_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

COIN3L1

FILE INFORMATION

FILENAME(S): COIN3L1

FILE TYPE(S): PRG

FILE SIZE: 3.9K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

2aafb8be9dcc3b67096ca922376cf80c61add2ddeea44f0a446e8ba721a5a55d

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 44S1 COIN3L1 PRG Radd Maxx 10 19 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 64 77 68 69  74 65 40 71 4D 4F 4E 45  | A @dwhite@qMONE|
00000010: 59 20 54 55 54 4F 52 49  41 4C 20 2D 2D 20 50 41  |Y TUTORIAL -- PA|
00000020: 52 54 20 32 2E 20 48 65  72 65 20 61 72 65 20 73  |RT 2. Here are s|
00000030: 6F 6D 65 20 73 61 6D 70  6C 65 20 4D 6F 6E 65 79  |ome sample Money|
00000040: 20 50 72 6F 62 6C 65 6D  73 20 69 6E 76 6F 6C 76  | Problems involv|
00000050: 69 6E 67 20 63 6F 69 6E  73 20 77 69 74 68 20 64  |ing coins with d|
00000060: 69 66 66 65 72 65 6E 74  20 76 61 6C 75 65 73 2E  |ifferent values.|
00000070: 26 64 28 30 2C 29 40 6A  54 68 65 20 57 48 4F 4C  |&d(0,)@jThe WHOL|
00000080: 45 20 2D 2D 20 74 68 65  20 76 61 6C 75 65 20 6F  |E -- the value o|
00000090: 66 20 61 6C 6C 20 74 68  65 20 63 6F 69 6E 73 20  |f all the coins |
000000A0: 2D 2D 20 69 73 20 74 68  65 20 73 75 6D 20 6F 66  |-- is the sum of|
000000B0: 20 74 68 65 20 50 41 52  54 53 20 2D 2D 20 74 68  | the PARTS -- th|
000000C0: 65 20 76 61 6C 75 65 20  6F 66 20 65 61 63 68 20  |e value of each |
000000D0: 6F 66 20 74 68 65 20 63  6F 69 6E 73 2E 40 64 63  |of the coins.@dc|
000000E0: 6F 69 6E 73 26 64 28 30  2C 41 64 64 20 74 68 65  |oins&d(0,Add the|
000000F0: 20 70 61 72 74 73 20 2D  2D 20 4E 69 63 6B 65 6C  | parts -- Nickel|
00000100: 73 5C 2C 20 44 69 6D 65  73 5C 2C 20 61 6E 64 20  |s\, Dimes\, and |
00000110: 51 75 61 72 74 65 72 73  20 2D 2D 20 74 6F 67 65  |Quarters -- toge|
00000120: 74 68 65 72 20 74 6F 20  67 65 74 20 74 68 65 20  |ther to get the |
00000130: 77 68 6F 6C 65 20 2D 2D  20 74 68 65 20 54 6F 74  |whole -- the Tot|
00000140: 61 6C 2E 29 40 64 61 6C  6C 63 6F 69 6E 26 63 28  |al.)@dallcoin&c(|
00000150: 32 30 2C 4E 69 63 6B 65  6C 73 20 2B 20 44 69 6D  |20,Nickels + Dim|
00000160: 65 73 20 2B 20 51 75 61  72 74 65 72 73 29 26 64  |es + Quarters)&d|
00000170: 28 30 2C 41 64 64 20 74  68 65 20 70 61 72 74 73  |(0,Add the parts|
00000180: 20 2D 2D 20 4E 69 63 6B  65 6C 73 5C 2C 20 44 69  | -- Nickels\, Di|
00000190: 6D 65 73 5C 2C 20 61 6E  64 20 51 75 61 72 74 65  |mes\, and Quarte|
000001A0: 72 73 20 2D 2D 20 74 6F  67 65 74 68 65 72 20 74  |rs -- together t|
000001B0: 6F 20 67 65 74 20 74 68  65 20 77 68 6F 6C 65 20  |o get the whole |
000001C0: 2D 2D 20 74 68 65 20 54  6F 74 61 6C 2E 29 40 64  |-- the Total.)@d|
000001D0: 6D 69 78 63 6F 69 6E 26  63 28 32 30 2C 4E 69 63  |mixcoin&c(20,Nic|
000001E0: 6B 65 6C 73 20 2B 20 44  69 6D 65 73 20 2B 20 51  |kels + Dimes + Q|
000001F0: 75 61 72 74 65 72 73 20  3D 20 54 6F 74 61 6C 29  |uarters = Total)|
00000200: 26 64 28 30 2C 41 64 64  20 74 68 65 20 70 61 72  |&d(0,Add the par|
00000210: 74 73 20 2D 2D 20 4E 69  63 6B 65 6C 73 5C 2C 20  |ts -- Nickels\, |
00000220: 44 69 6D 65 73 5C 2C 20  61 6E 64 20 51 75 61 72  |Dimes\, and Quar|
00000230: 74 65 72 73 20 2D 2D 20  74 6F 67 65 74 68 65 72  |ters -- together|
00000240: 20 74 6F 20 67 65 74 20  74 68 65 20 77 68 6F 6C  | to get the whol|
00000250: 65 20 2D 2D 20 74 68 65  20 54 6F 74 61 6C 2E 29  |e -- the Total.)|
00000260: 40 64 67 30 31 26 64 28  31 2C 4E 69 63 6B 65 6C  |@dg01&d(1,Nickel|
00000270: 73 29 26 63 28 32 2C 44  69 6D 65 73 29 26 63 28  |s)&c(2,Dimes)&c(|
00000280: 33 2C 51 75 61 72 74 65  72 73 29 26 63 28 34 2C  |3,Quarters)&c(4,|
00000290: 54 6F 74 2E 29 26 64 28  35 2C 55 6E 69 74 73 29  |Tot.)&d(5,Units)|
000002A0: 26 64 28 31 30 2C 43 6F  69 6E 73 29 26 64 28 31  |&d(10,Coins)&d(1|
000002B0: 35 2C 56 61 6C 75 65 29  26 64 28 36 2C 35 20 63  |5,Value)&d(6,5 c|
000002C0: 65 6E 74 73 29 26 64 28  37 2C 31 30 20 63 65 6E  |ents)&d(7,10 cen|
000002D0: 74 73 29 26 64 28 38 2C  32 35 20 63 65 6E 74 73  |ts)&d(8,25 cents|
000002E0: 29 26 63 28 32 30 2C 20  4E 69 63 6B 65 6C 73 20  |)&c(20, Nickels |
000002F0: 2B 20 44 69 6D 65 73 20  2B 20 51 75 61 72 74 65  |+ Dimes + Quarte|
00000300: 72 73 20 3D 20 54 6F 74  61 6C 29 26 64 28 30 2C  |rs = Total)&d(0,|
00000310: 20 29 40 6A 54 68 65 20  67 72 69 64 20 68 65 6C  | )@jThe grid hel|
00000320: 70 73 20 79 6F 75 20 6F  72 67 61 6E 69 7A 65 20  |ps you organize |
00000330: 69 6E 66 6F 72 6D 61 74  69 6F 6E 20 74 6F 20 73  |information to s|
00000340: 6F 6C 76 65 20 74 68 69  73 20 65 71 75 61 74 69  |olve this equati|
00000350: 6F 6E 2E 20 48 65 72 65  20 69 73 20 61 20 73 61  |on. Here is a sa|
00000360: 6D 70 6C 65 20 70 72 6F  62 6C 65 6D 20 74 6F 20  |mple problem to |
00000370: 73 68 6F 77 20 68 6F 77  20 69 74 20 77 6F 72 6B  |show how it work|
00000380: 73 3A 26 64 28 30 2C 29  40 6A 53 61 6C 6C 79 20  |s:&d(0,)@jSally |
00000390: 68 61 73 20 33 20 6E 69  63 6B 65 6C 73 2C 20 32  |has 3 nickels, 2|
000003A0: 20 64 69 6D 65 73 2C 20  61 6E 64 20 61 20 71 75  | dimes, and a qu|
000003B0: 61 72 74 65 72 2E 20 48  6F 77 20 6D 75 63 68 20  |arter. How much |
000003C0: 6D 6F 6E 65 79 20 64 6F  65 73 20 73 68 65 20 68  |money does she h|
000003D0: 61 76 65 3F 40 72 52 45  41 44 26 64 28 30 2C 52  |ave?@rREAD&d(0,R|
000003E0: 65 61 64 20 74 68 65 20  77 68 6F 6C 65 20 70 72  |ead the whole pr|
000003F0: 6F 62 6C 65 6D 2E 20 54  68 69 6E 6B 20 61 62 6F  |oblem. Think abo|
00000400: 75 74 20 74 68 65 20 70  72 6F 62 6C 65 6D 2E 29  |ut the problem.)|
00000410: 26 64 28 30 2C 57 68 61  74 20 61 72 65 20 74 68  |&d(0,What are th|
00000420: 65 20 66 61 63 74 73 3F  20 26 71 53 61 6C 6C 79  |e facts? &qSally|
00000430: 20 68 61 73 20 33 20 6E  69 63 6B 65 6C 73 5C 2C  | has 3 nickels\,|
00000440: 20 32 20 64 69 6D 65 73  5C 2C 20 61 6E 64 20 61  | 2 dimes\, and a|
00000450: 20 71 75 61 72 74 65 72  2E 26 71 29 26 64 28 30  | quarter.&q)&d(0|
00000460: 2C 57 68 61 74 20 69 73  20 62 65 69 6E 67 20 61  |,What is being a|
00000470: 73 6B 65 64 3F 20 26 71  48 6F 77 20 6D 75 63 68  |sked? &qHow much|
00000480: 20 6D 6F 6E 65 79 20 64  6F 65 73 20 73 68 65 20  | money does she |
00000490: 68 61 76 65 3F 26 71 29  40 72 44 41 54 41 20 45  |have?&q)@rDATA E|
000004A0: 4E 54 52 59 40 70 45 6E  74 65 72 20 61 20 76 61  |NTRY@pEnter a va|
000004B0: 72 69 61 62 6C 65 20 6F  6E 20 74 68 65 20 67 72  |riable on the gr|
000004C0: 69 64 20 66 6F 72 20 77  68 61 74 20 79 6F 75 20  |id for what you |
000004D0: 77 61 6E 74 20 74 6F 20  66 69 6E 64 20 2D 2D 20  |want to find -- |
000004E0: 74 68 65 20 75 6E 6B 6E  6F 77 6E 2E 40 68 43 68  |the unknown.@hCh|
000004F0: 6F 6F 73 65 20 61 20 76  61 72 69 61 62 6C 65 20  |oose a variable |
00000500: 74 6F 20 72 65 70 72 65  73 65 6E 74 20 74 68 65  |to represent the|
00000510: 20 54 6F 74 61 6C 2E 40  68 45 6E 74 65 72 20 61  | Total.@hEnter a|
00000520: 20 6C 65 74 74 65 72 2C  20 73 75 63 68 20 61 73  | letter, such as|
00000530: 20 60 78 27 2C 20 61 6E  64 20 70 72 65 73 73 20  | `x', and press |
00000540: 74 68 65 20 3C 52 65 74  75 72 6E 3E 20 6B 65 79  |the <Return> key|
00000550: 2E 40 69 28 31 39 2C 69  2C 26 76 29 26 64 28 30  |.@i(19,i,&v)&d(0|
00000560: 2C 45 6E 74 65 72 20 74  68 65 20 6E 75 6D 62 65  |,Enter the numbe|
00000570: 72 20 6F 66 20 63 6F 69  6E 73 2E 29 40 70 45 6E  |r of coins.)@pEn|
00000580: 74 65 72 20 74 68 65 20  6E 75 6D 62 65 72 20 6F  |ter the number o|
00000590: 66 20 4E 69 63 6B 65 6C  73 2E 26 71 33 20 6E 69  |f Nickels.&q3 ni|
000005A0: 63 6B 65 6C 73 26 71 40  68 53 61 6C 6C 79 20 68  |ckels&q@hSally h|
000005B0: 61 73 20 26 68 33 20 6E  69 63 6B 65 6C 73 26 68  |as &h3 nickels&h|
000005C0: 2E 40 68 45 6E 74 65 72  20 60 33 27 20 61 74 20  |.@hEnter `3' at |
000005D0: 74 68 65 20 70 72 6F 6D  70 74 20 61 6E 64 20 70  |the prompt and p|
000005E0: 72 65 73 73 20 74 68 65  20 3C 52 65 74 75 72 6E  |ress the <Return|
000005F0: 3E 20 6B 65 79 2E 40 69  28 31 31 2C 69 2C 33 29  |> key.@i(11,i,3)|
00000600: 40 70 45 6E 74 65 72 20  74 68 65 20 6E 75 6D 62  |@pEnter the numb|
00000610: 65 72 20 6F 66 20 44 69  6D 65 73 2E 26 71 32 20  |er of Dimes.&q2 |
00000620: 64 69 6D 65 73 26 71 40  68 53 61 6C 6C 79 20 68  |dimes&q@hSally h|
00000630: 61 73 20 26 68 32 20 64  69 6D 65 73 26 68 2E 40  |as &h2 dimes&h.@|
00000640: 68 45 6E 74 65 72 20 60  32 27 20 61 74 20 74 68  |hEnter `2' at th|
00000650: 65 20 70 72 6F 6D 70 74  2E 40 69 28 31 32 2C 69  |e prompt.@i(12,i|
00000660: 2C 32 29 40 70 45 6E 74  65 72 20 74 68 65 20 6E  |,2)@pEnter the n|
00000670: 75 6D 62 65 72 20 6F 66  20 51 75 61 72 74 65 72  |umber of Quarter|
00000680: 73 2E 26 71 61 20 71 75  61 72 74 65 72 26 71 40  |s.&qa quarter&q@|
00000690: 68 53 61 6C 6C 79 20 68  61 73 20 26 68 61 20 71  |hSally has &ha q|
000006A0: 75 61 72 74 65 72 26 68  2E 40 68 45 6E 74 65 72  |uarter&h.@hEnter|
000006B0: 20 60 31 27 20 61 74 20  74 68 65 20 70 72 6F 6D  | `1' at the prom|
000006C0: 70 74 2E 40 69 28 31 33  2C 69 2C 31 29 40 6A 57  |pt.@i(13,i,1)@jW|
000006D0: 72 69 74 65 20 61 6E 20  65 78 70 72 65 73 73 69  |rite an expressi|
000006E0: 6F 6E 20 74 6F 20 72 65  70 72 65 73 65 6E 74 20  |on to represent |
000006F0: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 65 61 63  |the value of eac|
00000700: 68 20 74 79 70 65 20 6F  66 20 63 6F 69 6E 2E 26  |h type of coin.&|
00000710: 64 28 30 2C 29 40 72 50  41 52 54 53 26 64 28 30  |d(0,)@rPARTS&d(0|
00000720: 2C 54 68 65 20 65 71 75  61 74 69 6F 6E 20 69 73  |,The equation is|
00000730: 3A 5C 6E 20 5C 6E 28 56  61 6C 75 65 2F 55 6E 69  |:\n \n(Value/Uni|
00000740: 74 29 29 26 64 28 30 2C  54 68 65 20 65 71 75 61  |t))&d(0,The equa|
00000750: 74 69 6F 6E 20 69 73 3A  5C 6E 20 5C 6E 28 56 61  |tion is:\n \n(Va|
00000760: 6C 75 65 2F 55 6E 69 74  29 20 2A 20 28 23 20 6F  |lue/Unit) * (# o|
00000770: 66 20 55 6E 69 74 73 29  29 26 64 28 30 2C 54 68  |f Units))&d(0,Th|
00000780: 65 20 65 71 75 61 74 69  6F 6E 20 69 73 3A 5C 6E  |e equation is:\n|
00000790: 20 5C 6E 28 56 61 6C 75  65 2F 55 6E 69 74 29 20  | \n(Value/Unit) |
000007A0: 2A 20 28 23 20 6F 66 20  55 6E 69 74 73 29 20 3D  |* (# of Units) =|
000007B0: 20 56 61 6C 75 65 29 40  6A 57 72 69 74 65 20 61  | Value)@jWrite a|
000007C0: 6E 20 65 78 70 72 65 73  73 69 6F 6E 20 74 6F 20  |n expression to |
000007D0: 72 65 70 72 65 73 65 6E  74 20 74 68 65 20 76 61  |represent the va|
000007E0: 6C 75 65 20 6F 66 20 74  68 65 20 4E 69 63 6B 65  |lue of the Nicke|
000007F0: 6C 73 2E 40 70 4E 69 63  6B 65 6C 73 3A 5C 6E 28  |ls.@pNickels:\n(|
00000800: 56 61 6C 75 65 2F 55 6E  69 74 29 20 2A 20 28 23  |Value/Unit) * (#|
00000810: 20 6F 66 20 55 6E 69 74  73 29 20 3D 20 56 61 6C  | of Units) = Val|
00000820: 75 65 5C 6E 20 20 20 20  20 20 35 20 20 20 20 20  |ue\n      5     |
00000830: 20 2A 20 20 20 20 20 20  20 33 20 40 68 60 35 20  | *       3 @h`5 |
00000840: 2A 20 33 27 20 69 73 20  74 68 65 20 76 61 6C 75  |* 3' is the valu|
00000850: 65 20 6F 66 20 74 68 65  20 4E 69 63 6B 65 6C 73  |e of the Nickels|
00000860: 2E 40 68 45 6E 74 65 72  20 60 35 20 2A 20 33 27  |.@hEnter `5 * 3'|
00000870: 20 61 6E 64 20 70 72 65  73 73 20 74 68 65 20 3C  | and press the <|
00000880: 52 65 74 75 72 6E 3E 20  6B 65 79 2E 40 69 28 31  |Return> key.@i(1|
00000890: 36 2C 69 2C 35 2A 33 29  40 73 40 6A 57 72 69 74  |6,i,5*3)@s@jWrit|
000008A0: 65 20 61 6E 20 65 78 70  72 65 73 73 69 6F 6E 20  |e an expression |
000008B0: 74 6F 20 72 65 70 72 65  73 65 6E 74 20 74 68 65  |to represent the|
000008C0: 20 76 61 6C 75 65 20 6F  66 20 74 68 65 20 44 69  | value of the Di|
000008D0: 6D 65 73 2E 40 70 44 69  6D 65 73 3A 5C 6E 28 56  |mes.@pDimes:\n(V|
000008E0: 61 6C 75 65 2F 55 6E 69  74 29 20 2A 20 28 23 20  |alue/Unit) * (# |
000008F0: 6F 66 20 55 6E 69 74 73  29 20 3D 20 56 61 6C 75  |of Units) = Valu|
00000900: 65 5C 6E 20 20 20 20 20  31 30 20 20 20 20 20 20  |e\n     10      |
00000910: 2A 20 20 20 20 20 20 20  32 40 68 60 31 30 20 2A  |*       2@h`10 *|
00000920: 20 32 27 20 69 73 20 74  68 65 20 76 61 6C 75 65  | 2' is the value|
00000930: 20 6F 66 20 74 68 65 20  44 69 6D 65 73 2E 40 68  | of the Dimes.@h|
00000940: 45 6E 74 65 72 20 60 31  30 20 2A 20 32 27 2E 40  |Enter `10 * 2'.@|
00000950: 69 28 31 37 2C 69 2C 31  30 2A 32 29 40 6A 57 72  |i(17,i,10*2)@jWr|
00000960: 69 74 65 20 61 6E 20 65  78 70 72 65 73 73 69 6F  |ite an expressio|
00000970: 6E 20 74 6F 20 72 65 70  72 65 73 65 6E 74 20 74  |n to represent t|
00000980: 68 65 20 76 61 6C 75 65  20 6F 66 20 74 68 65 20  |he value of the |
00000990: 51 75 61 72 74 65 72 73  2E 40 70 51 75 61 72 74  |Quarters.@pQuart|
000009A0: 65 72 73 3A 5C 6E 28 56  61 6C 75 65 2F 55 6E 69  |ers:\n(Value/Uni|
000009B0: 74 29 20 2A 20 28 23 20  6F 66 20 55 6E 69 74 73  |t) * (# of Units|
000009C0: 29 20 3D 20 56 61 6C 75  65 5C 6E 20 20 20 20 20  |) = Value\n     |
000009D0: 32 35 20 20 20 20 20 20  2A 20 20 20 20 20 20 20  |25      *       |
000009E0: 31 40 68 60 32 35 20 2A  20 31 27 20 69 73 20 74  |1@h`25 * 1' is t|
000009F0: 68 65 20 76 61 6C 75 65  20 6F 66 20 74 68 65 20  |he value of the |
00000A00: 51 75 61 72 74 65 72 73  2E 40 68 45 6E 74 65 72  |Quarters.@hEnter|
00000A10: 20 60 32 35 20 2A 20 31  27 2E 40 69 28 31 38 2C  | `25 * 1'.@i(18,|
00000A20: 69 2C 32 35 2A 31 29 40  73 40 6A 55 73 65 20 74  |i,25*1)@s@jUse t|
00000A30: 68 65 20 67 72 69 64 20  74 6F 20 77 72 69 74 65  |he grid to write|
00000A40: 20 61 6E 20 65 71 75 61  74 69 6F 6E 20 74 6F 20  | an equation to |
00000A50: 72 65 70 72 65 73 65 6E  74 20 74 68 65 20 72 65  |represent the re|
00000A60: 6C 61 74 69 6F 6E 20 62  65 74 77 65 65 6E 20 74  |lation between t|
00000A70: 68 65 20 50 41 52 54 53  20 61 6E 64 20 74 68 65  |he PARTS and the|
00000A80: 20 57 48 4F 4C 45 2E 26  64 28 30 2C 29 40 72 57  | WHOLE.&d(0,)@rW|
00000A90: 48 4F 4C 45 26 64 28 30  2C 55 73 65 20 74 68 65  |HOLE&d(0,Use the|
00000AA0: 20 45 71 75 61 74 69 6F  6E 20 49 64 65 61 20 6F  | Equation Idea o|
00000AB0: 6E 20 74 68 65 20 62 6F  74 74 6F 6D 20 6C 69 6E  |n the bottom lin|
00000AC0: 65 20 6F 66 20 74 68 65  20 67 72 69 64 2E 20 46  |e of the grid. F|
00000AD0: 69 6C 6C 20 69 6E 20 74  68 65 20 64 65 74 61 69  |ill in the detai|
00000AE0: 6C 73 20 66 72 6F 6D 20  74 68 65 20 6C 69 6E 65  |ls from the line|
00000AF0: 20 61 62 6F 76 65 2E 29  26 64 28 30 2C 5C 6E 4E  | above.)&d(0,\nN|
00000B00: 69 63 6B 65 6C 73 27 5C  6E 20 56 61 6C 75 65 29  |ickels'\n Value)|
00000B10: 26 64 28 30 2C 5C 6E 4E  69 63 6B 65 6C 73 27 20  |&d(0,\nNickels' |
00000B20: 20 20 44 69 6D 65 73 27  5C 6E 20 56 61 6C 75 65  |  Dimes'\n Value|
00000B30: 20 20 2B 20 20 56 61 6C  75 65 29 26 64 28 30 2C  |  +  Value)&d(0,|
00000B40: 5C 6E 4E 69 63 6B 65 6C  73 27 20 20 20 44 69 6D  |\nNickels'   Dim|
00000B50: 65 73 27 20 20 20 51 75  61 72 74 65 72 27 73 5C  |es'   Quarter's\|
00000B60: 6E 20 56 61 6C 75 65 20  20 2B 20 20 56 61 6C 75  |n Value  +  Valu|
00000B70: 65 20 20 2B 20 20 56 61  6C 75 65 29 26 64 28 30  |e  +  Value)&d(0|
00000B80: 2C 5C 6E 4E 69 63 6B 65  6C 73 27 20 20 20 44 69  |,\nNickels'   Di|
00000B90: 6D 65 73 27 20 20 20 51  75 61 72 74 65 72 27 73  |mes'   Quarter's|
00000BA0: 20 20 20 20 54 6F 74 61  6C 5C 6E 20 56 61 6C 75  |    Total\n Valu|
00000BB0: 65 20 20 2B 20 20 56 61  6C 75 65 20 20 2B 20 20  |e  +  Value  +  |
00000BC0: 56 61 6C 75 65 20 20 20  20 3D 20 20 56 61 6C 75  |Value    =  Valu|
00000BD0: 65 29 40 72 26 64 28 30  2C 4E 69 63 6B 65 6C 73  |e)@r&d(0,Nickels|
00000BE0: 27 20 20 20 44 69 6D 65  73 27 20 20 20 51 75 61  |'   Dimes'   Qua|
00000BF0: 72 74 65 72 27 73 20 20  20 20 54 6F 74 61 6C 5C  |rter's    Total\|
00000C00: 6E 20 56 61 6C 75 65 20  20 2B 20 20 56 61 6C 75  |n Value  +  Valu|
00000C10: 65 20 20 2B 20 20 56 61  6C 75 65 20 20 20 20 3D  |e  +  Value    =|
00000C20: 20 20 56 61 6C 75 65 20  28 35 20 2A 20 33 29 20  |  Value (5 * 3) |
00000C30: 2B 20 28 31 30 20 2A 20  32 29 20 2B 20 28 32 35  |+ (10 * 2) + (25|
00000C40: 20 2A 20 31 29 20 3D 20  20 26 76 29 40 6A 53 61  | * 1) =  &v)@jSa|
00000C50: 6C 6C 79 20 68 61 73 20  33 20 6E 69 63 6B 65 6C  |lly has 3 nickel|
00000C60: 73 2C 20 32 20 64 69 6D  65 73 2C 20 61 6E 64 20  |s, 2 dimes, and |
00000C70: 61 20 71 75 61 72 74 65  72 2E 20 48 6F 77 20 6D  |a quarter. How m|
00000C80: 75 63 68 20 6D 6F 6E 65  79 20 64 6F 65 73 20 73  |uch money does s|
00000C90: 68 65 20 68 61 76 65 3F  26 63 28 32 30 2C 4E 69  |he have?&c(20,Ni|
00000CA0: 63 6B 65 6C 73 20 2B 20  44 69 6D 65 73 20 2B 20  |ckels + Dimes + |
00000CB0: 51 75 61 72 74 65 72 73  20 3D 20 26 76 29 26 64  |Quarters = &v)&d|
00000CC0: 28 30 2C 54 68 65 20 54  75 74 6F 72 69 61 6C 20  |(0,The Tutorial |
00000CD0: 77 69 6C 6C 20 66 69 6C  6C 20 69 6E 20 74 68 65  |will fill in the|
00000CE0: 20 76 61 6C 75 65 73 20  6F 66 20 74 68 65 20 45  | values of the E|
00000CF0: 71 75 61 74 69 6F 6E 20  49 64 65 61 20 66 6F 72  |quation Idea for|
00000D00: 20 79 6F 75 2E 29 26 63  28 32 30 2C 28 35 20 2A  | you.)&c(20,(5 *|
00000D10: 20 33 29 20 2B 20 44 69  6D 65 73 20 2B 20 51 75  | 3) + Dimes + Qu|
00000D20: 61 72 74 65 72 73 20 3D  20 26 76 29 26 64 28 30  |arters = &v)&d(0|
00000D30: 2C 29 26 63 28 32 30 2C  28 35 20 2A 20 33 29 20  |,)&c(20,(5 * 3) |
00000D40: 2B 20 28 31 30 20 2A 20  32 29 20 2B 20 51 75 61  |+ (10 * 2) + Qua|
00000D50: 72 74 65 72 73 20 3D 26  76 29 26 64 28 30 2C 29  |rters =&v)&d(0,)|
00000D60: 26 63 28 32 30 2C 28 35  20 2A 20 33 29 20 2B 20  |&c(20,(5 * 3) + |
00000D70: 28 31 30 20 2A 20 32 29  20 2B 20 28 32 35 20 2A  |(10 * 2) + (25 *|
00000D80: 20 31 29 20 3D 26 76 29  26 64 28 30 2C 29 40 72  | 1) =&v)&d(0,)@r|
00000D90: 43 4F 4D 50 55 54 45 40  70 55 73 65 20 74 68 65  |COMPUTE@pUse the|
00000DA0: 20 43 61 6C 63 75 6C 61  74 6F 72 20 74 6F 20 73  | Calculator to s|
00000DB0: 6F 6C 76 65 20 74 68 65  20 65 71 75 61 74 69 6F  |olve the equatio|
00000DC0: 6E 20 66 6F 72 20 60 26  76 27 20 28 74 68 65 20  |n for `&v' (the |
00000DD0: 61 6D 6F 75 6E 74 20 6F  66 20 6D 6F 6E 65 79 20  |amount of money |
00000DE0: 53 61 6C 6C 79 20 68 61  73 29 2E 40 68 54 68 65  |Sally has).@hThe|
00000DF0: 20 43 61 6C 63 75 6C 61  74 6F 72 20 73 6F 6C 76  | Calculator solv|
00000E00: 65 73 20 65 71 75 61 74  69 6F 6E 73 20 66 6F 72  |es equations for|
00000E10: 20 79 6F 75 20 61 6E 64  20 64 69 73 70 6C 61 79  | you and display|
00000E20: 73 20 73 74 65 70 73 20  69 6E 20 74 68 65 20 73  |s steps in the s|
00000E30: 6F 6C 75 74 69 6F 6E 2E  40 68 45 6E 74 65 72 20  |olution.@hEnter |
00000E40: 60 36 30 3D 26 76 27 20  61 74 20 74 68 65 20 70  |`60=&v' at the p|
00000E50: 72 6F 6D 70 74 20 61 6E  64 20 70 72 65 73 73 20  |rompt and press |
00000E60: 74 68 65 20 3C 52 65 74  75 72 6E 3E 20 6B 65 79  |the <Return> key|
00000E70: 2E 40 69 28 32 30 2C 69  2C 36 30 3D 26 76 29 40  |.@i(20,i,60=&v)@|
00000E80: 73 40 72 43 48 45 43 4B  40 70 45 6E 74 65 72 20  |s@rCHECK@pEnter |
00000E90: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 60 26 76  |the value of `&v|
00000EA0: 27 20 69 6E 20 74 68 65  20 67 72 69 64 2E 40 68  |' in the grid.@h|
00000EB0: 53 61 6C 6C 79 20 68 61  73 20 36 30 20 63 65 6E  |Sally has 60 cen|
00000EC0: 74 73 2E 5C 6E 26 76 3D  36 30 2C 20 73 6F 20 65  |ts.\n&v=60, so e|
00000ED0: 6E 74 65 72 20 60 36 30  27 20 61 74 20 74 68 65  |nter `60' at the|
00000EE0: 20 70 72 6F 6D 70 74 2E  40 68 45 6E 74 65 72 20  | prompt.@hEnter |
00000EF0: 60 36 30 27 20 61 6E 64  20 70 72 65 73 73 20 3C  |`60' and press <|
00000F00: 52 65 74 75 72 6E 3E 2E  40 69 28 31 39 2C 69 2C  |Return>.@i(19,i,|
00000F10: 36 30 29 26 64 28 30 2C  54 68 69 73 20 63 6F 6D  |60)&d(0,This com|
00000F20: 70 6C 65 74 65 73 20 74  68 65 20 54 75 74 6F 72  |pletes the Tutor|
00000F30: 69 61 6C 2E 20 59 6F 75  20 61 72 65 20 6E 6F 77  |ial. You are now|
00000F40: 20 72 65 61 64 79 20 74  6F 20 62 65 67 69 6E 20  | ready to begin |
00000F50: 73 6F 6D 65 20 70 72 6F  62 6C 65 6D 73 20 6F 6E  |some problems on|
00000F60: 20 79 6F 75 72 20 6F 77  6E 2E 20 43 68 6F 6F 73  | your own. Choos|
00000F70: 65 20 60 4D 6F 6E 65 79  27 2C 20 60 4C 65 76 65  |e `Money', `Leve|
00000F80: 6C 20 32 27 2E 29 20 7C  25                       |l 2'.) |%       |
 A @DWHITE@QMONEY TUTORIAL -- PART 2. HE
RE ARE SOME SAMPLE MONEY PROBLEMS INVOLV
ING COINS WITH DIFFERENT VALUES.&D(0,)@J
THE WHOLE -- THE VALUE OF ALL THE COINS 
-- IS THE SUM OF THE PARTS -- THE VALUE 
OF EACH OF THE COINS.@DCOINS&D(0,ADD THE
 PARTS -- NICKELS\, DIMES\, AND QUARTERS
 -- TOGETHER TO GET THE WHOLE -- THE TOT
AL.)@DALLCOIN&C(20,NICKELS + DIMES + QUA
RTERS)&D(0,ADD THE PARTS -- NICKELS\, DI
MES\, AND QUARTERS -- TOGETHER TO GET TH
E WHOLE -- THE TOTAL.)@DMIXCOIN&C(20,NIC
KELS + DIMES + QUARTERS = TOTAL)&D(0,ADD
 THE PARTS -- NICKELS\, DIMES\, AND QUAR
TERS -- TOGETHER TO GET THE WHOLE -- THE
 TOTAL.)@DG01&D(1,NICKELS)&C(2,DIMES)&C(
3,QUARTERS)&C(4,TOT.)&D(5,UNITS)&D(10,CO
INS)&D(15,VALUE)&D(6,5 CENTS)&D(7,10 CEN
TS)&D(8,25 CENTS)&C(20, NICKELS + DIMES 
+ QUARTERS = TOTAL)&D(0, )@JTHE GRID HEL
PS YOU ORGANIZE INFORMATION TO SOLVE THI
S EQUATION. HERE IS A SAMPLE PROBLEM TO 
SHOW HOW IT WORKS:&D(0,)@JSALLY HAS 3 NI
CKELS, 2 DIMES, AND A QUARTER. HOW MUCH 
MONEY DOES SHE HAVE?@RREAD&D(0,READ THE 
WHOLE PROBLEM. THINK ABOUT THE PROBLEM.)
&D(0,WHAT ARE THE FACTS? &QSALLY HAS 3 N
ICKELS\, 2 DIMES\, AND A QUARTER.&Q)&D(0
,WHAT IS BEING ASKED? &QHOW MUCH MONEY D
OES SHE HAVE?&Q)@RDATA ENTRY@PENTER A VA
RIABLE ON THE GRID FOR WHAT YOU WANT TO 
FIND -- THE UNKNOWN.@HCHOOSE A VARIABLE 
TO REPRESENT THE TOTAL.@HENTER A LETTER,
 SUCH AS `X', AND PRESS THE <RETURN> KEY
.@I(19,I,&V)&D(0,ENTER THE NUMBER OF COI
NS.)@PENTER THE NUMBER OF NICKELS.&Q3 NI
CKELS&Q@HSALLY HAS &H3 NICKELS&H.@HENTER
 `3' AT THE PROMPT AND PRESS THE <RETURN
> KEY.@I(11,I,3)@PENTER THE NUMBER OF DI
MES.&Q2 DIMES&Q@HSALLY HAS &H2 DIMES&H.@
HENTER `2' AT THE PROMPT.@I(12,I,2)@PENT
ER THE NUMBER OF QUARTERS.&QA QUARTER&Q@
HSALLY HAS &HA QUARTER&H.@HENTER `1' AT 
THE PROMPT.@I(13,I,1)@JWRITE AN EXPRESSI
ON TO REPRESENT THE VALUE OF EACH TYPE O
F COIN.&D(0,)@RPARTS&D(0,THE EQUATION IS
:\N \N(VALUE/UNIT))&D(0,THE EQUATION IS:
\N \N(VALUE/UNIT) * (# OF UNITS))&D(0,TH
E EQUATION IS:\N \N(VALUE/UNIT) * (# OF 
UNITS) = VALUE)@JWRITE AN EXPRESSION TO 
REPRESENT THE VALUE OF THE NICKELS.@PNIC
KELS:\N(VALUE/UNIT) * (# OF UNITS) = VAL
UE\N      5      *       3 @H`5 * 3' IS 
THE VALUE OF THE NICKELS.@HENTER `5 * 3'
 AND PRESS THE <RETURN> KEY.@I(16,I,5*3)
@S@JWRITE AN EXPRESSION TO REPRESENT THE
 VALUE OF THE DIMES.@PDIMES:\N(VALUE/UNI
T) * (# OF UNITS) = VALUE\N     10      
*       2@H`10 * 2' IS THE VALUE OF THE 
DIMES.@HENTER `10 * 2'.@I(17,I,10*2)@JWR
ITE AN EXPRESSION TO REPRESENT THE VALUE
 OF THE QUARTERS.@PQUARTERS:\N(VALUE/UNI
T) * (# OF UNITS) = VALUE\N     25      
*       1@H`25 * 1' IS THE VALUE OF THE 
QUARTERS.@HENTER `25 * 1'.@I(18,I,25*1)@
S@JUSE THE GRID TO WRITE AN EQUATION TO 
REPRESENT THE RELATION BETWEEN THE PARTS
 AND THE WHOLE.&D(0,)@RWHOLE&D(0,USE THE
 EQUATION IDEA ON THE BOTTOM LINE OF THE
 GRID. FILL IN THE DETAILS FROM THE LINE
 ABOVE.)&D(0,\NNICKELS'\N VALUE)&D(0,\NN
ICKELS'   DIMES'\N VALUE  +  VALUE)&D(0,
\NNICKELS'   DIMES'   QUARTER'S\N VALUE 
 +  VALUE  +  VALUE)&D(0,\NNICKELS'   DI
MES'   QUARTER'S    TOTAL\N VALUE  +  VA
LUE  +  VALUE    =  VALUE)@R&D(0,NICKELS
'   DIMES'   QUARTER'S    TOTAL\N VALUE 
 +  VALUE  +  VALUE    =  VALUE (5 * 3) 
+ (10 * 2) + (25 * 1) =  &V)@JSALLY HAS 
3 NICKELS, 2 DIMES, AND A QUARTER. HOW M
UCH MONEY DOES SHE HAVE?&C(20,NICKELS + 
DIMES + QUARTERS = &V)&D(0,THE TUTORIAL 
WILL FILL IN THE VALUES OF THE EQUATION 
IDEA FOR YOU.)&C(20,(5 * 3) + DIMES + QU
ARTERS = &V)&D(0,)&C(20,(5 * 3) + (10 * 
2) + QUARTERS =&V)&D(0,)&C(20,(5 * 3) + 
(10 * 2) + (25 * 1) =&V)&D(0,)@RCOMPUTE@
PUSE THE CALCULATOR TO SOLVE THE EQUATIO
N FOR `&V' (THE AMOUNT OF MONEY SALLY HA
S).@HTHE CALCULATOR SOLVES EQUATIONS FOR
 YOU AND DISPLAYS STEPS IN THE SOLUTION.
@HENTER `60=&V' AT THE PROMPT AND PRESS 
THE <RETURN> KEY.@I(20,I,60=&V)@S@RCHECK
@PENTER THE VALUE OF `&V' IN THE GRID.@H
SALLY HAS 60 CENTS.\N&V=60, SO ENTER `60
' AT THE PROMPT.@HENTER `60' AND PRESS <
RETURN>.@I(19,I,60)&D(0,THIS COMPLETES T
HE TUTORIAL. YOU ARE NOW READY TO BEGIN 
SOME PROBLEMS ON YOUR OWN. CHOOSE `MONEY
', `LEVEL 2'.) |%
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL