ss the <Return> |
000007C0: 6B 65 79 2E 40 69 28 31  33 2C 63 32 2C 6D 69 29  |key.@i(13,c2,mi)|
000007D0: 40 73 26 64 28 35 2C 6D  65 2F 68 72 29 26 64 28  |@s&d(5,me/hr)&d(|
000007E0: 39 2C 68 72 29 26 64 28  31 33 2C 29 40 70 45 6E  |9,hr)&d(13,)@pEn|
000007F0: 74 65 72 20 74 68 65 20  55 6E 69 74 20 6F 66 20  |ter the Unit of |
00000800: 4D 65 61 73 75 72 65 20  66 6F 72 20 44 69 73 74  |Measure for Dist|
00000810: 61 6E 63 65 2C 20 69 66  20 52 61 74 65 20 69 73  |ance, if Rate is|
00000820: 20 69 6E 20 6D 65 74 65  72 73 20 70 65 72 20 68  | in meters per h|
00000830: 6F 75 72 20 28 6D 65 2F  68 72 29 2C 20 61 6E 64  |our (me/hr), and|
00000840: 20 54 69 6D 65 20 69 73  20 69 6E 20 68 6F 75 72  | Time is in hour|
00000850: 73 20 28 68 72 29 2E 40  68 52 61 74 65 20 6F 66  |s (hr).@hRate of|
00000860: 20 73 70 65 65 64 20 69  73 20 6D 65 61 73 75 72  | speed is measur|
00000870: 65 64 20 61 73 20 6D 65  74 65 72 73 20 74 72 61  |ed as meters tra|
00000880: 76 65 6C 6C 65 64 20 65  76 65 72 79 20 68 6F 75  |velled every hou|
00000890: 72 2C 20 73 6F 20 44 69  73 74 61 6E 63 65 20 77  |r, so Distance w|
000008A0: 6F 75 6C 64 20 62 65 20  6D 65 61 73 75 72 65 64  |ould be measured|
000008B0: 20 69 6E 20 6D 65 74 65  72 73 2E 40 68 54 68 65  | in meters.@hThe|
000008C0: 20 61 62 62 72 65 76 69  61 74 69 6F 6E 20 66 6F  | abbreviation fo|
000008D0: 72 20 6D 65 74 65 72 73  20 69 73 20 60 6D 65 27  |r meters is `me'|
000008E0: 2E 20 45 6E 74 65 72 20  60 6D 65 27 20 61 6E 64  |. Enter `me' and|
000008F0: 20 70 72 65 73 73 20 74  68 65 20 3C 52 65 74 75  | press the <Retu|
00000900: 72 6E 3E 20 6B 65 79 2E  40 69 28 31 33 2C 63 32  |rn> key.@i(13,c2|
00000910: 2C 6D 65 29 26 64 28 35  2C 6B 6D 2F 68 72 29 26  |,me)&d(5,km/hr)&|
00000920: 64 28 39 2C 20 29 26 64  28 31 33 2C 20 29 40 70  |d(9, )&d(13, )@p|
00000930: 45 6E 74 65 72 20 74 68  65 20 55 6E 69 74 20 6F  |Enter the Unit o|
00000940: 66 20 4D 65 61 73 75 72  65 20 66 6F 72 20 44 69  |f Measure for Di|
00000950: 73 74 61 6E 63 65 2C 20  69 66 20 52 61 74 65 20  |stance, if Rate |
00000960: 69 73 20 69 6E 20 6B 69  6C 6F 6D 65 74 65 72 73  |is in kilometers|
00000970: 20 70 65 72 20 68 6F 75  72 20 28 6B 6D 2F 68 72  | per hour (km/hr|
00000980: 29 2E 40 68 52 61 74 65  20 6F 66 20 73 70 65 65  |).@hRate of spee|
00000990: 64 20 69 73 20 6D 65 61  73 75 72 65 64 20 61 73  |d is measured as|
000009A0: 20 6B 69 6C 6F 6D 65 74  65 72 73 20 74 72 61 76  | kilometers trav|
000009B0: 65 6C 6C 65 64 20 65 76  65 72 79 20 68 6F 75 72  |elled every hour|
000009C0: 2C 20 73 6F 20 44 69 73  74 61 6E 63 65 20 77 6F  |, so Distance wo|
000009D0: 75 6C 64 20 62 65 20 6D  65 61 73 75 72 65 64 20  |uld be measured |
000009E0: 69 6E 20 6B 69 6C 6F 6D  65 74 65 72 73 2E 40 68  |in kilometers.@h|
000009F0: 54 68 65 20 61 62 62 72  65 76 69 61 74 69 6F 6E  |The abbreviation|
00000A00: 20 66 6F 72 20 6B 69 6C  6F 6D 65 74 65 72 73 20  | for kilometers |
00000A10: 69 73 20 60 6B 6D 27 2E  20 45 6E 74 65 72 20 60  |is `km'. Enter `|
00000A20: 6B 6D 27 20 61 6E 64 20  70 72 65 73 73 20 74 68  |km' and press th|
00000A30: 65 20 3C 52 65 74 75 72  6E 3E 20 6B 65 79 2E 40  |e <Return> key.@|
00000A40: 69 28 31 33 2C 63 32 2C  6B 6D 29 26 64 28 39 2C  |i(13,c2,km)&d(9,|
00000A50: 6D 69 6E 29 26 64 28 30  2C 49 66 20 54 69 6D 65  |min)&d(0,If Time|
00000A60: 20 69 73 20 67 69 76 65  6E 20 69 6E 20 6D 69 6E  | is given in min|
00000A70: 75 74 65 73 2C 20 74 68  65 72 65 20 69 73 20 6E  |utes, there is n|
00000A80: 6F 20 75 6E 69 74 20 69  6E 20 63 6F 6D 6D 6F 6E  |o unit in common|
00000A90: 20 77 69 74 68 20 74 68  65 20 52 61 74 65 2E 20  | with the Rate. |
00000AA0: 48 6F 77 20 63 61 6E 20  79 6F 75 20 66 69 78 20  |How can you fix |
00000AB0: 74 68 69 73 3F 29 26 64  28 30 2C 55 73 65 20 68  |this?)&d(0,Use h|
00000AC0: 6F 75 72 73 20 28 68 72  29 20 61 73 20 74 68 65  |ours (hr) as the|
00000AD0: 20 55 6E 69 74 20 6F 66  20 4D 65 61 73 75 72 65  | Unit of Measure|
00000AE0: 2C 20 61 6E 64 20 6D 75  6C 74 69 70 6C 79 20 74  |, and multiply t|
00000AF0: 68 65 20 54 69 6D 65 20  67 69 76 65 6E 20 69 6E  |he Time given in|
00000B00: 20 74 68 65 20 70 72 6F  62 6C 65 6D 20 62 79 20  | the problem by |
00000B10: 36 30 2E 29 26 64 28 39  2C 68 72 29 26 64 28 31  |60.)&d(9,hr)&d(1|
00000B20: 30 2C 5F 5F 20 2A 20 36  30 29 26 64 28 30 2C 49  |0,__ * 60)&d(0,I|
00000B30: 74 20 69 73 20 65 73 73  65 6E 74 69 61 6C 20 74  |t is essential t|
00000B40: 6F 20 68 61 76 65 20 61  6C 6C 20 55 6E 69 74 73  |o have all Units|
00000B50: 20 6F 66 20 4D 65 61 73  75 72 65 20 61 67 72 65  | of Measure agre|
00000B60: 65 2E 29 20 2A 2F 40 63  40 6A 48 65 72 65 20 69  |e.) */@c@jHere i|
00000B70: 73 20 73 6F 6D 65 20 70  72 61 63 74 69 63 65 20  |s some practice |
00000B80: 69 6E 20 73 69 6D 70 6C  65 20 44 69 73 74 61 6E  |in simple Distan|
00000B90: 63 65 20 50 72 6F 62 6C  65 6D 73 20 77 69 74 68  |ce Problems with|
00000BA0: 20 6F 6E 65 20 6F 62 6A  65 63 74 2E 40 70 41 74  | one object.@pAt|
00000BB0: 20 61 6E 79 20 74 69 6D  65 2C 20 74 6F 20 70 72  | any time, to pr|
00000BC0: 6F 63 65 65 64 20 74 6F  20 74 68 65 20 6E 65 78  |oceed to the nex|
00000BD0: 74 20 70 61 72 74 20 6F  66 20 74 68 65 20 54 75  |t part of the Tu|
00000BE0: 74 6F 72 69 61 6C 2C 20  75 73 65 20 74 68 65 20  |torial, use the |
00000BF0: 22 53 6B 69 70 20 50 72  6F 62 6C 65 6D 22 20 6F  |"Skip Problem" o|
00000C00: 70 74 69 6F 6E 2E 20 28  41 6E 79 20 6B 65 79 20  |ption. (Any key |
00000C10: 74 6F 20 63 6F 6E 74 69  6E 75 65 2E 29 40 68 54  |to continue.)@hT|
00000C20: 68 65 72 65 20 61 72 65  20 74 68 72 65 65 20 70  |here are three p|
00000C30: 61 72 74 73 20 74 6F 20  74 68 65 20 44 69 73 74  |arts to the Dist|
00000C40: 61 6E 63 65 20 54 75 74  6F 72 69 61 6C 2E 40 68  |ance Tutorial.@h|
00000C50: 54 68 65 20 22 53 6B 69  70 20 50 72 6F 62 6C 65  |The "Skip Proble|
00000C60: 6D 22 20 6F 70 74 69 6F  6E 20 74 61 6B 65 73 20  |m" option takes |
00000C70: 79 6F 75 20 74 6F 20 74  68 65 20 6E 65 78 74 20  |you to the next |
00000C80: 70 72 6F 62 6C 65 6D 2C  20 6F 72 20 74 6F 20 74  |problem, or to t|
00000C90: 68 65 20 6E 65 78 74 20  70 61 72 74 20 6F 66 20  |he next part of |
00000CA0: 74 68 65 20 54 75 74 6F  72 69 61 6C 2E 40 69 28  |the Tutorial.@i(|
00000CB0: 30 29 20 40 6A 41 20 42  6C 75 65 20 43 61 72 20  |0) @jA Blue Car |
00000CC0: 2E 2E 2E 26 63 28 32 2C  42 6C 75 65 20 43 61 72  |...&c(2,Blue Car|
00000CD0: 29 26 64 28 30 2C 5C 66  30 36 48 6F 77 20 66 61  |)&d(0,\f06How fa|
00000CE0: 73 74 20 64 6F 65 73 20  69 74 20 67 6F 3F 5C 6E  |st does it go?\n|
00000CF0: 5C 66 30 36 48 6F 77 20  6C 6F 6E 67 20 64 6F 65  |\f06How long doe|
00000D00: 73 20 69 74 20 74 72 61  76 65 6C 3F 5C 6E 5C 66  |s it travel?\n\f|
00000D10: 30 36 48 6F 77 20 66 61  72 20 64 6F 65 73 20 69  |06How far does i|
00000D20: 74 20 67 6F 3F 29 40 6A  41 20 42 6C 75 65 20 43  |t go?)@jA Blue C|
00000D30: 61 72 20 74 72 61 76 65  6C 73 20 61 74 20 36 30  |ar travels at 60|
00000D40: 20 6D 69 6C 65 73 20 70  65 72 20 68 6F 75 72 20  | miles per hour |
00000D50: 28 6D 69 2F 68 72 29 20  2E 2E 2E 26 64 28 35 2C  |(mi/hr) ...&d(5,|
00000D60: 6D 69 2F 68 72 29 40 70  5C 66 30 38 45 6E 74 65  |mi/hr)@p\f08Ente|
00000D70: 72 20 74 68 65 20 52 61  74 65 3A 5C 6E 5C 66 30  |r the Rate:\n\f0|
00000D80: 38 48 6F 77 20 66 61 73  74 20 64 6F 65 73 20 69  |8How fast does i|
00000D90: 74 20 67 6F 3F 5C 6E 5C  66 30 38 5B 36 30 20 6D  |t go?\n\f08[60 m|
00000DA0: 69 2F 68 72 5D 40 68 60  36 30 20 6D 69 2F 68 72  |i/hr]@h`60 mi/hr|
00000DB0: 27 20 6D 65 61 6E 73 20  74 68 61 74 20 74 68 65  |' means that the|
00000DC0: 20 63 61 72 20 67 6F 65  73 20 36 30 20 6D 69 6C  | car goes 60 mil|
00000DD0: 65 73 20 74 68 65 20 31  73 74 20 68 6F 75 72 2C  |es the 1st hour,|
00000DE0: 20 61 6E 6F 74 68 65 72  20 36 30 20 6D 69 6C 65  | another 60 mile|
00000DF0: 73 20 74 68 65 20 32 6E  64 20 68 6F 75 72 2C 20  |s the 2nd hour, |
00000E00: 61 6E 64 20 73 6F 20 6F  6E 2E 40 68 45 6E 74 65  |and so on.@hEnte|
00000E10: 72 20 60 36 30 20 6D 69  2F 68 72 27 20 61 6E 64  |r `60 mi/hr' and|
00000E20: 20 70 72 65 73 73 20 74  68 65 20 3C 52 65 74 75  | press the <Retu|
00000E30: 72 6E 3E 20 6B 65 79 2E  40 69 28 36 2C 69 2C 36  |rn> key.@i(6,i,6|
00000E40: 30 29 26 64 28 36 2C 36  30 20 6D 69 2F 68 72 29  |0)&d(6,60 mi/hr)|
00000E50: 20 40 73 26 64 28 30 2C  52 61 74 65 20 6F 66 20  | @s&d(0,Rate of |
00000E60: 73 70 65 65 64 2C 20 69  6E 20 74 68 69 73 20 70  |speed, in this p|
00000E70: 72 6F 62 6C 65 6D 2C 20  69 73 20 64 65 74 65 72  |roblem, is deter|
00000E80: 6D 69 6E 65 64 20 62 79  20 74 68 65 20 6D 69 6C  |mined by the mil|
00000E90: 65 73 20 74 72 61 76 65  6C 6C 65 64 20 69 6E 20  |es travelled in |
00000EA0: 31 20 68 6F 75 72 20 28  6D 69 2F 68 72 29 2E 29  |1 hour (mi/hr).)|
00000EB0: 40 6A 41 20 42 6C 75 65  20 43 61 72 20 74 72 61  |@jA Blue Car tra|
00000EC0: 76 65 6C 73 20 61 74 20  36 30 20 6D 69 6C 65 73  |vels at 60 miles|
00000ED0: 20 70 65 72 20 68 6F 75  72 20 28 6D 69 2F 68 72  | per hour (mi/hr|
00000EE0: 29 20 66 6F 72 20 31 20  68 6F 75 72 20 28 68 72  |) for 1 hour (hr|
00000EF0: 29 2E 26 64 28 39 2C 68  72 29 40 70 5C 66 30 36  |).&d(9,hr)@p\f06|
00000F00: 45 6E 74 65 72 20 74 68  65 20 54 69 6D 65 3A 5C  |Enter the Time:\|
00000F10: 6E 5C 66 30 36 48 6F 77  20 6C 6F 6E 67 20 64 6F  |n\f06How long do|
00000F20: 65 73 20 69 74 20 74 72  61 76 65 6C 3F 20 5B 31  |es it travel? [1|
00000F30: 20 68 72 5D 40 68 54 68  65 20 63 61 72 20 74 72  | hr]@hThe car tr|
00000F40: 61 76 65 6C 73 20 66 6F  72 20 31 20 68 6F 75 72  |avels for 1 hour|
00000F50: 2E 5C 6E 45 6E 74 65 72  20 60 31 20 68 72 27 2E  |.\nEnter `1 hr'.|
00000F60: 40 68 54 68 65 20 63 61  72 20 74 72 61 76 65 6C  |@hThe car travel|
00000F70: 73 20 66 6F 72 20 31 20  68 6F 75 72 2E 5C 6E 45  |s for 1 hour.\nE|
00000F80: 6E 74 65 72 20 60 31 20  68 72 27 20 61 6E 64 20  |nter `1 hr' and |
00000F90: 70 72 65 73 73 20 74 68  65 20 3C 52 65 74 75 72  |press the <Retur|
00000FA0: 6E 3E 20 6B 65 79 2E 40  69 28 31 30 2C 69 2C 31  |n> key.@i(10,i,1|
00000FB0: 29 26 64 28 31 30 2C 31  20 68 72 29 26 64 28 30  |)&d(10,1 hr)&d(0|
00000FC0: 2C 54 69 6D 65 20 69 73  20 75 73 75 61 6C 6C 79  |,Time is usually|
00000FD0: 20 6D 65 61 73 75 72 65  64 20 69 6E 20 68 6F 75  | measured in hou|
00000FE0: 72 73 20 28 68 72 29 5C  2C 20 6D 69 6E 75 74 65  |rs (hr)\, minute|
00000FF0: 73 20 28 6D 69 6E 29 5C  2C 20 6F 72 20 73 65 63  |s (min)\, or sec|
00001000: 6F 6E 64 73 20 28 73 65  63 29 2E 29 40 6A 41 20  |onds (sec).)@jA |
00001010: 42 6C 75 65 20 43 61 72  20 74 72 61 76 65 6C 73  |Blue Car travels|
00001020: 20 61 74 20 36 30 20 6D  69 6C 65 73 20 70 65 72  | at 60 miles per|
00001030: 20 68 6F 75 72 20 28 6D  69 2F 68 72 29 20 66 6F  | hour (mi/hr) fo|
00001040: 72 20 31 20 68 6F 75 72  20 28 68 72 29 2E 20 48  |r 1 hour (hr). H|
00001050: 6F 77 20 6D 61 6E 79 20  6D 69 6C 65 73 20 28 6D  |ow many miles (m|
00001060: 69 29 20 64 6F 65 73 20  69 74 20 67 6F 3F 26 64  |i) does it go?&d|
00001070: 28 31 33 2C 6D 69 29 40  70 45 6E 74 65 72 20 61  |(13,mi)@pEnter a|
00001080: 20 76 61 72 69 61 62 6C  65 20 66 6F 72 20 74 68  | variable for th|
00001090: 65 20 75 6E 6B 6E 6F 77  6E 3A 20 20 28 48 6F 77  |e unknown:  (How|
000010A0: 20 66 61 72 20 64 6F 65  73 20 69 74 20 67 6F 3F  | far does it go?|
000010B0: 29 20 20 5B 78 5D 40 68  55 73 65 20 61 20 76 61  |)  [x]@hUse a va|
000010C0: 72 69 61 62 6C 65 2C 20  73 75 63 68 20 61 73 20  |riable, such as |
000010D0: 60 78 27 20 74 6F 20 72  65 70 72 65 73 65 6E 74  |`x' to represent|
000010E0: 20 74 68 65 20 64 69 73  74 61 6E 63 65 20 74 72  | the distance tr|
000010F0: 61 76 65 6C 6C 65 64 2E  40 68 45 6E 74 65 72 20  |avelled.@hEnter |
00001100: 74 68 65 20 6C 65 74 74  65 72 20 60 78 27 20 61  |the letter `x' a|
00001110: 6E 64 20 70 72 65 73 73  20 74 68 65 20 3C 52 65  |nd press the <Re|
00001120: 74 75 72 6E 3E 20 6B 65  79 2E 40 69 28 31 34 2C  |turn> key.@i(14,|
00001130: 69 2C 26 76 29 40 73 26  63 28 31 36 2C 45 71 75  |i,&v)@s&c(16,Equ|
00001140: 61 74 69 6F 6E 20 49 64  65 61 29 26 64 28 30 2C  |ation Idea)&d(0,|
00001150: 54 68 65 20 45 71 75 61  74 69 6F 6E 20 49 64 65  |The Equation Ide|
00001160: 61 20 6E 65 65 64 73 20  74 6F 20 62 65 20 65 6E  |a needs to be en|
00001170: 74 65 72 65 64 2E 20 28  49 6E 20 74 68 65 20 54  |tered. (In the T|
00001180: 75 74 6F 72 69 61 6C 5C  2C 20 74 68 65 20 70 72  |utorial\, the pr|
00001190: 6F 67 72 61 6D 20 64 6F  65 73 20 74 68 69 73 20  |ogram does this |
000011A0: 66 6F 72 20 79 6F 75 2E  29 29 26 63 28 31 36 2C  |for you.))&c(16,|
000011B0: 52 61 74 65 20 20 2A 20  20 54 69 6D 65 20 20 3D  |Rate  *  Time  =|
000011C0: 20 20 44 69 73 74 61 6E  63 65 29 26 64 28 30 2C  |  Distance)&d(0,|
000011D0: 4E 65 78 74 2C 20 69 74  20 69 73 20 6E 65 63 65  |Next, it is nece|
000011E0: 73 73 61 72 79 20 74 6F  20 73 75 62 73 74 69 74  |ssary to substit|
000011F0: 75 74 65 20 65 78 70 72  65 73 73 69 6F 6E 73 20  |ute expressions |
00001200: 66 6F 72 20 52 61 74 65  5C 2C 20 54 69 6D 65 5C  |for Rate\, Time\|
00001210: 2C 20 61 6E 64 20 44 69  73 74 61 6E 63 65 20 69  |, and Distance i|
00001220: 6E 20 74 68 65 20 45 71  75 61 74 69 6F 6E 20 49  |n the Equation I|
00001230: 64 65 61 2E 29 26 63 28  31 36 2C 36 30 20 20 20  |dea.)&c(16,60   |
00001240: 2A 20 20 54 69 6D 65 20  20 3D 20 20 44 69 73 74  |*  Time  =  Dist|
00001250: 61 6E 63 65 29 26 64 28  30 2C 54 68 65 20 52 61  |ance)&d(0,The Ra|
00001260: 74 65 20 69 73 20 36 30  20 6D 69 2F 68 72 2C 20  |te is 60 mi/hr, |
00001270: 73 6F 20 60 36 30 27 20  69 73 20 73 75 62 73 74  |so `60' is subst|
00001280: 69 74 75 74 65 64 20 66  6F 72 20 27 52 61 74 65  |ituted for 'Rate|
00001290: 27 2E 29 26 63 28 31 36  2C 36 30 20 20 20 2A 20  |'.)&c(16,60   * |
000012A0: 20 20 31 20 20 20 20 3D  20 20 44 69 73 74 61 6E  |  1    =  Distan|
000012B0: 63 65 29 26 64 28 30 2C  54 68 65 20 54 69 6D 65  |ce)&d(0,The Time|
000012C0: 20 69 73 20 31 20 68 72  2C 20 73 6F 20 60 31 27  | is 1 hr, so `1'|
000012D0: 20 69 73 20 73 75 62 73  74 69 74 75 74 65 64 20  | is substituted |
000012E0: 66 6F 72 20 60 54 69 6D  65 27 2E 29 26 63 28 31  |for `Time'.)&c(1|
000012F0: 36 2C 36 30 20 20 20 2A  20 20 20 31 20 20 20 20  |6,60   *   1    |
00001300: 3D 20 20 20 20 20 26 76  29 26 64 28 30 2C 41 6E  |=     &v)&d(0,An|
00001310: 64 20 44 69 73 74 61 6E  63 65 20 69 73 20 72 65  |d Distance is re|
00001320: 70 72 65 73 65 6E 74 65  64 20 62 79 20 74 68 65  |presented by the|
00001330: 20 76 61 72 69 61 62 6C  65 20 60 26 76 27 5C 2C  | variable `&v'\,|
00001340: 20 73 6F 20 60 26 76 27  20 69 73 20 73 75 62 73  | so `&v' is subs|
00001350: 74 69 74 75 74 65 64 20  66 6F 72 20 60 44 69 73  |tituted for `Dis|
00001360: 74 61 6E 63 65 27 2E 29  26 63 28 31 36 2C 36 30  |tance'.)&c(16,60|
00001370: 20 3D 20 26 76 29 26 64  28 30 2C 4E 65 78 74 5C  | = &v)&d(0,Next\|
00001380: 2C 20 74 68 65 20 65 71  75 61 74 69 6F 6E 20 69  |, the equation i|
00001390: 73 20 73 6F 6C 76 65 64  20 66 6F 72 20 60 26 76  |s solved for `&v|
000013A0: 27 2E 29 40 70 45 6E 74  65 72 20 74 68 65 20 61  |'.)@pEnter the a|
000013B0: 6E 73 77 65 72 20 6F 6E  20 74 68 65 20 63 68 61  |nswer on the cha|
000013C0: 72 74 2E 20 20 5B 36 30  5D 40 68 36 30 20 2A 20  |rt.  [60]@h60 * |
000013D0: 31 20 3D 20 26 76 2C 20  73 6F 20 26 76 20 3D 20  |1 = &v, so &v = |
000013E0: 36 30 2E 40 68 45 6E 74  65 72 20 60 36 30 27 20  |60.@hEnter `60' |
000013F0: 61 6E 64 20 70 72 65 73  73 20 74 68 65 20 3C 52  |and press the <R|
00001400: 65 74 75 72 6E 3E 20 6B  65 79 2E 40 69 28 31 34  |eturn> key.@i(14|
00001410: 2C 69 2C 36 30 29 26 64  28 31 34 2C 36 30 29 26  |,i,60)&d(14,60)&|
00001420: 64 28 30 2C 49 66 20 61  20 63 61 72 20 74 72 61  |d(0,If a car tra|
00001430: 76 65 6C 73 20 36 30 20  6D 69 6C 65 73 20 65 61  |vels 60 miles ea|
00001440: 63 68 20 68 6F 75 72 20  66 6F 72 20 6F 6E 65 20  |ch hour for one |
00001450: 68 6F 75 72 5C 2C 20 74  68 65 6E 20 69 74 20 67  |hour\, then it g|
00001460: 6F 65 73 20 36 30 20 6D  69 6C 65 73 2E 29 20 40  |oes 60 miles.) @|
00001470: 6A 41 74 20 36 30 20 6D  69 6C 65 73 20 70 65 72  |jAt 60 miles per|
00001480: 20 68 6F 75 72 2C 20 68  6F 77 20 66 61 72 20 64  | hour, how far d|
00001490: 6F 65 73 20 74 68 65 20  42 6C 75 65 20 43 61 72  |oes the Blue Car|
000014A0: 20 67 6F 20 69 6E 20 6F  6E 65 20 68 61 6C 66 20  | go in one half |
000014B0: 68 6F 75 72 3F 26 64 28  31 30 2C 31 2F 32 20 68  |hour?&d(10,1/2 h|
000014C0: 72 29 26 64 28 31 34 2C  26 76 29 26 64 28 31 36  |r)&d(14,&v)&d(16|
000014D0: 2C 29 26 64 28 30 2C 29  26 64 28 30 2C 49 66 20  |,)&d(0,)&d(0,If |
000014E0: 74 68 65 20 63 61 72 20  67 6F 65 73 20 36 30 20  |the car goes 60 |
000014F0: 6D 69 6C 65 73 20 70 65  72 20 68 6F 75 72 2C 20  |miles per hour, |
00001500: 74 68 65 6E 20 69 74 20  74 72 61 76 65 6C 73 20  |then it travels |
00001510: 36 30 20 6D 69 6C 65 73  20 69 6E 20 6F 6E 65 20  |60 miles in one |
00001520: 68 6F 75 72 2E 20 49 6E  20 68 61 6C 66 20 61 6E  |hour. In half an|
00001530: 20 68 6F 75 72 20 69 74  20 67 6F 65 73 20 68 61  | hour it goes ha|
00001540: 6C 66 20 61 73 20 66 61  72 2E 29 40 70 45 6E 74  |lf as far.)@pEnt|
00001550: 65 72 20 68 6F 77 20 66  61 72 20 74 68 65 20 63  |er how far the c|
00001560: 61 72 20 77 6F 75 6C 64  20 67 6F 20 69 6E 20 68  |ar would go in h|
00001570: 61 6C 66 20 61 6E 20 68  6F 75 72 2E 20 5B 52 65  |alf an hour. [Re|
00001580: 6D 65 6D 62 65 72 2C 20  75 73 65 20 74 68 65 20  |member, use the |
00001590: 48 45 4C 50 20 6B 65 79  20 69 66 20 79 6F 75 20  |HELP key if you |
000015A0: 6E 65 65 64 20 69 74 2E  5D 40 68 49 66 20 61 20  |need it.]@hIf a |
000015B0: 63 61 72 20 74 72 61 76  65 6C 73 20 61 74 20 61  |car travels at a|
000015C0: 20 63 6F 6E 73 74 61 6E  74 20 73 70 65 65 64 20  | constant speed |
000015D0: 61 6E 64 20 67 6F 65 73  20 36 30 20 6D 69 6C 65  |and goes 60 mile|
000015E0: 73 20 69 6E 20 61 6E 20  68 6F 75 72 2C 20 69 74  |s in an hour, it|
000015F0: 20 77 6F 75 6C 64 20 74  72 61 76 65 6C 20 33 30  | would travel 30|
00001600: 20 6D 69 6C 65 73 20 69  6E 20 68 61 6C 66 20 61  | miles in half a|
00001610: 6E 20 68 6F 75 72 2E 40  68 48 61 6C 66 20 6F 66  |n hour.@hHalf of|
00001620: 20 36 30 20 69 73 20 33  30 2E 20 45 6E 74 65 72  | 60 is 30. Enter|
00001630: 20 60 33 30 27 20 61 6E  64 20 70 72 65 73 73 20  | `30' and press |
00001640: 74 68 65 20 3C 52 65 74  75 72 6E 3E 20 6B 65 79  |the <Return> key|
00001650: 2E 2E 40 69 28 31 34 2C  69 2C 33 30 29 20 40 6A  |..@i(14,i,30) @j|
00001660: 41 74 20 36 30 20 6D 69  6C 65 73 20 70 65 72 20  |At 60 miles per |
00001670: 68 6F 75 72 2C 20 68 6F  77 20 66 61 72 20 64 6F  |hour, how far do|
00001680: 65 73 20 74 68 65 20 42  6C 75 65 20 63 61 72 20  |es the Blue car |
00001690: 67 6F 20 69 6E 20 31 20  6D 69 6E 75 74 65 3F 26  |go in 1 minute?&|
000016A0: 64 28 31 30 2C 31 20 6D  69 6E 29 26 64 28 31 34  |d(10,1 min)&d(14|
000016B0: 2C 26 76 29 26 64 28 30  2C 29 40 70 41 6E 20 68  |,&v)&d(0,)@pAn h|
000016C0: 6F 75 72 20 69 73 20 36  30 20 6D 69 6E 75 74 65  |our is 60 minute|
000016D0: 73 2E 20 45 6E 74 65 72  20 68 6F 77 20 66 61 72  |s. Enter how far|
000016E0: 20 74 68 65 20 63 61 72  20 67 6F 65 73 20 69 6E  | the car goes in|
000016F0: 20 61 20 6D 69 6E 75 74  65 2E 20 5B 52 65 6D 65  | a minute. [Reme|
00001700: 6D 62 65 72 2C 20 75 73  65 20 74 68 65 20 48 45  |mber, use the HE|
00001710: 4C 50 20 6B 65 79 20 69  66 20 79 6F 75 20 6E 65  |LP key if you ne|
00001720: 65 64 20 69 74 2E 5D 40  68 49 66 20 61 20 63 61  |ed it.]@hIf a ca|
00001730: 72 20 74 72 61 76 65 6C  73 20 61 74 20 61 20 63  |r travels at a c|
00001740: 6F 6E 73 74 61 6E 74 20  73 70 65 65 64 2C 20 61  |onstant speed, a|
00001750: 6E 64 20 67 6F 65 73 20  36 30 20 6D 69 6C 65 73  |nd goes 60 miles|
00001760: 20 69 6E 20 61 6E 20 68  6F 75 72 2C 20 69 74 20  | in an hour, it |
00001770: 77 6F 75 6C 64 20 74 72  61 76 65 6C 20 61 20 6D  |would travel a m|
00001780: 69 6C 65 20 65 76 65 72  79 20 6D 69 6E 75 74 65  |ile every minute|
00001790: 2E 40 68 36 30 20 6D 69  6C 65 73 20 64 69 76 69  |.@h60 miles divi|
000017A0: 64 65 64 20 62 79 20 36  30 20 69 73 20 31 20 6D  |ded by 60 is 1 m|
000017B0: 69 6C 65 2E 20 45 6E 74  65 72 20 60 31 27 2E 40  |ile. Enter `1'.@|
000017C0: 69 28 31 34 2C 69 2C 31  29 20 7C 6F              |i(14,i,1) |o    |
 A@QDISTANCE TUTORIAL -- PART 1.\NTHIS I
S A TUTORIAL ON DISTANCE PROBLEMS. IF YO
U FIND A QUESTION CONFUSING, USE THE `HE
LP' KEY.@PIF THE TUTORIAL SEEMS TOO EASY
, USE THE `SKIP PROBLEM' KEY.\N   (PRESS
 ANY KEY TO CONTINUE.)@HTHERE ARE ALWAYS
 TWO LEVELS OF 'HELP' AVAILABLE. THE SEC
OND LEVEL PROVIDES THE CORRECT ANSWER.@H
THE `SKIP PROBLEM' KEY WILL TAKE YOU TO 
THE NEXT PROBLEM, OR TO THE NEXT PART OF
 THE TUTORIAL.@I(0)@JDISTANCE PROBLEMS G
ENERALLY COMPARE THE MOTION OF TWO OBJEC
TS:@DG04&D(5,RATE)&D(10,TIME) &D(15,DIST
) &C(2,DOG)&C(3,CAT)&D(4,TOTAL)&D(0,HOW 
FAR APART ARE THE PETS AFTER 1 HOUR? WHE
N WILL THEY MEET?\NWHEN WILL THE DOG CAT
CH THE CAT?)@JDISTANCE PROBLEMS ARE EASY
 TO DIAGRAM, AND, THEREFORE, HELP THE ST
UDENT TO PICTURE ALGEBRAIC RELATIONSHIPS
.@DCARS&D(0,TWO CARS START AT THE SAME T
IME HEADED IN OPPOSITE DIRECTIONS.)@DRUN
&D(0,TWO RUNNERS START AT DIFFERENT TIME
S\, HEADED IN THE SAME DIRECTION.)@DSWIM
MER&D(0,OR\, TWO SWIMMERS START SWIMMING
 TOWARDS EACH OTHER AT THE SAME TIME.) @
JTO SOLVE DISTANCE PROBLEMS YOU MUST KNO
W RATE, TIME, AND DISTANCE FOR EACH OBJE
CT INVOLVED.@DG05&D(4,RATE)&D(8,TIME)&D(
12,DIST)&D(0,THE GENERAL EQUATION THAT R
ELATES KEY QUANTITIES IN A WORD PROBLEM 
IS CALLED AN `EQUATION IDEA'.&QRATE, TIM
E, AND DISTANCE&Q)&D(0,THE `EQUATION IDE
A' TO FIND THE DISTANCE AN OBJECT TRAVEL
S IS:\N      RATE * TIME = DISTANCE.)&C(
16,RATE * TIME = DISTANCE)&D(0,IF YOU TR
AVEL AT A CERTAIN RATE FOR A SET AMOUNT 
OF TIME\, THE DISTANCE TRAVELLED IS:  RA
TE * TIME.) &D(1,UNIT/MEAS)&C(2,OBJECT)@
JDISTANCE PROBLEMS USE DIFFERENT UNITS O
F MEASURE.&D(0,MAKE SURE UNITS OF MEASUR
E ARE UNIFORM. IF RATE IS `FT/SEC'\, THE
N TIME IS IN SECONDS AND DISTANCE IS IN 
FEET.)&D(5,MI/HR)&D(9,HR)@PENTER THE UNI
T OF MEASURE FOR DISTANCE. NOTE: RATE IS
 IN MILES PER HOUR (MI/HR), AND TIME IS 
IN HOURS (HR).@HRATE OF SPEED IS MEASURE
D AS MILES TRAVELLED EVERY HOUR, SO DIST
ANCE WOULD BE MEASURED IN MILES.@HTHE AB
BREVIATION FOR MILES IS `MI'. ENTER `MI'
 AND PRESS THE <RETURN> KEY.@I(13,C2,MI)
@S&D(5,ME/HR)&D(9,HR)&D(13,)@PENTER THE 
UNIT OF MEASURE FOR DISTANCE, IF RATE IS
 IN METERS PER HOUR (ME/HR), AND TIME IS
 IN HOURS (HR).@HRATE OF SPEED IS MEASUR
ED AS METERS TRAVELLED EVERY HOUR, SO DI
STANCE WOULD BE MEASURED IN METERS.@HTHE
 ABBREVIATION FOR METERS IS `ME'. ENTER 
`ME' AND PRESS THE <RETURN> KEY.@I(13,C2
,ME)&D(5,KM/HR)&D(9, )&D(13, )@PENTER TH
E UNIT OF MEASURE FOR DISTANCE, IF RATE 
IS IN KILOMETERS PER HOUR (KM/HR).@HRATE
 OF SPEED IS MEASURED AS KILOMETERS TRAV
ELLED EVERY HOUR, SO DISTANCE WOULD BE M
EASURED IN KILOMETERS.@HTHE ABBREVIATION
 FOR KILOMETERS IS `KM'. ENTER `KM' AND 
PRESS THE <RETURN> KEY.@I(13,C2,KM)&D(9,
MIN)&D(0,IF TIME IS GIVEN IN MINUTES, TH
ERE IS NO UNIT IN COMMON WITH THE RATE. 
HOW CAN YOU FIX THIS?)&D(0,USE HOURS (HR
) AS THE UNIT OF MEASURE, AND MULTIPLY T
HE TIME GIVEN IN THE PROBLEM BY 60.)&D(9
,HR)&D(10,__ * 60)&D(0,IT IS ESSENTIAL T
O HAVE ALL UNITS OF MEASURE AGREE.) */@C
@JHERE IS SOME PRACTICE IN SIMPLE DISTAN
CE PROBLEMS WITH ONE OBJECT.@PAT ANY TIM
E, TO PROCEED TO THE NEXT PART OF THE TU
TORIAL, USE THE "SKIP PROBLEM" OPTION. (
ANY KEY TO CONTINUE.)@HTHERE ARE THREE P
ARTS TO THE DISTANCE TUTORIAL.@HTHE "SKI
P PROBLEM" OPTION TAKES YOU TO THE NEXT 
PROBLEM, OR TO THE NEXT PART OF THE TUTO
RIAL.@I(0) @JA BLUE CAR ...&C(2,BLUE CAR
)&D(0,\F06HOW FAST DOES IT GO?\N\F06HOW 
LONG DOES IT TRAVEL?\N\F06HOW FAR DOES I
T GO?)@JA BLUE CAR TRAVELS AT 60 MILES P
ER HOUR (MI/HR) ...&D(5,MI/HR)@P\F08ENTE
R THE RATE:\N\F08HOW FAST DOES IT GO?\N\
F08[60 MI/HR]@H`60 MI/HR' MEANS THAT THE
 CAR GOES 60 MILES THE 1ST HOUR, ANOTHER
 60 MILES THE 2ND HOUR, AND SO ON.@HENTE
R `60 MI/HR' AND PRESS THE <RETURN> KEY.
@I(6,I,60)&D(6,60 MI/HR) @S&D(0,RATE OF 
SPEED, IN THIS PROBLEM, IS DETERMINED BY
 THE MILES TRAVELLED IN 1 HOUR (MI/HR).)
@JA BLUE CAR TRAVELS AT 60 MILES PER HOU
R (MI/HR) FOR 1 HOUR (HR).&D(9,HR)@P\F06
ENTER THE TIME:\N\F06HOW LONG DOES IT TR
AVEL? [1 HR]@HTHE CAR TRAVELS FOR 1 HOUR
.\NENTER `1 HR'.@HTHE CAR TRAVELS FOR 1 
HOUR.\NENTER `1 HR' AND PRESS THE <RETUR
N> KEY.@I(10,I,1)&D(10,1 HR)&D(0,TIME IS
 USUALLY MEASURED IN HOURS (HR)\, MINUTE
S (MIN)\, OR SECONDS (SEC).)@JA BLUE CAR
 TRAVELS AT 60 MILES PER HOUR (MI/HR) FO
R 1 HOUR (HR). HOW MANY MILES (MI) DOES 
IT GO?&D(13,MI)@PENTER A VARIABLE FOR TH
E UNKNOWN:  (HOW FAR DOES IT GO?)  [X]@H
USE A VARIABLE, SUCH AS `X' TO REPRESENT
 THE DISTANCE TRAVELLED.@HENTER THE LETT
ER `X' AND PRESS THE <RETURN> KEY.@I(14,
I,&V)@S&C(16,EQUATION IDEA)&D(0,THE EQUA
TION IDEA NEEDS TO BE ENTERED. (IN THE T
UTORIAL\, THE PROGRAM DOES THIS FOR YOU.
))&C(16,RATE  *  TIME  =  DISTANCE)&D(0,
NEXT, IT IS NECESSARY TO SUBSTITUTE EXPR
ESSIONS FOR RATE\, TIME\, AND DISTANCE I
N THE EQUATION IDEA.)&C(16,60   *  TIME 
 =  DISTANCE)&D(0,THE RATE IS 60 MI/HR, 
SO `60' IS SUBSTITUTED FOR 'RATE'.)&C(16
,60   *   1    =  DISTANCE)&D(0,THE TIME
 IS 1 HR, SO `1' IS SUBSTITUTED FOR `TIM
E'.)&C(16,60   *   1    =     &V)&D(0,AN
D DISTANCE IS REPRESENTED BY THE VARIABL
E `&V'\, SO `&V' IS SUBSTITUTED FOR `DIS
TANCE'.)&C(16,60 = &V)&D(0,NEXT\, THE EQ
UATION IS SOLVED FOR `&V'.)@PENTER THE A
NSWER ON THE CHART.  [60]@H60 * 1 = &V, 
SO &V = 60.@HENTER `60' AND PRESS THE <R
ETURN> KEY.@I(14,I,60)&D(14,60)&D(0,IF A
 CAR TRAVELS 60 MILES EACH HOUR FOR ONE 
HOUR\, THEN IT GOES 60 MILES.) @JAT 60 M
ILES PER HOUR, HOW FAR DOES THE BLUE CAR
 GO IN ONE HALF HOUR?&D(10,1/2 HR)&D(14,
&V)&D(16,)&D(0,)&D(0,IF THE CAR GOES 60 
MILES PER HOUR, THEN IT TRAVELS 60 MILES
 IN ONE HOUR. IN HALF AN HOUR IT GOES HA
LF AS FAR.)@PENTER HOW FAR THE CAR WOULD
 GO IN HALF AN HOUR. [REMEMBER, USE THE 
HELP KEY IF YOU NEED IT.]@HIF A CAR TRAV
ELS AT A CONSTANT SPEED AND GOES 60 MILE
S IN AN HOUR, IT WOULD TRAVEL 30 MILES I
N HALF AN HOUR.@HHALF OF 60 IS 30. ENTER
 `30' AND PRESS THE <RETURN> KEY..@I(14,
I,30) @JAT 60 MILES PER HOUR, HOW FAR DO
ES THE BLUE CAR GO IN 1 MINUTE?&D(10,1 M
IN)&D(14,&V)&D(0,)@PAN HOUR IS 60 MINUTE
S. ENTER HOW FAR THE CAR GOES IN A MINUT
E. [REMEMBER, USE THE HELP KEY IF YOU NE
ED IT.]@HIF A CAR TRAVELS AT A CONSTANT 
SPEED, AND GOES 60 MILES IN AN HOUR, IT 
WOULD TRAVEL A MILE EVERY MINUTE.@H60 MI
LES DIVIDED BY 60 IS 1 MILE. ENTER `1'.@
I(14,I,1) |O
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL