_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST6L4

FILE INFORMATION

FILENAME(S): DIST6L4

FILE TYPE(S): PRG

FILE SIZE: 7.8K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

1fe892db28dd974577afeae0672d87675cc5a9383eea8ceda0036cc1ffc831fd

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST6L4 PRG Radd Maxx 10 0 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 34 26 64 28 31  | A @q{}@dg04&d(1|
00000010: 2C 55 2F 6D 65 61 73 29  26 63 28 32 2C 7B 7D 29  |,U/meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29  26 63 28 34 2C 54 6F 74  |&c(3,{})&c(4,Tot|
00000030: 2E 29 26 64 28 35 2C 52  61 74 65 29 26 64 28 31  |.)&d(5,Rate)&d(1|
00000040: 30 2C 54 69 6D 65 29 26  64 28 31 35 2C 44 69 73  |0,Time)&d(15,Dis|
00000050: 74 2E 29 40 72 52 45 41  44 40 70 52 65 61 64 20  |t.)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C  65 20 70 72 6F 62 6C 65  |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B  3A 20 57 68 61 74 20 61  |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66  61 63 74 73 3F 20 57 68  |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65  69 6E 67 20 61 73 6B 65  |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73  73 20 61 6E 79 20 6B 65  |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E  74 69 6E 75 65 2E 29 40  |y to continue.)@|
000000C0: 68 57 68 61 74 20 61 72  65 20 74 68 65 20 66 61  |hWhat are the fa|
000000D0: 63 74 73 3F 20 7B 7D 40  68 57 68 61 74 20 69 73  |cts? {}@hWhat is|
000000E0: 20 62 65 69 6E 67 20 61  73 6B 65 64 3F 20 7B 7D  | being asked? {}|
000000F0: 40 69 28 30 29 40 72 50  4C 41 4E 20 40 70 4C 65  |@i(0)@rPLAN @pLe|
00000100: 74 20 44 7B 7D 20 3D 20  7B 7D 20 61 6E 64 20 44  |t D{} = {} and D|
00000110: 7B 7D 20 3D 20 7B 7D 2E  20 57 72 69 74 65 20 61  |{} = {}. Write a|
00000120: 6E 20 65 71 75 61 74 69  6F 6E 20 74 68 61 74 20  |n equation that |
00000130: 72 65 6C 61 74 65 73 20  44 7B 7D 20 74 6F 20 44  |relates D{} to D|
00000140: 7B 7D 2E 40 68 7B 7D 40  68 7B 7D 40 69 28 32 30  |{}.@h{}@h{}@i(20|
00000150: 2C 63 30 2C 20 29 40 70  4F 6E 65 20 61 6E 73 77  |,c0, )@pOne answ|
00000160: 65 72 20 69 73 20 7B 7D  2E 20 43 68 61 6E 67 65  |er is {}. Change|
00000170: 20 79 6F 75 72 20 61 6E  73 77 65 72 20 69 66 20  | your answer if |
00000180: 69 74 20 69 73 20 6E 6F  74 20 65 71 75 69 76 61  |it is not equiva|
00000190: 6C 65 6E 74 2E 20 28 50  72 65 73 73 20 72 65 74  |lent. (Press ret|
000001A0: 75 72 6E 29 40 68 7B 7D  40 68 7B 7D 40 69 28 32  |urn)@h{}@h{}@i(2|
000001B0: 30 2C 63 30 2C 20 29 40  72 44 41 54 41 20 45 4E  |0,c0, )@rDATA EN|
000001C0: 54 52 59 40 70 46 69 6C  6C 20 69 6E 20 74 68 65  |TRY@pFill in the|
000001D0: 20 75 6E 69 74 73 20 62  79 20 77 68 69 63 68 20  | units by which |
000001E0: 72 61 74 65 2C 20 74 69  6D 65 20 61 6E 64 20 64  |rate, time and d|
000001F0: 69 73 74 61 6E 63 65 20  61 72 65 20 6D 65 61 73  |istance are meas|
00000200: 75 72 65 64 2E 20 28 55  73 65 20 61 62 62 72 65  |ured. (Use abbre|
00000210: 76 69 61 74 65 64 20 66  6F 72 6D 29 2E 40 68 52  |viated form).@hR|
00000220: 61 74 65 20 6F 66 20 73  70 65 65 64 20 69 73 20  |ate of speed is |
00000230: 63 6F 6D 6D 6F 6E 6C 79  20 6D 65 61 73 75 72 65  |commonly measure|
00000240: 64 20 69 6E 20 6D 69 6C  65 73 20 70 65 72 20 68  |d in miles per h|
00000250: 6F 75 72 28 6D 69 2F 68  72 29 2C 20 6D 65 74 65  |our(mi/hr), mete|
00000260: 72 73 20 70 65 72 20 6D  69 6E 75 74 65 28 6D 2F  |rs per minute(m/|
00000270: 6D 69 6E 29 2C 20 65 74  63 2E 40 68 54 68 65 20  |min), etc.@hThe |
00000280: 72 61 74 65 20 6F 66 20  73 70 65 65 64 20 69 73  |rate of speed is|
00000290: 20 6D 65 61 73 75 72 65  64 20 69 6E 20 7B 7D 2E  | measured in {}.|
000002A0: 40 69 28 36 2C 63 7B 7D  2C 7B 7D 29 40 68 54 69  |@i(6,c{},{})@hTi|
000002B0: 6D 65 20 69 73 20 63 6F  6D 6D 6F 6E 6C 79 20 6D  |me is commonly m|
000002C0: 65 61 73 75 72 65 64 20  69 73 20 73 65 63 6F 6E  |easured is secon|
000002D0: 64 73 28 73 65 63 29 2C  20 6D 69 6E 75 74 65 73  |ds(sec), minutes|
000002E0: 28 6D 69 6E 29 2C 20 68  6F 75 72 73 28 68 72 29  |(min), hours(hr)|
000002F0: 2C 20 64 61 79 73 28 64  61 29 2C 20 65 74 63 2E  |, days(da), etc.|
00000300: 40 68 54 69 6D 65 20 69  6E 20 74 68 69 73 20 70  |@hTime in this p|
00000310: 72 6F 62 6C 65 6D 20 69  73 20 6D 65 61 73 75 72  |roblem is measur|
00000320: 65 64 20 69 6E 20 7B 7D  2E 40 69 28 31 31 2C 63  |ed in {}.@i(11,c|
00000330: 7B 7D 2C 7B 7D 29 40 68  44 69 73 74 61 6E 63 65  |{},{})@hDistance|
00000340: 20 69 73 20 63 6F 6D 6D  6F 6E 6C 79 20 6D 65 61  | is commonly mea|
00000350: 73 75 72 65 64 20 69 6E  20 66 65 65 74 28 66 74  |sured in feet(ft|
00000360: 29 2C 20 79 61 72 64 73  28 79 64 29 2C 20 6D 69  |), yards(yd), mi|
00000370: 6C 65 73 28 6D 69 29 2C  20 6D 65 74 65 72 73 28  |les(mi), meters(|
00000380: 6D 29 2C 20 6B 69 6C 6F  6D 65 74 65 72 73 28 6B  |m), kilometers(k|
00000390: 6D 29 2C 20 65 74 63 2E  40 68 44 69 73 74 61 6E  |m), etc.@hDistan|
000003A0: 63 65 20 69 6E 20 74 68  69 73 20 70 72 6F 62 6C  |ce in this probl|
000003B0: 65 6D 20 69 73 20 6D 65  61 73 75 72 65 64 20 69  |em is measured i|
000003C0: 6E 20 7B 7D 2E 40 69 28  31 36 2C 63 7B 7D 2C 7B  |n {}.@i(16,c{},{|
000003D0: 7D 29 40 70 45 6E 74 65  72 20 74 68 65 20 66 61  |})@pEnter the fa|
000003E0: 63 74 73 20 66 72 6F 6D  20 74 68 65 20 70 72 6F  |cts from the pro|
000003F0: 62 6C 65 6D 20 69 6E 74  6F 20 74 68 65 20 67 72  |blem into the gr|
00000400: 69 64 2E 40 68 7B 7D 40  68 7B 7D 40 69 28 37 2C  |id.@h{}@h{}@i(7,|
00000410: 69 2C 7B 7D 29 40 68 7B  7D 40 68 7B 7D 40 69 28  |i,{})@h{}@h{}@i(|
00000420: 38 2C 69 2C 7B 7D 29 40  68 7B 7D 40 68 7B 7D 40  |8,i,{})@h{}@h{}@|
00000430: 69 28 31 34 2C 69 2C 7B  7D 29 40 70 43 68 6F 6F  |i(14,i,{})@pChoo|
00000440: 73 65 20 61 20 76 61 72  69 61 62 6C 65 20 74 6F  |se a variable to|
00000450: 20 72 65 70 72 65 73 65  6E 74 20 74 68 65 20 74  | represent the t|
00000460: 69 6D 65 20 74 72 61 76  65 6C 6C 65 64 20 61 74  |ime travelled at|
00000470: 20 65 61 63 68 20 72 61  74 65 2E 40 68 55 73 65  | each rate.@hUse|
00000480: 20 61 20 76 61 72 69 61  62 6C 65 20 74 6F 20 72  | a variable to r|
00000490: 65 70 72 65 73 65 6E 74  20 74 68 65 20 74 69 6D  |epresent the tim|
000004A0: 65 20 7B 7D 2E 40 68 55  73 65 20 61 20 6C 65 74  |e {}.@hUse a let|
000004B0: 74 65 72 2C 20 73 75 63  68 20 61 73 20 60 7B 7D  |ter, such as `{}|
000004C0: 27 20 74 6F 20 72 65 70  72 65 73 65 6E 74 20 74  |' to represent t|
000004D0: 68 65 20 6E 75 6D 62 65  72 20 6F 66 20 7B 7D 2E  |he number of {}.|
000004E0: 40 69 28 7B 7D 2C 69 2C  26 76 29 40 68 52 65 70  |@i({},i,&v)@hRep|
000004F0: 72 65 73 65 6E 74 20 74  68 65 20 74 69 6D 65 20  |resent the time |
00000500: 7B 7D 20 69 6E 20 74 65  72 6D 73 20 6F 66 20 22  |{} in terms of "|
00000510: 26 76 22 20 28 74 68 65  20 74 69 6D 65 20 7B 7D  |&v" (the time {}|
00000520: 29 2E 40 68 7B 7D 40 69  28 7B 7D 2C 69 2C 7B 7D  |).@h{}@i({},i,{}|
00000530: 29 40 72 50 41 52 54 53  40 70 57 72 69 74 65 20  |)@rPARTS@pWrite |
00000540: 61 6E 20 65 78 70 72 65  73 73 69 6F 6E 20 74 6F  |an expression to|
00000550: 20 72 65 70 72 65 73 65  6E 74 20 74 68 65 20 64  | represent the d|
00000560: 69 73 74 61 6E 63 65 20  74 72 61 76 65 6C 6C 65  |istance travelle|
00000570: 64 20 61 74 20 65 61 63  68 20 72 61 74 65 2E 40  |d at each rate.@|
00000580: 68 52 61 74 65 2A 54 69  6D 65 20 3D 20 44 69 73  |hRate*Time = Dis|
00000590: 74 61 6E 63 65 40 68 52  61 74 65 20 20 5C 66 30  |tance@hRate  \f0|
000005A0: 36 2A 20 20 5C 66 30 38  20 54 69 6D 65 20 20 20  |6*  \f08 Time   |
000005B0: 5C 66 31 36 3D 20 44 69  73 74 61 6E 63 65 20 5C  |\f16= Distance \|
000005C0: 6E 7B 7D 40 69 28 31 37  2C 69 2C 7B 7D 29 40 68  |n{}@i(17,i,{})@h|
000005D0: 52 61 74 65 2A 54 69 6D  65 20 3D 20 44 69 73 74  |Rate*Time = Dist|
000005E0: 61 6E 63 65 40 68 52 61  74 65 20 20 5C 66 30 36  |ance@hRate  \f06|
000005F0: 2A 20 20 5C 66 30 38 20  54 69 6D 65 20 20 5C 66  |*  \f08 Time  \f|
00000600: 31 36 3D 20 44 69 73 74  61 6E 63 65 20 5C 6E 7B  |16= Distance \n{|
00000610: 7D 40 69 28 31 38 2C 69  2C 7B 7D 29 26 64 28 32  |}@i(18,i,{})&d(2|
00000620: 30 2C 20 29 40 72 57 48  4F 4C 45 40 70 53 75 62  |0, )@rWHOLE@pSub|
00000630: 73 74 69 74 75 74 65 20  79 6F 75 72 20 65 78 70  |stitute your exp|
00000640: 72 65 73 73 69 6F 6E 73  20 66 6F 72 20 7B 7D 20  |ressions for {} |
00000650: 61 6E 64 20 7B 7D 20 69  6E 20 74 68 65 20 65 71  |and {} in the eq|
00000660: 75 61 74 69 6F 6E 2E 20  5C 6E 45 71 75 61 74 69  |uation. \nEquati|
00000670: 6F 6E 3A 20 44 7B 7D 3D  44 7B 7D 40 68 44 7B 7D  |on: D{}=D{}@hD{}|
00000680: 20 3D 20 7B 7D 20 61 6E  64 20 44 7B 7D 20 3D 20  | = {} and D{} = |
00000690: 7B 7D 2E 40 68 7B 7D 40  69 28 32 30 2C 69 2C 7B  |{}.@h{}@i(20,i,{|
000006A0: 7D 29 40 73 40 72 43 4F  4D 50 55 54 45 40 70 53  |})@s@rCOMPUTE@pS|
000006B0: 6F 6C 76 65 20 74 68 65  20 65 71 75 61 74 69 6F  |olve the equatio|
000006C0: 6E 20 20 66 6F 72 20 22  26 76 22 2E 20 55 73 65  |n  for "&v". Use|
000006D0: 20 70 61 70 65 72 20 61  6E 64 20 70 65 6E 63 69  | paper and penci|
000006E0: 6C 20 61 6E 64 20 65 6E  74 65 72 20 74 68 65 20  |l and enter the |
000006F0: 66 69 6E 61 6C 20 65 71  75 61 74 69 6F 6E 2C 20  |final equation, |
00000700: 6F 72 20 75 73 65 20 74  68 65 20 43 61 6C 63 75  |or use the Calcu|
00000710: 6C 61 74 6F 72 2E 40 68  49 73 6F 6C 61 74 65 20  |lator.@hIsolate |
00000720: 22 26 76 22 20 6F 6E 20  6F 6E 65 20 73 69 64 65  |"&v" on one side|
00000730: 20 6F 66 20 74 68 65 20  65 71 75 61 74 69 6F 6E  | of the equation|
00000740: 2E 40 68 54 68 65 20 43  61 6C 63 75 6C 61 74 6F  |.@hThe Calculato|
00000750: 72 20 73 6F 6C 76 65 73  20 65 71 75 61 74 69 6F  |r solves equatio|
00000760: 6E 73 20 66 6F 72 20 79  6F 75 20 61 6E 64 20 64  |ns for you and d|
00000770: 69 73 70 6C 61 79 73 20  74 68 65 20 73 74 65 70  |isplays the step|
00000780: 73 20 69 6E 20 74 68 65  20 73 6F 6C 75 74 69 6F  |s in the solutio|
00000790: 6E 2E 40 69 28 32 30 2C  69 2C 26 76 3D 7B 7D 29  |n.@i(20,i,&v={})|
000007A0: 40 70 4E 6F 77 20 79 6F  75 20 61 72 65 20 72 65  |@pNow you are re|
000007B0: 61 64 79 20 74 6F 20 65  6E 74 65 72 20 79 6F 75  |ady to enter you|
000007C0: 72 20 61 6E 73 77 65 72  2E 20 52 65 6D 65 6D 62  |r answer. Rememb|
000007D0: 65 72 20 77 68 61 74 20  69 73 20 62 65 69 6E 67  |er what is being|
000007E0: 20 61 73 6B 65 64 3F 26  71 7B 7D 26 71 26 77 28  | asked?&q{}&q&w(|
000007F0: 32 30 29 40 68 54 68 65  20 7B 7D 40 68 54 68 65  |20)@hThe {}@hThe|
00000800: 20 7B 7D 2E 40 69 28 7B  7D 2C 69 2C 7B 7D 29 40  | {}.@i({},i,{})@|
00000810: 73 40 72 43 48 45 43 4B  40 70 52 65 72 65 61 64  |s@rCHECK@pReread|
00000820: 20 74 68 65 20 70 72 6F  62 6C 65 6D 2E 20 43 68  | the problem. Ch|
00000830: 65 63 6B 20 79 6F 75 72  20 61 6E 73 77 65 72 73  |eck your answers|
00000840: 2E 20 45 76 61 6C 75 61  74 65 20 74 68 65 20 72  |. Evaluate the r|
00000850: 65 6D 61 69 6E 69 6E 67  20 65 78 70 72 65 73 73  |emaining express|
00000860: 69 6F 6E 73 20 69 6E 20  74 68 65 20 67 72 69 64  |ions in the grid|
00000870: 2E 40 68 53 75 62 73 74  69 74 75 74 65 20 66 6F  |.@hSubstitute fo|
00000880: 72 20 22 26 76 22 20 69  6E 20 74 68 65 20 65 78  |r "&v" in the ex|
00000890: 70 72 65 73 73 69 6F 6E  20 66 6F 72 20 7B 7D 2E  |pression for {}.|
000008A0: 20 54 68 65 6E 20 63 61  6C 63 75 6C 61 74 65 20  | Then calculate |
000008B0: 74 68 65 20 72 65 73 75  6C 74 2E 40 68 7B 7D 40  |the result.@h{}@|
000008C0: 69 28 7B 7D 2C 69 2C 7B  7D 29 40 68 53 75 62 73  |i({},i,{})@hSubs|
000008D0: 74 69 74 75 74 65 20 66  6F 72 20 22 26 76 22 20  |titute for "&v" |
000008E0: 69 6E 20 74 68 65 20 65  78 70 72 65 73 73 69 6F  |in the expressio|
000008F0: 6E 20 66 6F 72 20 7B 7D  2E 20 54 68 65 6E 20 63  |n for {}. Then c|
00000900: 61 6C 63 75 6C 61 74 65  20 74 68 65 20 72 65 73  |alculate the res|
00000910: 75 6C 74 2E 40 68 7B 7D  40 69 28 7B 7D 2C 69 2C  |ult.@h{}@i({},i,|
00000920: 7B 7D 29 40 68 53 75 62  73 74 69 74 75 74 65 20  |{})@hSubstitute |
00000930: 66 6F 72 20 22 26 76 22  20 69 6E 20 74 68 65 20  |for "&v" in the |
00000940: 65 78 70 72 65 73 73 69  6F 6E 20 66 6F 72 20 7B  |expression for {|
00000950: 7D 20 64 69 73 74 61 6E  63 65 2E 20 54 68 65 6E  |} distance. Then|
00000960: 20 63 61 6C 63 75 6C 61  74 65 20 74 68 65 20 72  | calculate the r|
00000970: 65 73 75 6C 74 2E 40 68  7B 7D 40 69 28 7B 7D 2C  |esult.@h{}@i({},|
00000980: 69 2C 7B 7D 29 26 64 28  30 2C 43 68 65 63 6B 20  |i,{})&d(0,Check |
00000990: 79 6F 75 72 20 77 6F 72  6B 2E 20 54 68 65 20 7B  |your work. The {|
000009A0: 7D 20 64 69 73 74 61 6E  63 65 20 73 68 6F 75 6C  |} distance shoul|
000009B0: 64 20 65 71 75 61 6C 20  7B 7D 20 64 69 73 74 61  |d equal {} dista|
000009C0: 6E 63 65 2E 20 47 65 74  20 72 65 61 64 79 20 66  |nce. Get ready f|
000009D0: 6F 72 20 61 20 6E 65 77  20 70 72 6F 62 6C 65 6D  |or a new problem|
000009E0: 2E 29 40 66 41 74 20 32  20 50 4D 20 5A 61 63 68  |.)@fAt 2 PM Zach|
000009F0: 20 73 74 61 72 74 65 64  20 64 72 69 76 69 6E 67  | started driving|
00000A00: 20 33 35 20 6B 6D 2F 68  72 20 75 6E 74 69 6C 20  | 35 km/hr until |
00000A10: 68 65 20 72 61 6E 20 6F  75 74 20 6F 66 20 67 61  |he ran out of ga|
00000A20: 73 2E 20 48 65 20 77 61  6C 6B 65 64 20 62 61 63  |s. He walked bac|
00000A30: 6B 20 68 6F 6D 65 20 61  74 20 35 20 6B 6D 2F 68  |k home at 5 km/h|
00000A40: 72 2E 20 49 66 20 68 65  20 67 6F 74 20 68 6F 6D  |r. If he got hom|
00000A50: 65 20 61 74 20 34 20 50  4D 2C 20 68 6F 77 20 6D  |e at 4 PM, how m|
00000A60: 75 63 68 20 74 69 6D 65  20 64 69 64 20 68 65 20  |uch time did he |
00000A70: 73 70 65 6E 64 20 77 61  6C 6B 69 6E 67 3F 00 44  |spend walking?.D|
00000A80: 72 69 76 65 00 57 61 6C  6B 00 5A 61 63 68 20 64  |rive.Walk.Zach d|
00000A90: 72 6F 76 65 20 73 6F 6D  65 20 64 69 73 74 61 6E  |rove some distan|
00000AA0: 63 65 20 61 74 20 6F 6E  65 20 72 61 74 65 20 61  |ce at one rate a|
00000AB0: 6E 64 20 77 61 6C 6B 65  64 20 62 61 63 6B 20 74  |nd walked back t|
00000AC0: 68 65 20 73 61 6D 65 20  64 69 73 74 61 6E 63 65  |he same distance|
00000AD0: 20 61 74 20 61 6E 6F 74  68 65 72 20 72 61 74 65  | at another rate|
00000AE0: 2E 00 26 68 48 6F 77 20  6D 75 63 68 20 74 69 6D  |..&hHow much tim|
00000AF0: 65 20 64 69 64 20 68 65  20 73 70 65 6E 64 20 77  |e did he spend w|
00000B00: 61 6C 6B 69 6E 67 3F 26  68 00 64 00 74 68 65 20  |alking?&h.d.the |
00000B10: 64 69 73 74 61 6E 63 65  20 5A 61 63 68 20 64 72  |distance Zach dr|
00000B20: 6F 76 65 00 77 00 74 68  65 20 64 69 73 74 61 6E  |ove.w.the distan|
00000B30: 63 65 20 5A 61 63 68 20  77 61 6C 6B 65 64 00 64  |ce Zach walked.d|
00000B40: 00 77 00 48 65 20 77 61  6C 6B 65 64 20 74 68 65  |.w.He walked the|
00000B50: 20 73 61 6D 65 20 64 69  73 74 61 6E 63 65 20 74  | same distance t|
00000B60: 68 61 74 20 68 65 20 64  72 6F 76 65 2E 00 48 65  |hat he drove..He|
00000B70: 20 73 74 61 72 74 65 64  20 61 74 20 68 6F 6D 65  | started at home|
00000B80: 2C 20 64 72 6F 76 65 20  74 6F 20 74 68 65 20 70  |, drove to the p|
00000B90: 6F 69 6E 74 20 77 68 65  72 65 20 74 68 65 20 63  |oint where the c|
00000BA0: 61 72 20 72 61 6E 20 6F  75 74 20 6F 66 20 67 61  |ar ran out of ga|
00000BB0: 73 20 61 6E 64 20 74 68  65 6E 20 77 61 6C 6B 65  |s and then walke|
00000BC0: 64 20 62 61 63 6B 20 68  6F 6D 65 2E 20 53 6F 2C  |d back home. So,|
00000BD0: 20 60 44 64 3D 44 77 27  2E 00 44 64 3D 44 77 00  | `Dd=Dw'..Dd=Dw.|
00000BE0: 48 65 20 77 61 6C 6B 65  64 20 74 68 65 20 73 61  |He walked the sa|
00000BF0: 6D 65 20 64 69 73 74 61  6E 63 65 20 74 68 61 74  |me distance that|
00000C00: 20 68 65 20 64 72 6F 76  65 2E 00 48 65 20 73 74  | he drove..He st|
00000C10: 61 72 74 65 64 20 61 74  20 68 6F 6D 65 2C 20 64  |arted at home, d|
00000C20: 72 6F 76 65 20 74 6F 20  74 68 65 20 70 6F 69 6E  |rove to the poin|
00000C30: 74 20 77 68 65 72 65 20  74 68 65 20 63 61 72 20  |t where the car |
00000C40: 72 61 6E 20 6F 75 74 20  6F 66 20 67 61 73 20 61  |ran out of gas a|
00000C50: 6E 64 20 74 68 65 6E 20  77 61 6C 6B 65 64 20 62  |nd then walked b|
00000C60: 61 63 6B 20 68 6F 6D 65  2E 20 53 6F 2C 20 60 44  |ack home. So, `D|
00000C70: 64 3D 44 77 27 2E 00 6B  69 6C 6F 6D 65 74 65 72  |d=Dw'..kilometer|
00000C80: 73 20 70 65 72 20 68 6F  75 72 20 28 60 6B 6D 2F  |s per hour (`km/|
00000C90: 68 72 27 29 00 35 00 6B  6D 2F 68 72 00 68 6F 75  |hr').5.km/hr.hou|
00000CA0: 72 73 20 28 60 68 72 27  29 00 32 00 68 72 00 6B  |rs (`hr').2.hr.k|
00000CB0: 69 6C 6F 6D 65 74 65 72  73 20 28 60 6B 6D 27 29  |ilometers (`km')|
00000CC0: 00 32 00 6B 6D 00 48 65  20 64 72 6F 76 65 20 61  |.2.km.He drove a|
00000CD0: 74 20 61 20 72 61 74 65  20 6F 66 20 26 68 33 35  |t a rate of &h35|
00000CE0: 20 6B 6D 2F 68 72 26 68  2E 00 5A 61 63 68 27 73  | km/hr&h..Zach's|
00000CF0: 20 64 72 69 76 69 6E 67  20 72 61 74 65 20 69 73  | driving rate is|
00000D00: 20 60 33 35 27 20 6B 6D  2F 68 72 2E 00 33 35 00  | `35' km/hr..35.|
00000D10: 48 65 20 77 61 6C 6B 65  64 20 61 74 20 61 20 72  |He walked at a r|
00000D20: 61 74 65 20 6F 66 20 26  68 35 20 6B 6D 2F 68 72  |ate of &h5 km/hr|
00000D30: 26 68 2E 00 5A 61 63 68  27 73 20 77 61 6C 6B 69  |&h..Zach's walki|
00000D40: 6E 67 20 72 61 74 65 20  69 73 20 60 35 27 20 6B  |ng rate is `5' k|
00000D50: 6D 2F 68 72 2E 00 35 00  5A 61 63 68 20 73 74 61  |m/hr..5.Zach sta|
00000D60: 72 74 65 64 20 61 74 20  32 20 50 4D 20 61 6E 64  |rted at 2 PM and|
00000D70: 20 73 74 6F 70 70 65 64  20 61 74 20 34 20 50 4D  | stopped at 4 PM|
00000D80: 2E 00 46 72 6F 6D 20 32  20 50 4D 20 74 6F 20 34  |..From 2 PM to 4|
00000D90: 20 50 4D 20 69 73 20 32  20 68 6F 75 72 73 2C 20  | PM is 2 hours, |
00000DA0: 73 6F 20 74 68 65 20 74  6F 74 61 6C 20 74 69 6D  |so the total tim|
00000DB0: 65 20 69 73 20 60 32 27  20 68 6F 75 72 73 2E 00  |e is `2' hours..|
00000DC0: 32 00 74 72 61 76 65 6C  6C 65 64 20 61 74 20 35  |2.travelled at 5|
00000DD0: 20 6B 6D 2F 68 72 20 73  69 6E 63 65 20 74 68 61  | km/hr since tha|
00000DE0: 74 20 69 73 20 77 68 61  74 20 69 73 20 62 65 69  |t is what is bei|
00000DF0: 6E 67 20 61 73 6B 65 64  00 77 00 68 6F 75 72 73  |ng asked.w.hours|
00000E00: 20 68 65 20 77 61 6C 6B  65 64 00 31 33 00 68 65  | he walked.13.he|
00000E10: 20 64 72 6F 76 65 00 68  65 20 77 61 6C 6B 65 64  | drove.he walked|
00000E20: 00 48 65 20 77 61 73 20  67 6F 6E 65 20 66 6F 72  |.He was gone for|
00000E30: 20 61 20 74 6F 74 61 6C  20 6F 66 20 32 20 68 72  | a total of 2 hr|
00000E40: 73 2E 20 46 6F 72 20 22  26 76 22 20 68 72 73 2C  |s. For "&v" hrs,|
00000E50: 20 68 65 20 77 61 6C 6B  65 64 2E 20 46 6F 72 20  | he walked. For |
00000E60: 74 68 65 20 72 65 6D 61  69 6E 69 6E 67 20 74 69  |the remaining ti|
00000E70: 6D 65 2C 20 60 32 2D 26  76 27 2C 20 68 65 20 64  |me, `2-&v', he d|
00000E80: 72 6F 76 65 2E 20 45 6E  74 65 72 20 60 32 2D 26  |rove. Enter `2-&|
00000E90: 76 27 2E 00 31 32 00 32  2D 26 76 00 60 33 35 20  |v'..12.2-&v.`35 |
00000EA0: 20 5C 66 30 36 2A 20 20  5C 66 30 38 28 32 2D 26  | \f06*  \f08(2-&|
00000EB0: 76 29 27 20 5C 66 31 36  3D 20 44 72 69 76 69 6E  |v)' \f16= Drivin|
00000EC0: 67 20 64 69 73 74 61 6E  63 65 00 33 35 28 32 2D  |g distance.35(2-|
00000ED0: 26 76 29 00 60 35 20 20  20 5C 66 30 36 2A 20 20  |&v).`5   \f06*  |
00000EE0: 5C 66 30 38 20 20 26 76  27 20 20 5C 66 31 36 3D  |\f08  &v'  \f16=|
00000EF0: 20 57 61 6C 6B 69 6E 67  20 64 69 73 74 61 6E 63  | Walking distanc|
00000F00: 65 00 35 26 76 00 44 64  00 44 77 00 64 00 77 00  |e.5&v.Dd.Dw.d.w.|
00000F10: 64 00 33 35 28 32 2D 26  76 29 00 77 00 35 26 76  |d.35(2-&v).w.5&v|
00000F20: 00 60 33 35 28 32 2D 26  76 29 20 3D 20 35 26 76  |.`35(2-&v) = 5&v|
00000F30: 27 20 73 68 6F 77 73 20  74 68 61 74 20 68 65 20  |' shows that he |
00000F40: 64 72 6F 76 65 20 74 68  65 20 73 61 6D 65 20 64  |drove the same d|
00000F50: 69 73 74 61 6E 63 65 20  61 73 20 68 65 20 77 61  |istance as he wa|
00000F60: 6C 6B 65 64 2E 00 33 35  28 32 2D 26 76 29 3D 35  |lked..35(2-&v)=5|
00000F70: 26 76 00 31 2E 37 35 00  48 6F 77 20 6D 75 63 68  |&v.1.75.How much|
00000F80: 20 74 69 6D 65 20 64 69  64 20 68 65 20 73 70 65  | time did he spe|
00000F90: 6E 64 20 77 61 6C 6B 69  6E 67 3F 00 74 69 6D 65  |nd walking?.time|
00000FA0: 20 73 70 65 6E 74 20 77  61 6C 6B 69 6E 67 20 69  | spent walking i|
00000FB0: 73 20 74 68 65 20 76 61  6C 75 65 20 6F 66 20 22  |s the value of "|
00000FC0: 26 76 22 00 74 69 6D 65  20 73 70 65 6E 74 20 77  |&v".time spent w|
00000FD0: 61 6C 6B 69 6E 67 20 69  73 20 74 68 65 20 76 61  |alking is the va|
00000FE0: 6C 75 65 20 6F 66 20 22  26 76 22 2E 20 26 76 20  |lue of "&v". &v |
00000FF0: 3D 20 60 31 2E 37 35 27  00 31 33 00 31 2E 37 35  |= `1.75'.13.1.75|
00001000: 00 74 68 65 20 74 69 6D  65 20 73 70 65 6E 74 20  |.the time spent |
00001010: 64 72 69 76 69 6E 67 00  60 32 2D 26 76 27 20 72  |driving.`2-&v' r|
00001020: 65 70 72 65 73 65 6E 74  73 20 74 68 65 20 64 72  |epresents the dr|
00001030: 69 76 69 6E 67 20 74 69  6D 65 2E 20 32 20 2D 20  |iving time. 2 - |
00001040: 31 2E 37 35 20 3D 20 2E  32 35 2C 20 73 6F 20 65  |1.75 = .25, so e|
00001050: 6E 74 65 72 20 60 2E 32  35 20 68 72 27 00 31 32  |nter `.25 hr'.12|
00001060: 00 2E 32 35 00 74 68 65  20 64 72 69 76 69 6E 67  |..25.the driving|
00001070: 20 64 69 73 74 61 6E 63  65 00 33 38 28 32 2D 26  | distance.38(2-&|
00001080: 76 29 20 72 65 70 72 65  73 65 6E 74 73 20 74 68  |v) represents th|
00001090: 65 20 64 72 69 76 69 6E  67 20 64 69 73 74 61 6E  |e driving distan|
000010A0: 63 65 2E 20 33 35 28 32  2D 31 2E 37 35 29 20 3D  |ce. 35(2-1.75) =|
000010B0: 20 33 35 20 2A 20 2E 32  35 20 3D 20 38 2E 37 35  | 35 * .25 = 8.75|
000010C0: 20 5C 6E 53 6F 20 65 6E  74 65 72 20 60 38 2E 37  | \nSo enter `8.7|
000010D0: 35 27 2E 00 31 37 00 38  2E 37 35 00 74 68 65 20  |5'..17.8.75.the |
000010E0: 77 61 6C 6B 69 6E 67 00  35 26 76 20 72 65 70 72  |walking.5&v repr|
000010F0: 65 73 65 6E 74 73 20 74  68 65 20 77 61 6C 6B 69  |esents the walki|
00001100: 6E 67 20 64 69 73 74 61  6E 63 65 2E 20 35 20 2A  |ng distance. 5 *|
00001110: 20 31 2E 37 35 20 3D 20  38 2E 37 35 2C 20 73 6F  | 1.75 = 8.75, so|
00001120: 20 65 6E 74 65 72 20 60  38 2E 37 35 27 00 31 38  | enter `8.75'.18|
00001130: 00 38 2E 37 35 00 64 72  69 76 69 6E 67 00 74 68  |.8.75.driving.th|
00001140: 65 20 77 61 6C 6B 69 6E  67 00 40 66 52 6F 6E 20  |e walking.@fRon |
00001150: 77 61 6E 74 73 20 74 6F  20 73 70 65 6E 64 20 31  |wants to spend 1|
00001160: 20 68 6F 75 72 20 72 6F  77 69 6E 67 2E 20 49 66  | hour rowing. If|
00001170: 20 68 65 20 63 61 6E 20  72 6F 77 20 36 20 6D 69  | he can row 6 mi|
00001180: 2F 68 72 20 64 6F 77 6E  73 74 72 65 61 6D 20 61  |/hr downstream a|
00001190: 6E 64 20 6F 6E 6C 79 20  32 20 6D 69 2F 68 72 20  |nd only 2 mi/hr |
000011A0: 75 70 73 74 72 65 61 6D  2C 20 68 6F 77 20 66 61  |upstream, how fa|
000011B0: 72 20 63 61 6E 20 68 65  20 72 6F 77 20 64 6F 77  |r can he row dow|
000011C0: 6E 73 74 72 65 61 6D 20  69 6E 20 6F 72 64 65 72  |nstream in order|
000011D0: 20 74 6F 20 6C 65 61 76  65 20 68 69 6D 73 65 6C  | to leave himsel|
000011E0: 66 20 6A 75 73 74 20 65  6E 6F 75 67 68 20 74 69  |f just enough ti|
000011F0: 6D 65 20 74 6F 20 67 65  74 20 62 61 63 6B 3F 00  |me to get back?.|
00001200: 44 6F 77 6E 00 55 70 00  52 6F 6E 20 74 72 61 76  |Down.Up.Ron trav|
00001210: 65 6C 73 20 73 6F 6D 65  20 64 69 73 74 61 6E 63  |els some distanc|
00001220: 65 20 61 74 20 6F 6E 65  20 72 61 74 65 20 61 6E  |e at one rate an|
00001230: 64 20 74 68 65 20 73 61  6D 65 20 64 69 73 74 61  |d the same dista|
00001240: 6E 63 65 20 61 74 20 61  6E 6F 74 68 65 72 20 72  |nce at another r|
00001250: 61 74 65 2E 00 26 68 48  6F 77 20 66 61 72 20 63  |ate..&hHow far c|
00001260: 61 6E 20 68 65 20 72 6F  77 20 64 6F 77 6E 73 74  |an he row downst|
00001270: 72 65 61 6D 26 68 3F 00  64 00 44 6F 77 6E 73 74  |ream&h?.d.Downst|
00001280: 72 65 61 6D 20 64 69 73  74 61 6E 63 65 00 75 00  |ream distance.u.|
00001290: 75 70 73 74 72 65 61 6D  20 64 69 73 74 61 6E 63  |upstream distanc|
000012A0: 65 00 64 00 75 00 48 65  20 77 69 6C 6C 20 74 72  |e.d.u.He will tr|
000012B0: 61 76 65 6C 20 74 68 65  20 73 61 6D 65 20 64 69  |avel the same di|
000012C0: 73 74 61 6E 63 65 20 75  70 73 74 72 65 61 6D 20  |stance upstream |
000012D0: 61 6E 64 20 64 6F 77 6E  73 74 72 65 61 6D 2E 00  |and downstream..|
000012E0: 53 69 6E 63 65 20 68 65  20 77 69 6C 6C 20 74 72  |Since he will tr|
000012F0: 61 76 65 6C 20 74 68 65  20 73 61 6D 65 20 64 69  |avel the same di|
00001300: 73 74 61 6E 63 65 20 69  6E 20 62 6F 74 68 20 64  |stance in both d|
00001310: 69 72 65 63 74 69 6F 6E  73 2C 20 60 44 64 20 3D  |irections, `Dd =|
00001320: 20 44 75 27 2E 00 44 64  20 3D 20 44 75 00 48 65  | Du'..Dd = Du.He|
00001330: 20 77 69 6C 6C 20 74 72  61 76 65 6C 20 74 68 65  | will travel the|
00001340: 20 73 61 6D 65 20 64 69  73 74 61 6E 63 65 20 75  | same distance u|
00001350: 70 73 74 72 65 61 6D 20  61 6E 64 20 64 6F 77 6E  |pstream and down|
00001360: 73 74 72 65 61 6D 2E 00  53 69 6E 63 65 20 68 65  |stream..Since he|
00001370: 20 77 69 6C 6C 20 74 72  61 76 65 6C 20 74 68 65  | will travel the|
00001380: 20 73 61 6D 65 20 64 69  73 74 61 6E 63 65 20 69  | same distance i|
00001390: 6E 20 62 6F 74 68 20 64  69 72 65 63 74 69 6F 6E  |n both direction|
000013A0: 73 2C 20 60 44 64 20 3D  20 44 75 27 2E 00 6D 69  |s, `Dd = Du'..mi|
000013B0: 6C 65 73 20 70 65 72 20  68 6F 75 72 20 28 60 6D  |les per hour (`m|
000013C0: 69 2F 68 72 27 29 00 35  00 6D 69 2F 68 72 00 68  |i/hr').5.mi/hr.h|
000013D0: 6F 75 72 73 20 28 60 68  72 27 29 00 32 00 68 72  |ours (`hr').2.hr|
000013E0: 00 6D 69 6C 65 73 20 28  60 6D 69 27 29 00 32 00  |.miles (`mi').2.|
000013F0: 6D 69 00 26 68 48 65 20  63 61 6E 20 72 6F 77 20  |mi.&hHe can row |
00001400: 36 20 6D 69 2F 68 72 20  64 6F 77 6E 73 74 72 65  |6 mi/hr downstre|
00001410: 61 6D 26 68 2E 00 52 6F  6E 60 73 20 64 6F 77 6E  |am&h..Ron`s down|
00001420: 73 74 72 65 61 6D 20 72  61 74 65 20 69 73 20 60  |stream rate is `|
00001430: 36 27 20 6D 69 2F 68 72  2E 00 36 00 48 65 20 72  |6' mi/hr..6.He r|
00001440: 6F 77 73 20 26 68 32 20  6D 69 2F 68 72 20 75 70  |ows &h2 mi/hr up|
00001450: 73 74 72 65 61 6D 26 68  2E 00 52 6F 6E 27 73 20  |stream&h..Ron's |
00001460: 75 70 73 74 72 65 61 6D  20 72 61 74 65 20 69 73  |upstream rate is|
00001470: 20 60 32 27 20 6D 69 2F  68 72 2E 00 32 00 26 68  | `2' mi/hr..2.&h|
00001480: 52 6F 6E 20 77 61 6E 74  73 20 74 6F 20 73 70 65  |Ron wants to spe|
00001490: 6E 64 20 31 20 68 6F 75  72 20 72 6F 77 69 6E 67  |nd 1 hour rowing|
000014A0: 26 68 2E 00 52 6F 6E 27  73 20 74 6F 74 61 6C 20  |&h..Ron's total |
000014B0: 74 69 6D 65 20 69 73 20  60 31 27 20 68 6F 75 72  |time is `1' hour|
000014C0: 2E 00 31 00 74 72 61 76  65 6C 6C 65 64 20 61 74  |..1.travelled at|
000014D0: 20 36 20 6D 69 2F 68 72  20 73 69 6E 63 65 20 74  | 6 mi/hr since t|
000014E0: 68 61 74 20 69 73 20 77  68 61 74 20 69 73 20 62  |hat is what is b|
000014F0: 65 69 6E 67 20 61 73 6B  65 64 00 64 00 68 6F 75  |eing asked.d.hou|
00001500: 72 73 20 73 70 65 6E 74  20 72 6F 77 69 6E 67 20  |rs spent rowing |
00001510: 64 6F 77 6E 73 74 72 65  61 6D 00 31 32 00 73 70  |downstream.12.sp|
00001520: 65 6E 74 20 72 6F 77 69  6E 67 20 75 70 73 74 72  |ent rowing upstr|
00001530: 65 61 6D 00 72 6F 77 69  6E 67 20 64 6F 77 6E 73  |eam.rowing downs|
00001540: 74 72 65 61 6D 00 53 69  6E 63 65 20 74 68 65 20  |tream.Since the |
00001550: 74 6F 74 61 6C 20 61 6D  6F 75 6E 74 20 6F 66 20  |total amount of |
00001560: 74 69 6D 65 20 69 73 20  31 20 68 72 2C 20 74 68  |time is 1 hr, th|
00001570: 65 20 74 69 6D 65 20 73  70 65 6E 74 20 72 6F 77  |e time spent row|
00001580: 69 6E 67 20 75 70 73 74  72 65 61 6D 20 69 73 20  |ing upstream is |
00001590: 60 31 2D 26 76 27 2E 00  31 33 00 31 2D 26 76 00  |`1-&v'..13.1-&v.|
000015A0: 20 60 36 20 20 5C 66 30  36 2A 20 20 5C 66 30 38  | `6  \f06*  \f08|
000015B0: 20 20 26 76 27 20 20 20  5C 66 31 36 3D 20 44 6F  |  &v'   \f16= Do|
000015C0: 77 6E 73 74 72 65 61 6D  20 64 69 73 74 61 6E 63  |wnstream distanc|
000015D0: 65 00 36 26 76 00 20 60  32 20 20 5C 66 30 36 2A  |e.6&v. `2  \f06*|
000015E0: 20 20 5C 66 30 38 28 31  2D 26 76 29 27 5C 66 31  |  \f08(1-&v)'\f1|
000015F0: 36 3D 20 55 70 73 74 72  65 61 6D 20 64 69 73 74  |6= Upstream dist|
00001600: 61 6E 63 65 00 32 28 31  2D 26 76 29 00 44 64 00  |ance.2(1-&v).Dd.|
00001610: 44 75 00 64 00 75 00 64  00 36 26 76 00 75 00 32  |Du.d.u.d.6&v.u.2|
00001620: 28 31 2D 26 76 29 00 60  36 26 76 20 3D 20 32 28  |(1-&v).`6&v = 2(|
00001630: 31 2D 26 76 29 27 20 73  68 6F 77 73 20 74 68 61  |1-&v)' shows tha|
00001640: 74 20 68 65 20 72 6F 77  65 64 20 74 68 65 20 73  |t he rowed the s|
00001650: 61 6D 65 20 64 69 73 74  61 6E 63 65 20 64 6F 77  |ame distance dow|
00001660: 6E 73 74 72 65 61 6D 20  74 68 61 74 20 68 65 20  |nstream that he |
00001670: 72 6F 77 65 64 20 75 70  73 74 72 65 61 6D 2E 00  |rowed upstream..|
00001680: 36 26 76 3D 32 28 31 2D  26 76 29 00 2E 32 35 00  |6&v=2(1-&v)..25.|
00001690: 48 6F 77 20 66 61 72 20  63 61 6E 20 68 65 20 72  |How far can he r|
000016A0: 6F 77 20 64 6F 77 6E 73  74 72 65 61 6D 00 64 6F  |ow downstream.do|
000016B0: 77 6E 73 74 72 65 61 6D  20 64 69 73 74 61 6E 63  |wnstream distanc|
000016C0: 65 20 69 73 20 74 68 65  20 76 61 6C 75 65 20 6F  |e is the value o|
000016D0: 66 20 22 36 26 76 22 00  64 6F 77 6E 73 74 72 65  |f "6&v".downstre|
000016E0: 61 6D 20 64 69 73 74 61  6E 63 65 20 69 73 20 74  |am distance is t|
000016F0: 68 65 20 76 61 6C 75 65  20 6F 66 20 22 36 26 76  |he value of "6&v|
00001700: 22 2E 20 26 76 20 3D 20  2E 32 35 2C 20 73 6F 20  |". &v = .25, so |
00001710: 36 26 76 20 3D 20 36 20  2A 20 2E 32 35 20 3D 20  |6&v = 6 * .25 = |
00001720: 60 31 2E 35 27 00 31 37  00 31 2E 35 00 74 69 6D  |`1.5'.17.1.5.tim|
00001730: 65 20 73 70 65 6E 74 20  72 6F 77 69 6E 67 20 64  |e spent rowing d|
00001740: 6F 77 6E 73 74 72 65 61  6D 00 54 68 65 20 64 6F  |ownstream.The do|
00001750: 77 6E 73 74 72 65 61 6D  20 74 69 6D 65 20 69 73  |wnstream time is|
00001760: 20 74 68 65 20 76 61 6C  75 65 20 6F 66 20 22 26  | the value of "&|
00001770: 76 22 2E 20 26 76 20 3D  20 60 2E 32 35 27 00 31  |v". &v = `.25'.1|
00001780: 32 00 2E 32 35 00 74 68  65 20 74 69 6D 65 20 73  |2..25.the time s|
00001790: 70 65 6E 74 20 72 6F 77  69 6E 67 20 75 70 73 74  |pent rowing upst|
000017A0: 72 65 61 6D 00 54 68 65  20 75 70 73 74 72 65 61  |ream.The upstrea|
000017B0: 6D 20 74 69 6D 65 20 69  73 20 74 68 65 20 76 61  |m time is the va|
000017C0: 6C 75 65 20 6F 66 20 22  31 2D 26 76 22 2E 20 31  |lue of "1-&v". 1|
000017D0: 2D 26 76 20 3D 20 31 2D  2E 32 35 20 3D 20 60 2E  |-&v = 1-.25 = `.|
000017E0: 37 35 27 00 31 33 00 2E  37 35 00 74 68 65 20 75  |75'.13..75.the u|
000017F0: 70 73 74 72 65 61 6D 00  32 28 31 2D 26 76 29 20  |pstream.2(1-&v) |
00001800: 3D 20 32 20 2A 20 2E 37  35 20 3D 20 60 31 2E 35  |= 2 * .75 = `1.5|
00001810: 27 00 31 38 00 31 2E 35  00 64 6F 77 6E 73 74 72  |'.18.1.5.downstr|
00001820: 65 61 6D 00 74 68 65 20  75 70 73 74 72 65 61 6D  |eam.the upstream|
00001830: 00 40 66 41 61 72 6F 6E  20 77 61 6C 6B 65 64 20  |.@fAaron walked |
00001840: 74 6F 20 68 69 73 20 66  72 69 65 6E 64 27 73 20  |to his friend's |
00001850: 68 6F 75 73 65 20 61 74  20 31 32 30 20 79 64 2F  |house at 120 yd/|
00001860: 6D 69 6E 20 61 6E 64 20  62 6F 72 72 6F 77 65 64  |min and borrowed|
00001870: 20 61 20 62 69 63 79 63  6C 65 20 74 6F 20 72 69  | a bicycle to ri|
00001880: 64 65 20 62 61 63 6B 20  61 74 20 36 30 30 20 79  |de back at 600 y|
00001890: 64 2F 6D 69 6E 2E 20 49  66 20 74 68 65 20 74 6F  |d/min. If the to|
000018A0: 74 61 6C 20 61 6D 6F 75  6E 74 20 6F 66 20 74 69  |tal amount of ti|
000018B0: 6D 65 20 68 65 20 73 70  65 6E 74 20 74 72 61 76  |me he spent trav|
000018C0: 65 6C 6C 69 6E 67 20 77  61 73 20 32 20 68 6F 75  |elling was 2 hou|
000018D0: 72 73 2C 20 68 6F 77 20  66 61 72 20 64 69 64 20  |rs, how far did |
000018E0: 68 65 20 77 61 6C 6B 3F  00 57 61 6C 6B 00 52 69  |he walk?.Walk.Ri|
000018F0: 64 65 00 48 65 20 77 61  6C 6B 65 64 20 74 68 65  |de.He walked the|
00001900: 20 73 61 6D 65 20 64 69  73 74 61 6E 63 65 20 74  | same distance t|
00001910: 68 61 74 20 68 65 20 72  6F 64 65 2C 20 62 75 74  |hat he rode, but|
00001920: 20 68 69 73 20 72 61 74  65 73 20 77 65 72 65 20  | his rates were |
00001930: 64 69 66 66 65 72 65 6E  74 2E 00 26 68 48 6F 77  |different..&hHow|
00001940: 20 66 61 72 20 64 69 64  20 68 65 20 77 61 6C 6B  | far did he walk|
00001950: 3F 26 68 00 77 00 57 61  6C 6B 69 6E 67 20 64 69  |?&h.w.Walking di|
00001960: 73 74 2E 00 72 00 52 69  64 69 6E 67 20 64 69 73  |st..r.Riding dis|
00001970: 74 00 77 00 72 00 48 65  20 77 61 6C 6B 65 64 20  |t.w.r.He walked |
00001980: 66 6F 72 20 74 68 65 20  73 61 6D 65 20 64 69 73  |for the same dis|
00001990: 74 61 6E 63 65 20 74 68  61 74 20 68 65 20 72 6F  |tance that he ro|
000019A0: 64 65 2E 00 60 44 77 3D  44 72 27 20 73 68 6F 77  |de..`Dw=Dr' show|
000019B0: 73 20 74 68 61 74 20 68  65 20 77 61 6C 6B 65 64  |s that he walked|
000019C0: 20 74 68 65 20 73 61 6D  65 20 64 69 73 74 61 6E  | the same distan|
000019D0: 63 65 20 74 68 61 74 20  68 65 20 64 72 6F 76 65  |ce that he drove|
000019E0: 2E 00 60 44 77 3D 44 72  27 00 48 65 20 77 61 6C  |..`Dw=Dr'.He wal|
000019F0: 6B 65 64 20 66 6F 72 20  74 68 65 20 73 61 6D 65  |ked for the same|
00001A00: 20 64 69 73 74 61 6E 63  65 20 74 68 61 74 20 68  | distance that h|
00001A10: 65 20 72 6F 64 65 2E 00  60 44 77 3D 44 72 27 20  |e rode..`Dw=Dr' |
00001A20: 73 68 6F 77 73 20 74 68  61 74 20 68 65 20 77 61  |shows that he wa|
00001A30: 6C 6B 65 64 20 74 68 65  20 73 61 6D 65 20 64 69  |lked the same di|
00001A40: 73 74 61 6E 63 65 20 74  68 61 74 20 68 65 20 64  |stance that he d|
00001A50: 72 6F 76 65 2E 00 79 61  72 64 73 20 70 65 72 20  |rove..yards per |
00001A60: 6D 69 6E 75 74 65 20 60  79 64 2F 6D 69 6E 27 00  |minute `yd/min'.|
00001A70: 35 00 79 64 2F 6D 69 6E  00 6D 69 6E 75 74 65 73  |5.yd/min.minutes|
00001A80: 20 28 60 6D 69 6E 27 29  00 33 00 6D 69 6E 00 79  | (`min').3.min.y|
00001A90: 61 72 64 73 20 28 60 79  64 27 29 00 32 00 79 64  |ards (`yd').2.yd|
00001AA0: 00 41 61 72 6F 6E 20 77  61 6C 6B 65 64 20 61 74  |.Aaron walked at|
00001AB0: 20 26 68 31 32 30 20 79  64 2F 6D 69 6E 26 68 2E  | &h120 yd/min&h.|
00001AC0: 00 48 69 73 20 77 61 6C  6B 69 6E 67 20 72 61 74  |.His walking rat|
00001AD0: 65 20 77 61 73 20 60 31  32 30 27 20 79 61 72 64  |e was `120' yard|
00001AE0: 73 20 70 65 72 20 6D 69  6E 75 74 65 2E 00 31 32  |s per minute..12|
00001AF0: 30 00 48 65 20 72 6F 64  65 20 61 74 20 26 68 36  |0.He rode at &h6|
00001B00: 30 30 20 79 64 2F 6D 69  6E 26 68 2E 00 41 61 72  |00 yd/min&h..Aar|
00001B10: 6F 6E 27 73 20 72 69 64  69 6E 67 20 72 61 74 65  |on's riding rate|
00001B20: 20 77 61 73 20 60 36 30  30 27 20 79 61 72 64 73  | was `600' yards|
00001B30: 20 70 65 72 20 6D 69 6E  75 74 65 2E 00 36 30 30  | per minute..600|
00001B40: 00 26 68 54 68 65 20 74  6F 74 61 6C 20 61 6D 6F  |.&hThe total amo|
00001B50: 75 6E 74 20 6F 66 20 74  69 6D 65 20 68 65 20 73  |unt of time he s|
00001B60: 70 65 6E 74 20 74 72 61  76 65 6C 6C 69 6E 67 20  |pent travelling |
00001B70: 77 61 73 20 32 20 68 6F  75 72 73 26 68 2E 20 28  |was 2 hours&h. (|
00001B80: 52 65 6D 65 6D 62 65 72  20 74 69 6D 65 20 69 73  |Remember time is|
00001B90: 20 62 65 69 6E 67 20 6D  65 61 73 75 72 65 64 20  | being measured |
00001BA0: 69 6E 20 6D 69 6E 75 74  65 73 2E 29 00 48 69 73  |in minutes.).His|
00001BB0: 20 74 6F 74 61 6C 20 74  69 6D 65 20 77 61 73 20  | total time was |
00001BC0: 32 20 68 6F 75 72 73 2C  20 77 68 69 63 68 20 65  |2 hours, which e|
00001BD0: 71 75 61 6C 73 20 60 31  32 30 27 20 6D 69 6E 75  |quals `120' minu|
00001BE0: 74 65 73 2E 00 31 32 30  00 73 70 65 6E 74 20 77  |tes..120.spent w|
00001BF0: 61 6C 6B 69 6E 67 20 73  69 6E 63 65 20 74 68 65  |alking since the|
00001C00: 20 71 75 65 73 74 69 6F  6E 20 72 65 66 65 72 73  | question refers|
00001C10: 20 74 6F 20 77 61 6C 6B  69 6E 67 00 77 00 6D 69  | to walking.w.mi|
00001C20: 6E 75 74 65 73 20 68 65  20 73 70 65 6E 74 20 77  |nutes he spent w|
00001C30: 61 6C 6B 69 6E 67 00 31  32 00 73 70 65 6E 74 20  |alking.12.spent |
00001C40: 72 69 64 69 6E 67 00 73  70 65 6E 74 20 77 61 6C  |riding.spent wal|
00001C50: 6B 69 6E 67 00 48 65 20  77 61 73 20 6F 75 74 20  |king.He was out |
00001C60: 66 6F 72 20 61 20 74 6F  74 61 6C 20 6F 66 20 31  |for a total of 1|
00001C70: 32 30 20 6D 69 6E 75 74  65 73 20 61 6E 64 20 68  |20 minutes and h|
00001C80: 65 20 77 61 73 20 77 61  6C 6B 69 6E 67 20 66 6F  |e was walking fo|
00001C90: 72 20 26 76 20 6D 69 6E  75 74 65 73 2E 20 53 6F  |r &v minutes. So|
00001CA0: 20 68 65 20 77 61 73 20  72 69 64 69 6E 67 20 66  | he was riding f|
00001CB0: 6F 72 20 60 31 32 30 2D  26 76 27 20 6D 69 6E 2E  |or `120-&v' min.|
00001CC0: 00 31 33 00 31 32 30 2D  26 76 00 60 31 32 30 20  |.13.120-&v.`120 |
00001CD0: 5C 66 30 36 2A 20 20 26  76 27 20 20 5C 66 31 36  |\f06*  &v'  \f16|
00001CE0: 3D 20 57 61 6C 6B 69 6E  67 20 44 69 73 74 2E 00  |= Walking Dist..|
00001CF0: 31 32 30 26 76 00 60 36  30 30 20 5C 66 30 36 2A  |120&v.`600 \f06*|
00001D00: 20 5C 66 30 38 28 31 32  30 2D 26 76 29 27 20 5C  | \f08(120-&v)' \|
00001D10: 66 31 36 3D 20 52 69 64  69 6E 67 20 44 69 73 74  |f16= Riding Dist|
00001D20: 2E 00 36 30 30 28 31 32  30 2D 26 76 29 00 44 77  |..600(120-&v).Dw|
00001D30: 00 44 72 00 77 00 64 00  77 00 31 32 30 26 76 00  |.Dr.w.d.w.120&v.|
00001D40: 72 00 36 30 30 28 31 32  30 2D 26 76 29 00 60 31  |r.600(120-&v).`1|
00001D50: 32 30 26 76 20 3D 20 36  30 30 28 31 32 30 2D 26  |20&v = 600(120-&|
00001D60: 76 29 27 00 31 32 30 26  76 3D 36 30 30 28 31 32  |v)'.120&v=600(12|
00001D70: 30 2D 26 76 29 00 31 30  30 00 48 6F 77 20 66 61  |0-&v).100.How fa|
00001D80: 72 20 64 69 64 20 68 65  20 77 61 6C 6B 3F 00 57  |r did he walk?.W|
00001D90: 61 6C 6B 69 6E 67 20 64  69 73 74 61 6E 63 65 20  |alking distance |
00001DA0: 69 73 20 31 32 30 26 76  2C 20 61 6E 64 20 26 76  |is 120&v, and &v|
00001DB0: 20 3D 20 31 30 30 2E 00  57 61 6C 6B 69 6E 67 20  | = 100..Walking |
00001DC0: 64 69 73 74 61 6E 63 65  20 69 73 20 31 32 30 26  |distance is 120&|
00001DD0: 76 2E 20 26 76 20 2D 20  31 30 30 2C 20 73 6F 20  |v. &v - 100, so |
00001DE0: 31 32 30 26 76 20 3D 20  31 32 30 20 2A 20 31 30  |120&v = 120 * 10|
00001DF0: 30 20 3D 20 60 31 32 2C  30 30 30 27 20 79 61 72  |0 = `12,000' yar|
00001E00: 64 73 00 31 37 00 31 32  30 30 30 00 68 69 73 20  |ds.17.12000.his |
00001E10: 77 61 6C 6B 69 6E 67 20  74 69 6D 65 00 26 76 20  |walking time.&v |
00001E20: 3D 20 31 30 30 2C 20 73  6F 20 68 65 20 77 61 6C  |= 100, so he wal|
00001E30: 6B 65 64 20 66 6F 72 20  60 31 30 30 27 20 6D 69  |ked for `100' mi|
00001E40: 6E 75 74 65 73 2E 00 31  32 00 31 30 30 00 68 69  |nutes..12.100.hi|
00001E50: 73 20 72 69 64 69 6E 67  20 74 69 6D 65 00 26 76  |s riding time.&v|
00001E60: 20 3D 20 31 30 30 2C 20  61 6E 64 20 31 32 30 2D  | = 100, and 120-|
00001E70: 26 76 20 72 65 70 72 65  73 65 6E 74 73 20 68 69  |&v represents hi|
00001E80: 73 20 72 69 64 69 6E 67  20 74 69 6D 65 2C 20 73  |s riding time, s|
00001E90: 6F 20 68 65 20 72 6F 64  65 20 66 6F 72 20 60 32  |o he rode for `2|
00001EA0: 30 27 20 6D 69 6E 75 74  65 73 2E 00 31 33 00 32  |0' minutes..13.2|
00001EB0: 30 00 68 69 73 20 72 69  64 69 6E 67 00 26 76 20  |0.his riding.&v |
00001EC0: 3D 31 30 30 2C 20 61 6E  64 20 36 30 30 28 31 32  |=100, and 600(12|
00001ED0: 30 2D 26 76 29 20 69 73  20 68 69 73 20 72 69 64  |0-&v) is his rid|
00001EE0: 69 6E 67 20 64 69 73 74  61 6E 63 65 2C 20 73 6F  |ing distance, so|
00001EF0: 20 68 65 20 72 6F 64 65  20 66 6F 72 20 36 30 30  | he rode for 600|
00001F00: 2A 32 30 2C 20 6F 72 20  60 31 32 2C 30 30 30 27  |*20, or `12,000'|
00001F10: 20 79 61 72 64 73 2E 00  31 38 00 31 32 30 30 30  | yards..18.12000|
00001F20: 00 77 61 6C 6B 69 6E 67  00 74 68 65 20 72 69 64  |.walking.the rid|
00001F30: 69 6E 67 00 7C 64                                 |ing.|d          |
 A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&C(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIS
T.)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE.)@HWHAT AR
E THE FACTS? {}@HWHAT IS BEING ASKED? {}
@I(0)@RPLAN @PLET D{} = {} AND D{} = {}.
 WRITE AN EQUATION THAT RELATES D{} TO D
{}.@H{}@H{}@I(20,C0, )@PONE ANSWER IS {}
. CHANGE YOUR ANSWER IF IT IS NOT EQUIVA
LENT. (PRESS RETURN)@H{}@H{}@I(20,C0, )@
RDATA ENTRY@PFILL IN THE UNITS BY WHICH 
RATE, TIME AND DISTANCE ARE MEASURED. (U
SE ABBREVIATED FORM).@HRATE OF SPEED IS 
COMMONLY MEASURED IN MILES PER HOUR(MI/H
R), METERS PER MINUTE(M/MIN), ETC.@HTHE 
RATE OF SPEED IS MEASURED IN {}.@I(6,C{}
,{})@HTIME IS COMMONLY MEASURED IS SECON
DS(SEC), MINUTES(MIN), HOURS(HR), DAYS(D
A), ETC.@HTIME IN THIS PROBLEM IS MEASUR
ED IN {}.@I(11,C{},{})@HDISTANCE IS COMM
ONLY MEASURED IN FEET(FT), YARDS(YD), MI
LES(MI), METERS(M), KILOMETERS(KM), ETC.
@HDISTANCE IN THIS PROBLEM IS MEASURED I
N {}.@I(16,C{},{})@PENTER THE FACTS FROM
 THE PROBLEM INTO THE GRID.@H{}@H{}@I(7,
I,{})@H{}@H{}@I(8,I,{})@H{}@H{}@I(14,I,{
})@PCHOOSE A VARIABLE TO REPRESENT THE T
IME TRAVELLED AT EACH RATE.@HUSE A VARIA
BLE TO REPRESENT THE TIME {}.@HUSE A LET
TER, SUCH AS `{}' TO REPRESENT THE NUMBE
R OF {}.@I({},I,&V)@HREPRESENT THE TIME 
{} IN TERMS OF "&V" (THE TIME {}).@H{}@I
({},I,{})@RPARTS@PWRITE AN EXPRESSION TO
 REPRESENT THE DISTANCE TRAVELLED AT EAC
H RATE.@HRATE*TIME = DISTANCE@HRATE  \F0
6*  \F08 TIME   \F16= DISTANCE \N{}@I(17
,I,{})@HRATE*TIME = DISTANCE@HRATE  \F06
*  \F08 TIME  \F16= DISTANCE \N{}@I(18,I
,{})&D(20, )@RWHOLE@PSUBSTITUTE YOUR EXP
RESSIONS FOR {} AND {} IN THE EQUATION. 
\NEQUATION: D{}=D{}@HD{} = {} AND D{} = 
{}.@H{}@I(20,I,{})@S@RCOMPUTE@PSOLVE THE
 EQUATION  FOR "&V". USE PAPER AND PENCI
L AND ENTER THE FINAL EQUATION, OR USE T
HE CALCULATOR.@HISOLATE "&V" ON ONE SIDE
 OF THE EQUATION.@HTHE CALCULATOR SOLVES
 EQUATIONS FOR YOU AND DISPLAYS THE STEP
S IN THE SOLUTION.@I(20,I,&V={})@PNOW YO
U ARE READY TO ENTER YOUR ANSWER. REMEMB
ER WHAT IS BEING ASKED?&Q{}&Q&W(20)@HTHE
 {}@HTHE {}.@I({},I,{})@S@RCHECK@PREREAD
 THE PROBLEM. CHECK YOUR ANSWERS. EVALUA
TE THE REMAINING EXPRESSIONS IN THE GRID
.@HSUBSTITUTE FOR "&V" IN THE EXPRESSION
 FOR {}. THEN CALCULATE THE RESULT.@H{}@
I({},I,{})@HSUBSTITUTE FOR "&V" IN THE E
XPRESSION FOR {}. THEN CALCULATE THE RES
ULT.@H{}@I({},I,{})@HSUBSTITUTE FOR "&V"
 IN THE EXPRESSION FOR {} DISTANCE. THEN
 CALCULATE THE RESULT.@H{}@I({},I,{})&D(
0,CHECK YOUR WORK. THE {} DISTANCE SHOUL
D EQUAL {} DISTANCE. GET READY FOR A NEW
 PROBLEM.)@FAT 2 PM ZACH STARTED DRIVING
 35 KM/HR UNTIL HE RAN OUT OF GAS. HE WA
LKED BACK HOME AT 5 KM/HR. IF HE GOT HOM
E AT 4 PM, HOW MUCH TIME DID HE SPEND WA
LKING?.DRIVE.WALK.ZACH DROVE SOME DISTAN
CE AT ONE RATE AND WALKED BACK THE SAME 
DISTANCE AT ANOTHER RATE..&HHOW MUCH TIM
E DID HE SPEND WALKING?&H.D.THE DISTANCE
 ZACH DROVE.W.THE DISTANCE ZACH WALKED.D
.W.HE WALKED THE SAME DISTANCE THAT HE D
ROVE..HE STARTED AT HOME, DROVE TO THE P
OINT WHERE THE CAR RAN OUT OF GAS AND TH
EN WALKED BACK HOME. SO, `DD=DW'..DD=DW.
HE WALKED THE SAME DISTANCE THAT HE DROV
E..HE STARTED AT HOME, DROVE TO THE POIN
T WHERE THE CAR RAN OUT OF GAS AND THEN 
WALKED BACK HOME. SO, `DD=DW'..KILOMETER
S PER HOUR (`KM/HR').5.KM/HR.HOURS (`HR'
).2.HR.KILOMETERS (`KM').2.KM.HE DROVE A
T A RATE OF &H35 KM/HR&H..ZACH'S DRIVING
 RATE IS `35' KM/HR..35.HE WALKED AT A R
ATE OF &H5 KM/HR&H..ZACH'S WALKING RATE 
IS `5' KM/HR..5.ZACH STARTED AT 2 PM AND
 STOPPED AT 4 PM..FROM 2 PM TO 4 PM IS 2
 HOURS, SO THE TOTAL TIME IS `2' HOURS..
2.TRAVELLED AT 5 KM/HR SINCE THAT IS WHA
T IS BEING ASKED.W.HOURS HE WALKED.13.HE
 DROVE.HE WALKED.HE WAS GONE FOR A TOTAL
 OF 2 HRS. FOR "&V" HRS, HE WALKED. FOR 
THE REMAINING TIME, `2-&V', HE DROVE. EN
TER `2-&V'..12.2-&V.`35  \F06*  \F08(2-&
V)' \F16= DRIVING DISTANCE.35(2-&V).`5  
 \F06*  \F08  &V'  \F16= WALKING DISTANC
E.5&V.DD.DW.D.W.D.35(2-&V).W.5&V.`35(2-&
V) = 5&V' SHOWS THAT HE DROVE THE SAME D
ISTANCE AS HE WALKED..35(2-&V)=5&V.1.75.
HOW MUCH TIME DID HE SPEND WALKING?.TIME
 SPENT WALKING IS THE VALUE OF "&V".TIME
 SPENT WALKING IS THE VALUE OF "&V". &V 
= `1.75'.13.1.75.THE TIME SPENT DRIVING.
`2-&V' REPRESENTS THE DRIVING TIME. 2 - 
1.75 = .25, SO ENTER `.25 HR'.12..25.THE
 DRIVING DISTANCE.38(2-&V) REPRESENTS TH
E DRIVING DISTANCE. 35(2-1.75) = 35 * .2
5 = 8.75 \NSO ENTER `8.75'..17.8.75.THE 
WALKING.5&V REPRESENTS THE WALKING DISTA
NCE. 5 * 1.75 = 8.75, SO ENTER `8.75'.18
.8.75.DRIVING.THE WALKING.@FRON WANTS TO
 SPEND 1 HOUR ROWING. IF HE CAN ROW 6 MI
/HR DOWNSTREAM AND ONLY 2 MI/HR UPSTREAM
, HOW FAR CAN HE ROW DOWNSTREAM IN ORDER
 TO LEAVE HIMSELF JUST ENOUGH TIME TO GE
T BACK?.DOWN.UP.RON TRAVELS SOME DISTANC
E AT ONE RATE AND THE SAME DISTANCE AT A
NOTHER RATE..&HHOW FAR CAN HE ROW DOWNST
REAM&H?.D.DOWNSTREAM DISTANCE.U.UPSTREAM
 DISTANCE.D.U.HE WILL TRAVEL THE SAME DI
STANCE UPSTREAM AND DOWNSTREAM..SINCE HE
 WILL TRAVEL THE SAME DISTANCE IN BOTH D
IRECTIONS, `DD = DU'..DD = DU.HE WILL TR
AVEL THE SAME DISTANCE UPSTREAM AND DOWN
STREAM..SINCE HE WILL TRAVEL THE SAME DI
STANCE IN BOTH DIRECTIONS, `DD = DU'..MI
LES PER HOUR (`MI/HR').5.MI/HR.HOURS (`H
R').2.HR.MILES (`MI').2.MI.&HHE CAN ROW 
6 MI/HR DOWNSTREAM&H..RON`S DOWNSTREAM R
ATE IS `6' MI/HR..6.HE ROWS &H2 MI/HR UP
STREAM&H..RON'S UPSTREAM RATE IS `2' MI/
HR..2.&HRON WANTS TO SPEND 1 HOUR ROWING
&H..RON'S TOTAL TIME IS `1' HOUR..1.TRAV
ELLED AT 6 MI/HR SINCE THAT IS WHAT IS B
EING ASKED.D.HOURS SPENT ROWING DOWNSTRE
AM.12.SPENT ROWING UPSTREAM.ROWING DOWNS
TREAM.SINCE THE TOTAL AMOUNT OF TIME IS 
1 HR, THE TIME SPENT ROWING UPSTREAM IS 
`1-&V'..13.1-&V. `6  \F06*  \F08  &V'   
\F16= DOWNSTREAM DISTANCE.6&V. `2  \F06*
  \F08(1-&V)'\F16= UPSTREAM DISTANCE.2(1
-&V).DD.DU.D.U.D.6&V.U.2(1-&V).`6&V = 2(
1-&V)' SHOWS THAT HE ROWED THE SAME DIST
ANCE DOWNSTREAM THAT HE ROWED UPSTREAM..
6&V=2(1-&V)..25.HOW FAR CAN HE ROW DOWNS
TREAM.DOWNSTREAM DISTANCE IS THE VALUE O
F "6&V".DOWNSTREAM DISTANCE IS THE VALUE
 OF "6&V". &V = .25, SO 6&V = 6 * .25 = 
`1.5'.17.1.5.TIME SPENT ROWING DOWNSTREA
M.THE DOWNSTREAM TIME IS THE VALUE OF "&
V". &V = `.25'.12..25.THE TIME SPENT ROW
ING UPSTREAM.THE UPSTREAM TIME IS THE VA
LUE OF "1-&V". 1-&V = 1-.25 = `.75'.13..
75.THE UPSTREAM.2(1-&V) = 2 * .75 = `1.5
'.18.1.5.DOWNSTREAM.THE UPSTREAM.@FAARON
 WALKED TO HIS FRIEND'S HOUSE AT 120 YD/
MIN AND BORROWED A BICYCLE TO RIDE BACK 
AT 600 YD/MIN. IF THE TOTAL AMOUNT OF TI
ME HE SPENT TRAVELLING WAS 2 HOURS, HOW 
FAR DID HE WALK?.WALK.RIDE.HE WALKED THE
 SAME DISTANCE THAT HE RODE, BUT HIS RAT
ES WERE DIFFERENT..&HHOW FAR DID HE WALK
?&H.W.WALKING DIST..R.RIDING DIST.W.R.HE
 WALKED FOR THE SAME DISTANCE THAT HE RO
DE..`DW=DR' SHOWS THAT HE WALKED THE SAM
E DISTANCE THAT HE DROVE..`DW=DR'.HE WAL
KED FOR THE SAME DISTANCE THAT HE RODE..
`DW=DR' SHOWS THAT HE WALKED THE SAME DI
STANCE THAT HE DROVE..YARDS PER MINUTE `
YD/MIN'.5.YD/MIN.MINUTES (`MIN').3.MIN.Y
ARDS (`YD').2.YD.AARON WALKED AT &H120 Y
D/MIN&H..HIS WALKING RATE WAS `120' YARD
S PER MINUTE..120.HE RODE AT &H600 YD/MI
N&H..AARON'S RIDING RATE WAS `600' YARDS
 PER MINUTE..600.&HTHE TOTAL AMOUNT OF T
IME HE SPENT TRAVELLING WAS 2 HOURS&H. (
REMEMBER TIME IS BEING MEASURED IN MINUT
ES.).HIS TOTAL TIME WAS 2 HOURS, WHICH E
QUALS `120' MINUTES..120.SPENT WALKING S
INCE THE QUESTION REFERS TO WALKING.W.MI
NUTES HE SPENT WALKING.12.SPENT RIDING.S
PENT WALKING.HE WAS OUT FOR A TOTAL OF 1
20 MINUTES AND HE WAS WALKING FOR &V MIN
UTES. SO HE WAS RIDING FOR `120-&V' MIN.
.13.120-&V.`120 \F06*  &V'  \F16= WALKIN
G DIST..120&V.`600 \F06* \F08(120-&V)' \
F16= RIDING DIST..600(120-&V).DW.DR.W.D.
W.120&V.R.600(120-&V).`120&V = 600(120-&
V)'.120&V=600(120-&V).100.HOW FAR DID HE
 WALK?.WALKING DISTANCE IS 120&V, AND &V
 = 100..WALKING DISTANCE IS 120&V. &V - 
100, SO 120&V = 120 * 100 = `12,000' YAR
DS.17.12000.HIS WALKING TIME.&V = 100, S
O HE WALKED FOR `100' MINUTES..12.100.HI
S RIDING TIME.&V = 100, AND 120-&V REPRE
SENTS HIS RIDING TIME, SO HE RODE FOR `2
0' MINUTES..13.20.HIS RIDING.&V =100, AN
D 600(120-&V) IS HIS RIDING DISTANCE, SO
 HE RODE FOR 600*20, OR `12,000' YARDS..
18.12000.WALKING.THE RIDING.|D
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL