NUMB2L3
FILE INFORMATION
FILENAME(S): NUMB2L3
FILE TYPE(S): PRG
FILE SIZE: 5.5K
FIRST SEEN: 2025-10-19 22:49:00
APPEARS ON: 1 disk(s)
FILE HASH
2a638d06a34feaf5d12d3130c1cdf20da3a0801fcce6524845866953a6075179
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 41S2 | NUMB2L3 | PRG | Radd Maxx | 7 | 1 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 09 09 40 71 7B 7D 40 64 67 30 37 26 63 | A ..@q{}@dg07&c|
00000010: 28 31 2C 7B 7D 29 26 63 28 32 2C 7B 7D 29 40 72 |(1,{})&c(2,{})@r|
00000020: 52 45 41 44 40 70 52 65 61 64 20 74 68 65 20 70 |READ@pRead the p|
00000030: 72 6F 62 6C 65 6D 20 73 6C 6F 77 6C 79 20 61 6E |roblem slowly an|
00000040: 64 20 63 61 72 65 66 75 6C 6C 79 2E 20 57 68 61 |d carefully. Wha|
00000050: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
00000060: 3F 5C 6E 20 20 28 50 72 65 73 73 20 61 6E 79 20 |?\n (Press any |
00000070: 6B 65 79 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E |key to continue.|
00000080: 29 40 68 59 6F 75 20 61 72 65 20 62 65 69 6E 67 |)@hYou are being|
00000090: 20 61 73 6B 65 64 20 74 6F 20 66 69 6E 64 20 7B | asked to find {|
000000A0: 7D 2E 40 68 54 68 65 20 70 72 6F 62 6C 65 6D 20 |}.@hThe problem |
000000B0: 69 73 20 74 6F 20 7B 7D 40 69 28 30 29 40 72 50 |is to {}@i(0)@rP|
000000C0: 4C 41 4E 40 70 55 73 69 6E 67 20 6F 6E 65 20 76 |LAN@pUsing one v|
000000D0: 61 72 69 61 62 6C 65 2C 20 65 6E 74 65 72 20 65 |ariable, enter e|
000000E0: 78 70 72 65 73 73 69 6F 6E 73 20 74 6F 20 72 65 |xpressions to re|
000000F0: 70 72 65 73 65 6E 74 20 7B 7D 40 68 43 68 6F 6F |present {}@hChoo|
00000100: 73 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 6F |se a variable to|
00000110: 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 7B | represent the {|
00000120: 7D 2E 40 68 50 69 63 6B 20 61 6E 79 20 6C 65 74 |}.@hPick any let|
00000130: 74 65 72 2C 20 73 75 63 68 20 61 73 20 60 7B 7D |ter, such as `{}|
00000140: 27 2C 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 |', to represent |
00000150: 74 68 65 20 7B 7D 2E 40 69 28 35 2C 69 2C 26 76 |the {}.@i(5,i,&v|
00000160: 29 40 68 52 65 70 72 65 73 65 6E 74 20 74 68 65 |)@hRepresent the|
00000170: 20 7B 7D 2C 20 69 6E 20 74 65 72 6D 73 20 6F 66 | {}, in terms of|
00000180: 20 22 26 76 22 2C 20 7B 7D 2E 40 68 7B 7D 2E 40 | "&v", {}.@h{}.@|
00000190: 69 28 36 2C 69 2C 7B 7D 29 40 70 54 72 61 6E 73 |i(6,i,{})@pTrans|
000001A0: 6C 61 74 65 3A 20 7B 7D 2E 40 68 22 7B 7D 22 20 |late: {}.@h"{}" |
000001B0: 69 73 20 74 68 65 20 70 68 72 61 73 65 20 74 6F |is the phrase to|
000001C0: 20 62 65 20 74 72 61 6E 73 6C 61 74 65 64 2E 40 | be translated.@|
000001D0: 68 7B 7D 2E 40 69 28 39 2C 63 30 2C 20 29 40 70 |h{}.@i(9,c0, )@p|
000001E0: 4E 6F 77 2C 20 74 72 61 6E 73 6C 61 74 65 20 74 |Now, translate t|
000001F0: 68 65 20 72 65 73 74 20 6F 66 20 74 68 65 20 70 |he rest of the p|
00000200: 72 6F 62 6C 65 6D 2E 20 7B 7D 40 68 7B 7D 20 69 |roblem. {}@h{} i|
00000210: 73 20 74 68 65 20 70 68 72 61 73 65 20 74 6F 20 |s the phrase to |
00000220: 62 65 20 74 72 61 6E 73 6C 61 74 65 64 2E 40 68 |be translated.@h|
00000230: 45 6E 74 65 72 20 7B 7D 20 61 6E 64 20 7B 7D 20 |Enter {} and {} |
00000240: 45 6E 74 65 72 20 60 7B 7D 27 2E 40 69 28 39 2C |Enter `{}'.@i(9,|
00000250: 64 30 2C 20 29 40 70 4F 6E 65 20 61 6E 73 77 65 |d0, )@pOne answe|
00000260: 72 20 69 73 3A 20 7B 7D 2E 20 43 68 61 6E 67 65 |r is: {}. Change|
00000270: 20 79 6F 75 72 20 61 6E 73 77 65 72 20 69 66 20 | your answer if |
00000280: 69 74 20 69 73 20 6E 6F 74 20 65 71 75 69 76 61 |it is not equiva|
00000290: 6C 65 6E 74 2E 20 28 50 72 65 73 73 20 52 65 74 |lent. (Press Ret|
000002A0: 75 72 6E 29 40 68 7B 7D 40 68 7B 7D 40 69 28 39 |urn)@h{}@h{}@i(9|
000002B0: 2C 63 30 2C 20 29 40 70 53 75 62 73 74 69 74 75 |,c0, )@pSubstitu|
000002C0: 74 65 20 74 68 65 20 65 78 70 72 65 73 73 69 6F |te the expressio|
000002D0: 6E 73 20 66 6F 72 20 7B 7D 20 69 6E 20 74 68 65 |ns for {} in the|
000002E0: 20 45 71 75 61 74 69 6F 6E 20 49 64 65 61 3A 20 | Equation Idea: |
000002F0: 7B 7D 2E 40 68 7B 7D 2E 40 68 45 6E 74 65 72 20 |{}.@h{}.@hEnter |
00000300: 7B 7D 2E 40 69 28 31 30 2C 69 2C 7B 7D 29 26 64 |{}.@i(10,i,{})&d|
00000310: 28 31 31 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 |(11,{})@s@rCOMPU|
00000320: 54 45 40 70 53 6F 6C 76 65 20 74 68 65 20 65 71 |TE@pSolve the eq|
00000330: 75 61 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 2E |uation for "&v".|
00000340: 20 55 73 65 20 70 61 70 65 72 20 61 6E 64 20 70 | Use paper and p|
00000350: 65 6E 63 69 6C 20 6F 72 20 75 73 65 20 74 68 65 |encil or use the|
00000360: 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 | Calculator.@hIs|
00000370: 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E |olate "&v" on on|
00000380: 65 20 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 |e side of the eq|
00000390: 75 61 74 69 6F 6E 2E 20 40 68 54 68 65 20 43 61 |uation. @hThe Ca|
000003A0: 6C 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 |lculator solves |
000003B0: 65 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F |equations for yo|
000003C0: 75 20 61 6E 64 20 64 69 73 70 6C 61 79 73 20 74 |u and displays t|
000003D0: 68 65 20 73 74 65 70 73 20 69 6E 20 74 68 65 20 |he steps in the |
000003E0: 73 6F 6C 75 74 69 6F 6E 2E 40 69 28 31 31 2C 69 |solution.@i(11,i|
000003F0: 2C 26 76 3D 7B 7D 29 40 70 45 6E 74 65 72 20 79 |,&v={})@pEnter y|
00000400: 6F 75 72 20 61 6E 73 77 65 72 73 20 74 6F 20 74 |our answers to t|
00000410: 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E 20 74 68 |he problem in th|
00000420: 65 20 67 72 69 64 2E 20 52 65 6D 65 6D 62 65 72 |e grid. Remember|
00000430: 20 74 68 65 20 71 75 65 73 74 69 6F 6E 2E 20 26 | the question. &|
00000440: 71 7B 7D 26 71 26 77 28 31 31 29 40 68 7B 7D 20 |q{}&q&w(11)@h{} |
00000450: 69 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 |is equal to the |
00000460: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
00000470: 26 76 20 3D 20 7B 7D 2C 20 73 6F 20 65 6E 74 65 |&v = {}, so ente|
00000480: 72 20 27 7B 7D 27 2E 40 69 28 35 2C 69 2C 7B 7D |r '{}'.@i(5,i,{}|
00000490: 29 40 68 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |)@h{} is equal t|
000004A0: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 7B |o the value of {|
000004B0: 7D 2E 40 68 26 76 20 3D 20 7B 7D 2C 20 73 6F 20 |}.@h&v = {}, so |
000004C0: 7B 7D 2E 40 69 28 36 2C 69 2C 7B 7D 29 40 73 40 |{}.@i(6,i,{})@s@|
000004D0: 72 43 48 45 43 4B 26 64 28 30 2C 54 6F 20 63 68 |rCHECK&d(0,To ch|
000004E0: 65 63 6B 20 79 6F 75 72 20 77 6F 72 6B 2C 20 74 |eck your work, t|
000004F0: 68 65 20 76 61 6C 75 65 20 6F 66 20 22 26 76 22 |he value of "&v"|
00000500: 20 69 73 20 73 75 62 73 74 69 74 75 74 65 64 20 | is substituted |
00000510: 69 6E 20 74 68 65 20 65 71 75 61 74 69 6F 6E 2E |in the equation.|
00000520: 29 26 64 28 31 31 2C 7B 7D 29 40 70 53 69 6D 70 |)&d(11,{})@pSimp|
00000530: 6C 69 66 79 20 74 68 65 20 65 71 75 61 74 69 6F |lify the equatio|
00000540: 6E 20 77 69 74 68 20 74 68 65 20 63 61 6C 63 75 |n with the calcu|
00000550: 6C 61 74 6F 72 20 74 6F 20 6D 61 6B 65 20 73 75 |lator to make su|
00000560: 72 65 20 74 68 61 74 20 74 68 65 20 74 77 6F 20 |re that the two |
00000570: 73 69 64 65 73 20 61 72 65 20 65 71 75 61 6C 2E |sides are equal.|
00000580: 40 68 54 68 65 20 73 69 6D 70 6C 69 66 69 65 64 |@hThe simplified|
00000590: 20 65 71 75 61 74 69 6F 6E 20 69 73 20 7B 7D 2E | equation is {}.|
000005A0: 40 68 54 68 65 20 73 69 6D 70 6C 69 66 69 65 64 |@hThe simplified|
000005B0: 20 65 71 75 61 74 69 6F 6E 20 69 73 20 7B 7D 2E | equation is {}.|
000005C0: 40 69 28 31 31 2C 69 2C 7B 7D 29 40 66 54 68 65 |@i(11,i,{})@fThe|
000005D0: 20 6C 61 72 67 65 72 20 6F 66 20 74 77 6F 20 6E | larger of two n|
000005E0: 75 6D 62 65 72 73 20 69 73 20 34 20 74 69 6D 65 |umbers is 4 time|
000005F0: 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 2E 20 57 |s the smaller. W|
00000600: 68 61 74 20 61 72 65 20 74 68 65 20 6E 75 6D 62 |hat are the numb|
00000610: 65 72 73 20 69 66 20 74 68 65 69 72 20 73 75 6D |ers if their sum|
00000620: 20 69 73 20 35 31 35 3F 00 53 6D 61 6C 6C 00 4C | is 515?.Small.L|
00000630: 61 72 67 65 00 74 68 65 20 6E 75 6D 62 65 72 73 |arge.the numbers|
00000640: 00 66 69 6E 64 20 74 68 65 20 6E 75 6D 62 65 72 |.find the number|
00000650: 73 20 64 65 73 63 72 69 62 65 64 20 69 6E 20 74 |s described in t|
00000660: 68 65 20 71 75 65 73 74 69 6F 6E 2E 00 74 68 65 |he question..the|
00000670: 20 53 6D 61 6C 6C 20 61 6E 64 20 4C 61 72 67 65 | Small and Large|
00000680: 20 6E 75 6D 62 65 72 73 2E 00 53 6D 61 6C 6C 20 | numbers..Small |
00000690: 6E 75 6D 62 65 72 00 73 00 53 6D 61 6C 6C 20 6E |number.s.Small n|
000006A0: 75 6D 62 65 72 00 4C 61 72 67 65 20 6E 75 6D 62 |umber.Large numb|
000006B0: 65 72 00 74 68 65 20 53 6D 61 6C 6C 20 6E 75 6D |er.the Small num|
000006C0: 62 65 72 00 26 68 54 68 65 20 6C 61 72 67 65 72 |ber.&hThe larger|
000006D0: 20 6F 66 20 74 77 6F 20 6E 75 6D 62 65 72 73 20 | of two numbers |
000006E0: 69 73 20 34 20 74 69 6D 65 73 20 74 68 65 20 73 |is 4 times the s|
000006F0: 6D 61 6C 6C 65 72 26 68 2E 20 60 34 26 76 27 20 |maller&h. `4&v' |
00000700: 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 20 4C |represents the L|
00000710: 61 72 67 65 72 20 6E 75 6D 62 65 72 00 34 26 76 |arger number.4&v|
00000720: 00 54 68 65 69 72 20 73 75 6D 20 69 73 20 35 31 |.Their sum is 51|
00000730: 35 20 75 73 69 6E 67 20 53 4D 20 61 6E 64 20 4C |5 using SM and L|
00000740: 47 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 |G to represent t|
00000750: 68 65 20 53 6D 61 6C 6C 20 61 6E 64 20 4C 61 72 |he Small and Lar|
00000760: 67 65 20 6E 75 6D 62 65 72 73 00 54 68 65 69 72 |ge numbers.Their|
00000770: 20 73 75 6D 00 60 53 4D 2B 4C 47 27 20 72 65 70 | sum.`SM+LG' rep|
00000780: 72 65 73 65 6E 74 73 20 22 54 68 65 69 72 20 73 |resents "Their s|
00000790: 75 6D 22 00 26 71 69 73 20 35 31 35 26 71 00 22 |um".&qis 515&q."|
000007A0: 49 73 20 35 31 35 22 00 60 3D 27 00 60 35 31 35 |Is 515".`='.`515|
000007B0: 27 2E 00 3D 35 31 35 00 53 4D 2B 4C 47 3D 35 31 |'..=515.SM+LG=51|
000007C0: 35 00 54 68 65 20 73 75 6D 20 6F 66 20 74 68 65 |5.The sum of the|
000007D0: 20 53 6D 61 6C 6C 20 61 6E 64 20 4C 61 72 67 65 | Small and Large|
000007E0: 20 6E 75 6D 62 65 72 73 20 69 73 20 35 31 35 2E | numbers is 515.|
000007F0: 00 60 53 4D 2B 4C 47 3D 35 31 35 27 20 72 65 70 |.`SM+LG=515' rep|
00000800: 72 65 73 65 6E 74 73 20 22 74 68 65 20 73 75 6D |resents "the sum|
00000810: 20 6F 66 20 74 68 65 20 73 6D 61 6C 6C 20 61 6E | of the small an|
00000820: 64 20 6C 61 72 67 65 20 6E 75 6D 62 65 72 73 20 |d large numbers |
00000830: 69 73 20 35 31 35 22 2E 00 53 4D 20 61 6E 64 20 |is 515"..SM and |
00000840: 4C 47 00 53 4D 2B 4C 47 3D 35 31 35 00 53 4D 3D |LG.SM+LG=515.SM=|
00000850: 26 76 20 61 6E 64 20 4C 47 3D 34 26 76 00 26 76 |&v and LG=4&v.&v|
00000860: 2B 34 26 76 3D 35 31 35 00 26 76 2B 34 26 76 3D |+4&v=515.&v+4&v=|
00000870: 35 31 35 00 26 76 2B 34 26 76 3D 35 31 35 00 31 |515.&v+4&v=515.1|
00000880: 30 33 00 57 68 61 74 20 61 72 65 20 74 68 65 20 |03.What are the |
00000890: 6E 75 6D 62 65 72 73 00 53 4D 00 31 30 33 00 31 |numbers.SM.103.1|
000008A0: 30 33 00 31 30 33 00 4C 47 00 34 26 76 00 31 30 |03.103.LG.4&v.10|
000008B0: 33 00 4C 47 3D 34 31 32 00 34 31 32 00 31 30 33 |3.LG=412.412.103|
000008C0: 2B 34 31 32 3D 35 31 35 00 60 35 31 35 3D 35 31 |+412=515.`515=51|
000008D0: 35 27 00 60 35 31 35 3D 35 31 35 27 00 35 31 35 |5'.`515=515'.515|
000008E0: 3D 35 31 35 00 40 66 41 20 73 65 63 6F 6E 64 20 |=515.@fA second |
000008F0: 6E 75 6D 62 65 72 20 69 73 20 35 20 6D 6F 72 65 |number is 5 more|
00000900: 20 74 68 61 6E 20 31 2F 32 20 74 68 65 20 66 69 | than 1/2 the fi|
00000910: 72 73 74 2E 20 49 66 20 74 68 65 20 66 69 72 73 |rst. If the firs|
00000920: 74 20 6E 75 6D 62 65 72 20 69 73 20 64 6F 75 62 |t number is doub|
00000930: 6C 65 64 20 61 6E 64 20 74 68 65 6E 20 64 65 63 |led and then dec|
00000940: 72 65 61 73 65 64 20 62 79 20 31 39 2C 20 69 74 |reased by 19, it|
00000950: 20 65 71 75 61 6C 73 20 74 68 65 20 73 65 63 6F | equals the seco|
00000960: 6E 64 20 6E 75 6D 62 65 72 2E 20 57 68 61 74 20 |nd number. What |
00000970: 61 72 65 20 74 68 65 20 6E 75 6D 62 65 72 73 3F |are the numbers?|
00000980: 00 31 73 74 00 32 6E 64 00 74 68 65 20 6E 75 6D |.1st.2nd.the num|
00000990: 62 65 72 73 00 66 69 6E 64 20 74 68 65 20 74 77 |bers.find the tw|
000009A0: 6F 20 6E 75 6D 62 65 72 73 20 64 65 73 63 72 69 |o numbers descri|
000009B0: 62 65 64 20 69 6E 20 74 68 65 20 71 75 65 73 74 |bed in the quest|
000009C0: 69 6F 6E 2E 00 74 68 65 20 74 77 6F 20 6E 75 6D |ion..the two num|
000009D0: 62 65 72 73 2E 00 31 73 74 20 6E 75 6D 62 65 72 |bers..1st number|
000009E0: 00 66 00 66 69 72 73 74 20 6E 75 6D 62 65 72 00 |.f.first number.|
000009F0: 73 65 63 6F 6E 64 20 6E 75 6D 62 65 72 00 74 68 |second number.th|
00000A00: 65 20 66 69 72 73 74 20 6E 75 6D 62 65 72 00 26 |e first number.&|
00000A10: 68 41 20 73 65 63 6F 6E 64 20 6E 75 6D 62 65 72 |hA second number|
00000A20: 20 69 73 20 35 20 6D 6F 72 65 20 74 68 61 6E 20 | is 5 more than |
00000A30: 31 2F 32 20 74 68 65 20 66 69 72 73 74 26 68 2E |1/2 the first&h.|
00000A40: 20 53 6F 20 60 31 2F 32 28 26 76 29 2B 35 27 20 | So `1/2(&v)+5' |
00000A50: 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 20 73 |represents the s|
00000A60: 65 63 6F 6E 64 20 6E 75 6D 62 65 72 00 31 2F 32 |econd number.1/2|
00000A70: 28 26 76 29 2B 35 00 26 68 49 66 20 74 68 65 20 |(&v)+5.&hIf the |
00000A80: 66 69 72 73 74 20 69 73 20 64 6F 75 62 6C 65 64 |first is doubled|
00000A90: 20 61 6E 64 20 74 68 65 6E 20 64 65 63 72 65 61 | and then decrea|
00000AA0: 73 65 64 20 62 79 20 31 39 26 68 2E 20 55 73 65 |sed by 19&h. Use|
00000AB0: 20 22 31 73 74 22 20 61 6E 64 20 22 32 6E 64 22 | "1st" and "2nd"|
00000AC0: 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 | to represent th|
00000AD0: 65 20 6E 75 6D 62 65 72 73 00 54 68 65 20 66 69 |e numbers.The fi|
00000AE0: 72 73 74 20 69 73 20 64 6F 75 62 6C 65 64 20 61 |rst is doubled a|
00000AF0: 6E 64 20 74 68 65 6E 20 64 65 63 72 65 61 73 65 |nd then decrease|
00000B00: 64 20 62 79 20 31 39 00 60 32 28 31 73 74 29 2D |d by 19.`2(1st)-|
00000B10: 31 39 27 20 72 65 70 72 65 73 65 6E 74 73 20 31 |19' represents 1|
00000B20: 39 20 6C 65 73 73 20 74 68 61 6E 20 74 77 69 63 |9 less than twic|
00000B30: 65 20 74 68 65 20 66 69 72 73 74 00 26 71 69 74 |e the first.&qit|
00000B40: 20 65 71 75 61 6C 73 20 74 68 65 20 73 65 63 6F | equals the seco|
00000B50: 6E 64 26 71 00 22 45 71 75 61 6C 73 20 74 68 65 |nd&q."Equals the|
00000B60: 20 73 65 63 6F 6E 64 22 00 60 3D 27 00 60 32 6E | second".`='.`2n|
00000B70: 64 27 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 |d' to represent |
00000B80: 74 68 65 20 73 65 63 6F 6E 64 20 6E 75 6D 62 65 |the second numbe|
00000B90: 72 2E 00 3D 32 6E 64 00 32 28 31 73 74 29 2D 31 |r..=2nd.2(1st)-1|
00000BA0: 39 3D 32 6E 64 00 44 6F 75 62 6C 65 64 20 6D 65 |9=2nd.Doubled me|
00000BB0: 61 6E 73 20 74 68 65 20 73 61 6D 65 20 61 73 20 |ans the same as |
00000BC0: 6D 75 6C 74 69 70 6C 69 65 64 20 62 79 20 32 2E |multiplied by 2.|
00000BD0: 00 60 32 28 31 73 74 29 2D 31 39 3D 32 6E 64 27 |.`2(1st)-19=2nd'|
00000BE0: 20 72 65 70 72 65 73 65 6E 74 73 20 74 77 69 63 | represents twic|
00000BF0: 65 20 74 68 65 20 66 69 72 73 74 20 64 65 63 72 |e the first decr|
00000C00: 65 61 73 65 64 20 62 79 20 31 39 20 65 71 75 61 |eased by 19 equa|
00000C10: 6C 73 20 74 68 65 20 73 65 63 6F 6E 64 2E 00 31 |ls the second..1|
00000C20: 73 74 20 61 6E 64 20 32 6E 64 00 32 28 31 73 74 |st and 2nd.2(1st|
00000C30: 29 2D 31 39 3D 32 6E 64 00 31 73 74 3D 26 76 20 |)-19=2nd.1st=&v |
00000C40: 61 6E 64 20 32 6E 64 3D 31 2F 32 28 26 76 29 2B |and 2nd=1/2(&v)+|
00000C50: 35 00 32 26 76 2D 31 39 3D 31 2F 32 28 26 76 29 |5.2&v-19=1/2(&v)|
00000C60: 2B 35 00 32 26 76 2D 31 39 3D 31 2F 32 28 26 76 |+5.2&v-19=1/2(&v|
00000C70: 29 2B 35 00 32 26 76 2D 31 39 3D 31 2F 32 28 26 |)+5.2&v-19=1/2(&|
00000C80: 76 29 2B 35 00 31 36 00 57 68 61 74 20 61 72 65 |v)+5.16.What are|
00000C90: 20 74 68 65 20 6E 75 6D 62 65 72 73 3F 00 54 68 | the numbers?.Th|
00000CA0: 65 20 31 73 74 20 6E 75 6D 62 65 72 00 31 36 00 |e 1st number.16.|
00000CB0: 31 36 00 31 36 00 54 68 65 20 73 65 63 6F 6E 64 |16.16.The second|
00000CC0: 20 6E 75 6D 62 65 72 00 31 2F 32 28 26 76 29 2B | number.1/2(&v)+|
00000CD0: 35 00 31 36 00 74 68 65 20 32 6E 64 20 6E 75 6D |5.16.the 2nd num|
00000CE0: 62 65 72 20 69 73 20 31 2F 32 28 31 36 29 2B 35 |ber is 1/2(16)+5|
00000CF0: 20 3D 20 38 2B 35 20 3D 20 60 31 33 27 00 31 33 | = 8+5 = `13'.13|
00000D00: 00 32 28 31 36 29 2D 31 39 3D 31 2F 32 28 31 36 |.2(16)-19=1/2(16|
00000D10: 29 2B 35 00 60 31 33 3D 31 33 27 00 60 31 33 3D |)+5.`13=13'.`13=|
00000D20: 31 33 27 00 31 33 3D 31 33 00 40 66 46 69 6E 64 |13'.13=13.@fFind|
00000D30: 20 74 77 6F 20 63 6F 6E 73 65 63 75 74 69 76 65 | two consecutive|
00000D40: 20 6F 64 64 20 69 6E 74 65 67 65 72 73 20 73 75 | odd integers su|
00000D50: 63 68 20 74 68 61 74 20 33 20 74 69 6D 65 73 20 |ch that 3 times |
00000D60: 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 65 71 |the larger is eq|
00000D70: 75 61 6C 20 74 6F 20 35 33 20 6C 65 73 73 20 74 |ual to 53 less t|
00000D80: 68 61 6E 20 34 20 74 69 6D 65 73 20 74 68 65 20 |han 4 times the |
00000D90: 73 6D 61 6C 6C 65 72 2E 00 53 4D 00 4C 47 00 74 |smaller..SM.LG.t|
00000DA0: 77 6F 20 63 6F 6E 73 65 63 75 74 69 76 65 20 6F |wo consecutive o|
00000DB0: 64 64 20 69 6E 74 65 67 65 72 73 00 66 69 6E 64 |dd integers.find|
00000DC0: 20 74 68 65 20 74 77 6F 20 63 6F 6E 73 65 63 75 | the two consecu|
00000DD0: 74 69 76 65 20 6F 64 64 20 69 6E 74 65 67 65 72 |tive odd integer|
00000DE0: 73 20 64 65 73 63 72 69 62 65 64 20 69 6E 20 74 |s described in t|
00000DF0: 68 65 20 71 75 65 73 74 69 6F 6E 2E 00 74 68 65 |he question..the|
00000E00: 20 74 77 6F 20 63 6F 6E 73 65 63 75 74 69 76 65 | two consecutive|
00000E10: 20 6F 64 64 20 69 6E 74 65 67 65 72 73 2E 00 73 | odd integers..s|
00000E20: 6D 61 6C 6C 65 72 20 69 6E 74 65 67 65 72 2C 20 |maller integer, |
00000E30: 53 4D 00 73 00 73 6D 61 6C 6C 65 72 20 69 6E 74 |SM.s.smaller int|
00000E40: 65 67 65 72 00 6C 61 72 67 65 72 20 69 6E 74 65 |eger.larger inte|
00000E50: 67 65 72 00 74 68 65 20 73 6D 61 6C 6C 65 72 20 |ger.the smaller |
00000E60: 69 6E 74 65 67 65 72 00 53 69 6E 63 65 20 74 68 |integer.Since th|
00000E70: 65 79 20 61 72 65 20 63 6F 6E 73 65 63 75 74 69 |ey are consecuti|
00000E80: 76 65 20 6F 64 64 20 69 6E 74 65 67 65 72 73 2C |ve odd integers,|
00000E90: 20 4C 47 20 69 73 20 32 20 6D 6F 72 65 20 74 68 | LG is 2 more th|
00000EA0: 61 6E 20 53 4D 2E 20 53 6F 20 60 26 76 2B 32 27 |an SM. So `&v+2'|
00000EB0: 20 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 20 | represents the |
00000EC0: 6C 61 72 67 65 72 20 69 6E 74 65 67 65 72 00 26 |larger integer.&|
00000ED0: 76 2B 32 00 26 68 33 20 74 69 6D 65 73 20 74 68 |v+2.&h3 times th|
00000EE0: 65 20 6C 61 72 67 65 72 26 68 20 55 73 65 20 4C |e larger&h Use L|
00000EF0: 47 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 |G to represent t|
00000F00: 68 65 20 6C 61 72 67 65 72 20 6E 75 6D 62 65 72 |he larger number|
00000F10: 00 33 20 74 69 6D 65 73 20 74 68 65 20 6C 61 72 |.3 times the lar|
00000F20: 67 65 72 00 60 33 2A 4C 47 27 20 72 65 70 72 65 |ger.`3*LG' repre|
00000F30: 73 65 6E 74 73 20 33 20 74 69 6D 65 73 20 74 68 |sents 3 times th|
00000F40: 65 20 6C 61 72 67 65 72 20 6E 75 6D 62 65 72 00 |e larger number.|
00000F50: 55 73 65 20 22 53 4D 22 20 74 6F 20 72 65 70 72 |Use "SM" to repr|
00000F60: 65 73 65 6E 74 20 74 68 65 20 73 6D 61 6C 6C 65 |esent the smalle|
00000F70: 72 20 69 6E 74 65 67 65 72 2E 26 71 69 73 20 65 |r integer.&qis e|
00000F80: 71 75 61 6C 20 74 6F 20 35 33 20 6C 65 73 73 20 |qual to 53 less |
00000F90: 74 68 61 6E 20 34 20 74 69 6D 65 73 20 74 68 65 |than 4 times the|
00000FA0: 20 73 6D 61 6C 6C 65 72 26 71 00 22 49 73 20 35 | smaller&q."Is 5|
00000FB0: 33 20 6C 65 73 73 20 74 68 61 6E 20 34 20 74 69 |3 less than 4 ti|
00000FC0: 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 22 |mes the smaller"|
00000FD0: 00 60 3D 27 20 74 6F 20 72 65 70 72 65 73 65 6E |.`=' to represen|
00000FE0: 74 20 22 69 73 22 00 60 28 34 2A 53 4D 29 2D 35 |t "is".`(4*SM)-5|
00000FF0: 33 27 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 |3' to represent |
00001000: 22 35 33 20 6C 65 73 73 20 74 68 61 6E 20 34 20 |"53 less than 4 |
00001010: 74 69 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 |times the smalle|
00001020: 72 22 2E 00 3D 28 34 2A 53 4D 29 2D 35 33 00 33 |r"..=(4*SM)-53.3|
00001030: 2A 4C 47 20 3D 20 28 34 2A 53 4D 29 2D 35 33 00 |*LG = (4*SM)-53.|
00001040: 60 33 2A 4C 47 20 3D 20 28 34 2A 53 4D 29 2D 35 |`3*LG = (4*SM)-5|
00001050: 33 27 20 69 73 20 61 20 77 61 79 20 6F 66 20 72 |3' is a way of r|
00001060: 65 70 72 65 73 65 6E 74 69 6E 67 20 22 33 20 74 |epresenting "3 t|
00001070: 69 6D 65 73 20 74 68 65 20 6C 61 72 67 65 72 20 |imes the larger |
00001080: 65 71 75 61 6C 73 20 35 33 20 6C 65 73 73 20 74 |equals 53 less t|
00001090: 68 61 6E 20 34 20 74 69 6D 65 73 20 74 68 65 20 |han 4 times the |
000010A0: 73 6D 61 6C 6C 65 72 2E 00 60 33 2A 4C 47 20 3D |smaller..`3*LG =|
000010B0: 20 28 34 2A 53 4D 29 2D 35 33 27 20 69 73 20 61 | (4*SM)-53' is a|
000010C0: 20 77 61 79 20 6F 66 20 72 65 70 72 65 73 65 6E | way of represen|
000010D0: 74 69 6E 67 20 22 33 20 74 69 6D 65 73 20 74 68 |ting "3 times th|
000010E0: 65 20 6C 61 72 67 65 72 20 65 71 75 61 6C 73 20 |e larger equals |
000010F0: 35 33 20 6C 65 73 73 20 74 68 61 6E 20 34 20 74 |53 less than 4 t|
00001100: 69 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 |imes the smaller|
00001110: 2E 00 53 4D 20 61 6E 64 20 4C 47 00 33 2A 4C 47 |..SM and LG.3*LG|
00001120: 20 3D 20 28 34 2A 53 4D 29 2D 35 33 00 53 4D 20 | = (4*SM)-53.SM |
00001130: 3D 20 26 76 20 61 6E 64 20 4C 47 20 3D 20 26 76 |= &v and LG = &v|
00001140: 2B 32 00 60 33 28 26 76 2B 32 29 3D 34 26 76 2D |+2.`3(&v+2)=4&v-|
00001150: 35 33 00 33 28 26 76 2B 32 29 3D 34 26 76 2D 35 |53.3(&v+2)=4&v-5|
00001160: 33 00 33 28 26 76 2B 32 29 3D 34 26 76 2D 35 33 |3.3(&v+2)=4&v-53|
00001170: 00 35 39 00 46 69 6E 64 20 74 77 6F 20 63 6F 6E |.59.Find two con|
00001180: 73 65 63 75 74 69 76 65 20 6F 64 64 20 69 6E 74 |secutive odd int|
00001190: 65 67 65 72 73 00 53 4D 00 35 39 00 35 39 00 35 |egers.SM.59.59.5|
000011A0: 39 00 4C 47 00 22 26 76 2B 32 22 00 35 39 00 4C |9.LG."&v+2".59.L|
000011B0: 47 20 3D 20 35 39 2B 32 2C 20 6F 72 20 60 36 31 |G = 59+2, or `61|
000011C0: 27 00 36 31 00 33 28 35 39 2B 32 29 3D 28 34 2A |'.61.3(59+2)=(4*|
000011D0: 35 39 29 2D 35 33 00 60 31 38 33 3D 31 38 33 27 |59)-53.`183=183'|
000011E0: 00 60 31 38 33 3D 31 38 33 27 00 31 38 33 3D 31 |.`183=183'.183=1|
000011F0: 38 33 00 40 66 46 69 6E 64 20 74 77 6F 20 63 6F |83.@fFind two co|
00001200: 6E 73 65 63 75 74 69 76 65 20 65 76 65 6E 20 69 |nsecutive even i|
00001210: 6E 74 65 67 65 72 73 20 73 75 63 68 20 74 68 61 |ntegers such tha|
00001220: 74 20 74 77 69 63 65 20 74 68 65 69 72 20 73 75 |t twice their su|
00001230: 6D 20 69 73 20 65 71 75 61 6C 20 74 6F 20 20 36 |m is equal to 6|
00001240: 20 74 69 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C | times the small|
00001250: 65 72 20 69 6E 74 65 67 65 72 2E 00 53 4D 00 4C |er integer..SM.L|
00001260: 47 00 74 77 6F 20 63 6F 6E 73 65 63 75 74 69 76 |G.two consecutiv|
00001270: 65 20 65 76 65 6E 20 69 6E 74 65 67 65 72 73 00 |e even integers.|
00001280: 66 69 6E 64 20 74 68 65 20 74 77 6F 20 63 6F 6E |find the two con|
00001290: 73 65 63 75 74 69 76 65 20 65 76 65 6E 20 69 6E |secutive even in|
000012A0: 74 65 67 65 72 73 20 64 65 73 63 72 69 62 65 64 |tegers described|
000012B0: 20 69 6E 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E | in the problem.|
000012C0: 00 74 68 65 20 74 77 6F 20 69 6E 74 65 67 65 72 |.the two integer|
000012D0: 73 2E 00 73 6D 61 6C 6C 65 72 20 69 6E 74 65 67 |s..smaller integ|
000012E0: 65 72 00 73 00 73 6D 61 6C 6C 65 72 20 69 6E 74 |er.s.smaller int|
000012F0: 65 67 65 72 2C 20 53 4D 00 6C 61 72 67 65 72 20 |eger, SM.larger |
00001300: 69 6E 74 65 67 65 72 00 53 4D 00 53 69 6E 63 65 |integer.SM.Since|
00001310: 20 74 68 65 79 20 61 72 65 20 63 6F 6E 73 65 63 | they are consec|
00001320: 75 74 69 76 65 20 65 76 65 6E 20 69 6E 74 65 67 |utive even integ|
00001330: 65 72 73 2C 20 4C 47 20 69 73 20 32 20 6C 61 72 |ers, LG is 2 lar|
00001340: 67 65 72 20 74 68 61 6E 20 53 4D 2E 20 53 6F 20 |ger than SM. So |
00001350: 60 26 76 2B 32 27 20 72 65 70 72 65 73 65 6E 74 |`&v+2' represent|
00001360: 73 20 4C 47 00 26 76 2B 32 00 26 68 54 77 69 63 |s LG.&v+2.&hTwic|
00001370: 65 20 74 68 65 69 72 20 73 75 6D 26 68 2E 20 55 |e their sum&h. U|
00001380: 73 65 20 53 4D 20 61 6E 64 20 4C 47 20 74 6F 20 |se SM and LG to |
00001390: 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 69 6E |represent the in|
000013A0: 74 65 67 65 72 73 00 54 77 69 63 65 20 74 68 65 |tegers.Twice the|
000013B0: 69 72 20 73 75 6D 00 60 32 28 53 4D 2B 4C 47 29 |ir sum.`2(SM+LG)|
000013C0: 27 20 72 65 70 72 65 73 65 6E 74 73 20 74 77 69 |' represents twi|
000013D0: 63 65 20 74 65 68 20 73 75 6D 20 6F 66 20 74 68 |ce teh sum of th|
000013E0: 65 20 69 6E 74 65 67 65 72 73 00 55 73 65 20 53 |e integers.Use S|
000013F0: 4D 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 |M to represent t|
00001400: 68 65 20 73 6D 61 6C 6C 65 72 20 69 6E 74 65 67 |he smaller integ|
00001410: 65 72 2E 26 71 69 73 20 65 71 75 61 6C 20 74 6F |er.&qis equal to|
00001420: 20 36 20 74 69 6D 65 73 20 74 68 65 20 73 6D 61 | 6 times the sma|
00001430: 6C 6C 65 72 20 69 6E 74 65 67 65 72 26 71 00 22 |ller integer&q."|
00001440: 49 73 20 65 71 75 61 6C 20 74 6F 20 36 20 74 69 |Is equal to 6 ti|
00001450: 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 20 |mes the smaller |
00001460: 69 6E 74 65 67 65 72 22 00 60 3D 27 20 66 6F 72 |integer".`=' for|
00001470: 20 22 69 73 20 65 71 75 61 6C 20 74 6F 22 00 60 | "is equal to".`|
00001480: 36 2A 53 4D 27 20 74 6F 20 72 65 70 72 65 73 65 |6*SM' to represe|
00001490: 6E 74 20 36 20 74 69 6D 65 73 20 74 68 65 20 73 |nt 6 times the s|
000014A0: 6D 61 6C 6C 65 72 22 2E 00 3D 36 2A 53 4D 00 32 |maller"..=6*SM.2|
000014B0: 28 53 4D 2B 4C 47 29 3D 36 2A 53 4D 00 60 32 28 |(SM+LG)=6*SM.`2(|
000014C0: 53 4D 2B 4C 47 29 27 20 72 65 70 72 65 73 65 6E |SM+LG)' represen|
000014D0: 74 73 20 74 77 69 63 65 20 74 68 65 20 73 75 6D |ts twice the sum|
000014E0: 20 6F 66 20 74 68 65 20 69 6E 74 65 67 65 72 73 | of the integers|
000014F0: 2E 00 60 36 2A 53 4D 27 20 72 65 70 72 65 73 65 |..`6*SM' represe|
00001500: 6E 74 73 20 36 20 74 69 6D 65 73 20 53 4D 2E 00 |nts 6 times SM..|
00001510: 53 4D 20 61 6E 64 20 4C 47 00 32 28 53 4D 2B 4C |SM and LG.2(SM+L|
00001520: 47 29 3D 36 2A 53 4D 00 53 4D 3D 20 26 76 20 61 |G)=6*SM.SM= &v a|
00001530: 6E 64 20 4C 47 3D 26 76 2B 32 00 32 28 26 76 2B |nd LG=&v+2.2(&v+|
00001540: 26 76 2B 32 29 3D 36 26 76 00 32 28 26 76 2B 26 |&v+2)=6&v.2(&v+&|
00001550: 76 2B 32 29 3D 36 26 76 00 32 28 26 76 2B 26 76 |v+2)=6&v.2(&v+&v|
00001560: 2B 32 29 3D 36 26 76 00 32 00 46 69 6E 64 20 74 |+2)=6&v.2.Find t|
00001570: 77 6F 20 63 6F 6E 73 65 63 75 74 69 76 65 20 65 |wo consecutive e|
00001580: 76 65 6E 20 69 6E 74 65 67 65 72 73 00 53 4D 00 |ven integers.SM.|
00001590: 32 00 32 00 32 00 4C 47 00 22 26 76 2B 32 22 00 |2.2.2.LG."&v+2".|
000015A0: 32 00 4C 47 20 3D 20 32 2B 32 2C 20 6F 72 20 60 |2.LG = 2+2, or `|
000015B0: 34 27 00 34 00 32 28 32 2B 34 29 3D 36 2A 32 00 |4'.4.2(2+4)=6*2.|
000015C0: 60 36 3D 36 27 00 60 36 3D 36 27 00 36 3D 36 00 |`6=6'.`6=6'.6=6.|
000015D0: 7C 6D ||m |
A ..@Q{}@DG07&C(1,{})&C(2,{})@RREAD@PRE
AD THE PROBLEM SLOWLY AND CAREFULLY. WHA
T IS BEING ASKED?\N (PRESS ANY KEY TO C
ONTINUE.)@HYOU ARE BEING ASKED TO FIND {
}.@HTHE PROBLEM IS TO {}@I(0)@RPLAN@PUSI
NG ONE VARIABLE, ENTER EXPRESSIONS TO RE
PRESENT {}@HCHOOSE A VARIABLE TO REPRESE
NT THE {}.@HPICK ANY LETTER, SUCH AS `{}
', TO REPRESENT THE {}.@I(5,I,&V)@HREPRE
SENT THE {}, IN TERMS OF "&V", {}.@H{}.@
I(6,I,{})@PTRANSLATE: {}.@H"{}" IS THE P
HRASE TO BE TRANSLATED.@H{}.@I(9,C0, )@P
NOW, TRANSLATE THE REST OF THE PROBLEM.
{}@H{} IS THE PHRASE TO BE TRANSLATED.@H
ENTER {} AND {} ENTER `{}'.@I(9,D0, )@PO
NE ANSWER IS: {}. CHANGE YOUR ANSWER IF
IT IS NOT EQUIVALENT. (PRESS RETURN)@H{}
@H{}@I(9,C0, )@PSUBSTITUTE THE EXPRESSIO
NS FOR {} IN THE EQUATION IDEA: {}.@H{}.
@HENTER {}.@I(10,I,{})&D(11,{})@S@RCOMPU
TE@PSOLVE THE EQUATION FOR "&V". USE PAP
ER AND PENCIL OR USE THE CALCULATOR.@HIS
OLATE "&V" ON ONE SIDE OF THE EQUATION.
@HTHE CALCULATOR SOLVES EQUATIONS FOR YO
U AND DISPLAYS THE STEPS IN THE SOLUTION
.@I(11,I,&V={})@PENTER YOUR ANSWERS TO T
HE PROBLEM IN THE GRID. REMEMBER THE QUE
STION. &Q{}&Q&W(11)@H{} IS EQUAL TO THE
VALUE OF "&V".@H&V = {}, SO ENTER '{}'.@
I(5,I,{})@H{} IS EQUAL TO THE VALUE OF {
}.@H&V = {}, SO {}.@I(6,I,{})@S@RCHECK&D
(0,TO CHECK YOUR WORK, THE VALUE OF "&V"
IS SUBSTITUTED IN THE EQUATION.)&D(11,{
})@PSIMPLIFY THE EQUATION WITH THE CALCU
LATOR TO MAKE SURE THAT THE TWO SIDES AR
E EQUAL.@HTHE SIMPLIFIED EQUATION IS {}.
@HTHE SIMPLIFIED EQUATION IS {}.@I(11,I,
{})@FTHE LARGER OF TWO NUMBERS IS 4 TIME
S THE SMALLER. WHAT ARE THE NUMBERS IF T
HEIR SUM IS 515?.SMALL.LARGE.THE NUMBERS
.FIND THE NUMBERS DESCRIBED IN THE QUEST
ION..THE SMALL AND LARGE NUMBERS..SMALL
NUMBER.S.SMALL NUMBER.LARGE NUMBER.THE S
MALL NUMBER.&HTHE LARGER OF TWO NUMBERS
IS 4 TIMES THE SMALLER&H. `4&V' REPRESEN
TS THE LARGER NUMBER.4&V.THEIR SUM IS 51
5 USING SM AND LG TO REPRESENT THE SMALL
AND LARGE NUMBERS.THEIR SUM.`SM+LG' REP
RESENTS "THEIR SUM".&QIS 515&Q."IS 515".
`='.`515'..=515.SM+LG=515.THE SUM OF THE
SMALL AND LARGE NUMBERS IS 515..`SM+LG=
515' REPRESENTS "THE SUM OF THE SMALL AN
D LARGE NUMBERS IS 515"..SM AND LG.SM+LG
=515.SM=&V AND LG=4&V.&V+4&V=515.&V+4&V=
515.&V+4&V=515.103.WHAT ARE THE NUMBERS.
SM.103.103.103.LG.4&V.103.LG=412.412.103
+412=515.`515=515'.`515=515'.515=515.@FA
SECOND NUMBER IS 5 MORE THAN 1/2 THE FI
RST. IF THE FIRST NUMBER IS DOUBLED AND
THEN DECREASED BY 19, IT EQUALS THE SECO
ND NUMBER. WHAT ARE THE NUMBERS?.1ST.2ND
.THE NUMBERS.FIND THE TWO NUMBERS DESCRI
BED IN THE QUESTION..THE TWO NUMBERS..1S
T NUMBER.F.FIRST NUMBER.SECOND NUMBER.TH
E FIRST NUMBER.&HA SECOND NUMBER IS 5 MO
RE THAN 1/2 THE FIRST&H. SO `1/2(&V)+5'
REPRESENTS THE SECOND NUMBER.1/2(&V)+5.&
HIF THE FIRST IS DOUBLED AND THEN DECREA
SED BY 19&H. USE "1ST" AND "2ND" TO REPR
ESENT THE NUMBERS.THE FIRST IS DOUBLED A
ND THEN DECREASED BY 19.`2(1ST)-19' REPR
ESENTS 19 LESS THAN TWICE THE FIRST.&QIT
EQUALS THE SECOND&Q."EQUALS THE SECOND"
.`='.`2ND' TO REPRESENT THE SECOND NUMBE
R..=2ND.2(1ST)-19=2ND.DOUBLED MEANS THE
SAME AS MULTIPLIED BY 2..`2(1ST)-19=2ND'
REPRESENTS TWICE THE FIRST DECREASED BY
19 EQUALS THE SECOND..1ST AND 2ND.2(1ST
)-19=2ND.1ST=&V AND 2ND=1/2(&V)+5.2&V-19
=1/2(&V)+5.2&V-19=1/2(&V)+5.2&V-19=1/2(&
V)+5.16.WHAT ARE THE NUMBERS?.THE 1ST NU
MBER.16.16.16.THE SECOND NUMBER.1/2(&V)+
5.16.THE 2ND NUMBER IS 1/2(16)+5 = 8+5 =
`13'.13.2(16)-19=1/2(16)+5.`13=13'.`13=
13'.13=13.@FFIND TWO CONSECUTIVE ODD INT
EGERS SUCH THAT 3 TIMES THE LARGER IS EQ
UAL TO 53 LESS THAN 4 TIMES THE SMALLER.
.SM.LG.TWO CONSECUTIVE ODD INTEGERS.FIND
THE TWO CONSECUTIVE ODD INTEGERS DESCRI
BED IN THE QUESTION..THE TWO CONSECUTIVE
ODD INTEGERS..SMALLER INTEGER, SM.S.SMA
LLER INTEGER.LARGER INTEGER.THE SMALLER
INTEGER.SINCE THEY ARE CONSECUTIVE ODD I
NTEGERS, LG IS 2 MORE THAN SM. SO `&V+2'
REPRESENTS THE LARGER INTEGER.&V+2.&H3
TIMES THE LARGER&H USE LG TO REPRESENT T
HE LARGER NUMBER.3 TIMES THE LARGER.`3*L
G' REPRESENTS 3 TIMES THE LARGER NUMBER.
USE "SM" TO REPRESENT THE SMALLER INTEGE
R.&QIS EQUAL TO 53 LESS THAN 4 TIMES THE
SMALLER&Q."IS 53 LESS THAN 4 TIMES THE
SMALLER".`=' TO REPRESENT "IS".`(4*SM)-5
3' TO REPRESENT "53 LESS THAN 4 TIMES TH
E SMALLER"..=(4*SM)-53.3*LG = (4*SM)-53.
`3*LG = (4*SM)-53' IS A WAY OF REPRESENT
ING "3 TIMES THE LARGER EQUALS 53 LESS T
HAN 4 TIMES THE SMALLER..`3*LG = (4*SM)-
53' IS A WAY OF REPRESENTING "3 TIMES TH
E LARGER EQUALS 53 LESS THAN 4 TIMES THE
SMALLER..SM AND LG.3*LG = (4*SM)-53.SM
= &V AND LG = &V+2.`3(&V+2)=4&V-53.3(&V+
2)=4&V-53.3(&V+2)=4&V-53.59.FIND TWO CON
SECUTIVE ODD INTEGERS.SM.59.59.59.LG."&V
+2".59.LG = 59+2, OR `61'.61.3(59+2)=(4*
59)-53.`183=183'.`183=183'.183=183.@FFIN
D TWO CONSECUTIVE EVEN INTEGERS SUCH THA
T TWICE THEIR SUM IS EQUAL TO 6 TIMES T
HE SMALLER INTEGER..SM.LG.TWO CONSECUTIV
E EVEN INTEGERS.FIND THE TWO CONSECUTIVE
EVEN INTEGERS DESCRIBED IN THE PROBLEM.
.THE TWO INTEGERS..SMALLER INTEGER.S.SMA
LLER INTEGER, SM.LARGER INTEGER.SM.SINCE
THEY ARE CONSECUTIVE EVEN INTEGERS, LG
IS 2 LARGER THAN SM. SO `&V+2' REPRESENT
S LG.&V+2.&HTWICE THEIR SUM&H. USE SM AN
D LG TO REPRESENT THE INTEGERS.TWICE THE
IR SUM.`2(SM+LG)' REPRESENTS TWICE TEH S
UM OF THE INTEGERS.USE SM TO REPRESENT T
HE SMALLER INTEGER.&QIS EQUAL TO 6 TIMES
THE SMALLER INTEGER&Q."IS EQUAL TO 6 TI
MES THE SMALLER INTEGER".`=' FOR "IS EQU
AL TO".`6*SM' TO REPRESENT 6 TIMES THE S
MALLER"..=6*SM.2(SM+LG)=6*SM.`2(SM+LG)'
REPRESENTS TWICE THE SUM OF THE INTEGERS
..`6*SM' REPRESENTS 6 TIMES SM..SM AND L
G.2(SM+LG)=6*SM.SM= &V AND LG=&V+2.2(&V+
&V+2)=6&V.2(&V+&V+2)=6&V.2(&V+&V+2)=6&V.
2.FIND TWO CONSECUTIVE EVEN INTEGERS.SM.
2.2.2.LG."&V+2".2.LG = 2+2, OR `4'.4.2(2
+4)=6*2.`6=6'.`6=6'.6=6.|M
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL