_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

COIN2L3

FILE INFORMATION

FILENAME(S): COIN2L3

FILE TYPE(S): PRG

FILE SIZE: 6.2K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

31185b58e67f080a76e288aa1a0eeda5d86382af2201008a22ef36258c2a4ebd

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 44S1 COIN2L3 PRG Radd Maxx 12 7 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 40 71 7B 7D 3F 40  64 67 30 32 26 64 28 31  | A@q{}?@dg02&d(1|
00000010: 2C 7B 7D 29 26 64 28 32  2C 7B 7D 29 26 64 28 33  |,{})&d(2,{})&d(3|
00000020: 2C 54 6F 74 61 6C 29 26  64 28 34 2C 50 72 69 63  |,Total)&d(4,Pric|
00000030: 65 2F 75 6E 69 74 29 26  64 28 38 2C 23 20 6F 66  |e/unit)&d(8,# of|
00000040: 20 63 6F 69 6E 73 29 26  64 28 31 32 2C 56 61 6C  | coins)&d(12,Val|
00000050: 75 65 29 40 72 52 45 41  44 40 70 52 65 61 64 20  |ue)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C  65 20 70 72 6F 62 6C 65  |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B  3A 20 57 68 61 74 20 61  |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66  61 63 74 73 3F 20 57 68  |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65  69 6E 67 20 61 73 6B 65  |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73  73 20 61 6E 79 20 6B 65  |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E  74 69 6E 75 65 2E 29 40  |y to continue.)@|
000000C0: 68 57 68 61 74 20 61 72  65 20 74 68 65 20 66 61  |hWhat are the fa|
000000D0: 63 74 73 3F 20 26 68 7B  7D 26 68 2E 40 68 57 68  |cts? &h{}&h.@hWh|
000000E0: 61 74 20 69 73 20 62 65  69 6E 67 20 61 73 6B 65  |at is being aske|
000000F0: 64 3F 20 26 68 7B 7D 3F  26 68 40 69 28 30 29 40  |d? &h{}?&h@i(0)@|
00000100: 72 44 41 54 41 20 45 4E  54 52 59 40 70 46 69 6C  |rDATA ENTRY@pFil|
00000110: 6C 20 69 6E 20 74 68 65  20 67 72 69 64 20 2D 20  |l in the grid - |
00000120: 73 74 61 72 74 20 77 69  74 68 20 74 68 65 20 63  |start with the c|
00000130: 6F 6D 6D 6F 6E 20 75 6E  69 74 2E 20 28 45 78 70  |ommon unit. (Exp|
00000140: 72 65 73 73 20 61 6C 6C  20 76 61 6C 75 65 73 20  |ress all values |
00000150: 69 6E 20 63 65 6E 74 73  29 2E 40 68 57 68 61 74  |in cents).@hWhat|
00000160: 20 69 73 20 74 68 65 20  76 61 6C 75 65 20 6F 66  | is the value of|
00000170: 20 61 20 7B 7D 3F 40 68  54 68 65 20 76 61 6C 75  | a {}?@hThe valu|
00000180: 65 20 6F 66 20 61 20 7B  7D 2E 40 69 28 35 2C 69  |e of a {}.@i(5,i|
00000190: 2C 7B 7D 29 26 64 28 35  2C 7B 7D 29 40 68 57 68  |,{})&d(5,{})@hWh|
000001A0: 61 74 20 69 73 20 74 68  65 20 76 61 6C 75 65 20  |at is the value |
000001B0: 6F 66 20 61 20 7B 7D 3F  40 68 54 68 65 20 76 61  |of a {}?@hThe va|
000001C0: 6C 75 65 20 6F 66 20 61  20 7B 7D 2E 40 69 28 36  |lue of a {}.@i(6|
000001D0: 2C 69 2C 7B 7D 29 26 64  28 36 2C 7B 7D 20 63 65  |,i,{})&d(6,{} ce|
000001E0: 6E 74 73 29 40 70 45 6E  74 65 72 20 74 68 65 20  |nts)@pEnter the |
000001F0: 66 61 63 74 73 20 66 72  6F 6D 20 74 68 65 20 70  |facts from the p|
00000200: 72 6F 62 6C 65 6D 20 69  6E 74 6F 20 74 68 65 20  |roblem into the |
00000210: 67 72 69 64 2E 20 28 45  78 70 72 65 73 73 20 61  |grid. (Express a|
00000220: 6C 6C 20 76 61 6C 75 65  73 20 69 6E 20 63 65 6E  |ll values in cen|
00000230: 74 73 29 2E 40 68 7B 7D  2E 40 68 7B 7D 2E 40 69  |ts).@h{}.@h{}.@i|
00000240: 28 31 35 2C 69 2C 7B 7D  29 40 68 7B 7D 2E 40 68  |(15,i,{})@h{}.@h|
00000250: 7B 7D 2E 40 69 28 31 31  2C 69 2C 7B 7D 29 40 70  |{}.@i(11,i,{})@p|
00000260: 52 65 70 72 65 73 65 6E  74 20 74 68 65 20 6E 75  |Represent the nu|
00000270: 6D 62 65 72 20 6F 66 20  65 61 63 68 20 74 79 70  |mber of each typ|
00000280: 65 20 6F 66 20 63 6F 69  6E 2E 40 68 43 68 6F 6F  |e of coin.@hChoo|
00000290: 73 65 20 61 20 76 61 72  69 61 62 6C 65 20 74 6F  |se a variable to|
000002A0: 20 72 65 70 72 65 73 65  6E 74 20 74 68 65 20 6E  | represent the n|
000002B0: 75 6D 62 65 72 20 6F 66  20 7B 7D 2E 40 68 43 68  |umber of {}.@hCh|
000002C0: 6F 6F 73 65 20 61 6E 79  20 6C 65 74 74 65 72 2C  |oose any letter,|
000002D0: 20 73 75 63 68 20 61 73  20 60 7B 7D 27 2C 20 74  | such as `{}', t|
000002E0: 6F 20 72 65 70 72 65 73  65 6E 74 20 74 68 65 20  |o represent the |
000002F0: 6E 75 6D 62 65 72 20 6F  66 20 7B 7D 2E 40 69 28  |number of {}.@i(|
00000300: 7B 7D 2C 69 2C 26 76 29  40 68 52 65 70 72 65 73  |{},i,&v)@hRepres|
00000310: 65 6E 74 20 74 68 65 20  6E 75 6D 62 65 72 20 6F  |ent the number o|
00000320: 66 20 7B 7D 20 69 6E 20  74 65 72 6D 73 20 6F 66  |f {} in terms of|
00000330: 20 22 26 76 22 20 28 74  68 65 20 6E 75 6D 62 65  | "&v" (the numbe|
00000340: 72 20 6F 66 20 7B 7D 29  2E 40 68 7B 7D 40 69 28  |r of {}).@h{}@i(|
00000350: 7B 7D 2C 69 2C 7B 7D 29  40 72 50 41 52 54 53 40  |{},i,{})@rPARTS@|
00000360: 70 57 72 69 74 65 20 61  6E 20 65 78 70 72 65 73  |pWrite an expres|
00000370: 73 69 6F 6E 20 74 6F 20  72 65 70 72 65 73 65 6E  |sion to represen|
00000380: 74 20 74 68 65 20 76 61  6C 75 65 20 6F 66 20 65  |t the value of e|
00000390: 61 63 68 20 74 79 70 65  20 6F 66 20 63 6F 69 6E  |ach type of coin|
000003A0: 2E 40 68 4D 75 6C 74 69  70 6C 79 20 74 68 65 20  |.@hMultiply the |
000003B0: 70 72 69 63 65 2F 75 6E  69 74 20 62 79 20 74 68  |price/unit by th|
000003C0: 65 20 6E 75 6D 62 65 72  20 6F 66 20 7B 7D 2E 40  |e number of {}.@|
000003D0: 68 50 72 69 63 65 2F 75  6E 69 74 20 5C 66 31 32  |hPrice/unit \f12|
000003E0: 2A 20 23 20 7B 7D 20 5C  66 32 35 3D 20 7B 7D 20  |* # {} \f25= {} |
000003F0: 76 61 6C 2E 20 5C 6E 20  60 7B 7D 20 20 20 20 20  |val. \n `{}     |
00000400: 5C 66 31 32 2A 20 20 7B  7D 27 20 20 5C 66 32 35  |\f12*  {}'  \f25|
00000410: 3D 20 7B 7D 20 76 61 6C  2E 40 69 28 7B 7D 2C 69  |= {} val.@i({},i|
00000420: 2C 7B 7D 29 40 68 4E 6F  77 20 6D 75 6C 74 69 70  |,{})@hNow multip|
00000430: 6C 79 20 74 68 65 20 70  72 69 63 65 2F 75 6E 69  |ly the price/uni|
00000440: 74 20 62 79 20 74 68 65  20 6E 75 6D 62 65 72 20  |t by the number |
00000450: 6F 66 20 7B 7D 2E 40 68  50 72 69 63 65 2F 75 6E  |of {}.@hPrice/un|
00000460: 69 74 20 5C 66 31 32 2A  20 23 20 7B 7D 20 5C 66  |it \f12* # {} \f|
00000470: 32 35 3D 20 7B 7D 20 76  61 6C 2E 20 5C 6E 20 20  |25= {} val. \n  |
00000480: 60 7B 7D 20 20 20 20 20  5C 66 31 32 2A 20 7B 7D  |`{}     \f12* {}|
00000490: 27 20 20 5C 66 32 35 3D  20 7B 7D 20 76 61 6C 2E  |'  \f25= {} val.|
000004A0: 40 69 28 7B 7D 2C 69 2C  7B 7D 29 40 72 57 48 4F  |@i({},i,{})@rWHO|
000004B0: 4C 45 40 70 55 73 65 20  74 68 65 20 74 61 62 6C  |LE@pUse the tabl|
000004C0: 65 20 74 6F 20 77 72 69  74 65 20 61 6E 20 65 71  |e to write an eq|
000004D0: 75 61 74 69 6F 6E 20 74  6F 20 72 65 6C 61 74 65  |uation to relate|
000004E0: 20 74 68 65 20 70 61 72  74 73 20 28 7B 7D 29 20  | the parts ({}) |
000004F0: 74 6F 20 74 68 65 20 77  68 6F 6C 65 20 28 54 6F  |to the whole (To|
00000500: 74 61 6C 29 2E 40 68 28  7B 7D 20 76 61 6C 29 20  |tal).@h({} val) |
00000510: 5C 66 31 34 2B 20 28 7B  7D 20 76 61 6C 29 5C 66  |\f14+ ({} val)\f|
00000520: 32 39 3D 20 54 6F 74 61  6C 20 76 61 6C 40 68 28  |29= Total val@h(|
00000530: 7B 7D 20 76 61 6C 29 20  5C 66 31 34 2B 20 28 7B  |{} val) \f14+ ({|
00000540: 7D 20 76 61 6C 29 5C 66  32 39 3D 20 54 6F 74 61  |} val)\f29= Tota|
00000550: 6C 20 76 61 6C 20 5C 6E  7B 7D 40 69 28 31 36 2C  |l val \n{}@i(16,|
00000560: 69 2C 7B 7D 29 40 73 40  72 43 4F 4D 50 55 54 45  |i,{})@s@rCOMPUTE|
00000570: 40 70 53 6F 6C 76 65 20  74 68 65 20 65 71 75 61  |@pSolve the equa|
00000580: 74 69 6F 6E 20 66 6F 72  20 22 26 76 22 28 7B 7D  |tion for "&v"({}|
00000590: 29 2E 20 55 73 65 20 70  65 6E 63 69 6C 20 61 6E  |). Use pencil an|
000005A0: 64 20 70 61 70 65 72 2C  20 6F 72 20 75 73 65 20  |d paper, or use |
000005B0: 74 68 65 20 43 61 6C 63  75 6C 61 74 6F 72 2E 40  |the Calculator.@|
000005C0: 68 49 73 6F 6C 61 74 65  20 22 26 76 22 20 6F 6E  |hIsolate "&v" on|
000005D0: 20 6F 6E 65 20 73 69 64  65 20 6F 66 20 74 68 65  | one side of the|
000005E0: 20 65 71 75 61 74 69 6F  6E 2E 40 68 54 68 65 20  | equation.@hThe |
000005F0: 43 61 6C 63 75 6C 61 74  6F 72 20 73 6F 6C 76 65  |Calculator solve|
00000600: 73 20 65 71 75 61 74 69  6F 6E 73 20 66 6F 72 20  |s equations for |
00000610: 79 6F 75 20 61 6E 64 20  64 69 73 70 6C 61 79 73  |you and displays|
00000620: 20 74 68 65 20 73 74 65  70 73 20 69 6E 20 74 68  | the steps in th|
00000630: 65 20 73 6F 6C 75 74 69  6F 6E 2E 40 69 28 31 36  |e solution.@i(16|
00000640: 2C 69 2C 7B 7D 29 40 70  4E 6F 77 20 66 69 6C 6C  |,i,{})@pNow fill|
00000650: 20 69 6E 20 74 68 65 20  61 6E 73 77 65 72 28 73  | in the answer(s|
00000660: 29 20 74 6F 20 74 68 65  20 70 72 6F 62 6C 65 6D  |) to the problem|
00000670: 2E 20 52 65 6D 65 6D 62  65 72 20 74 68 65 20 71  |. Remember the q|
00000680: 75 65 73 74 69 6F 6E 2E  20 26 71 7B 7D 3F 26 71  |uestion. &q{}?&q|
00000690: 26 77 28 31 36 29 40 68  54 68 65 20 6E 75 6D 62  |&w(16)@hThe numb|
000006A0: 65 72 20 6F 66 20 7B 7D  20 69 73 20 74 68 65 20  |er of {} is the |
000006B0: 76 61 6C 75 65 20 6F 66  20 22 26 76 22 2E 40 68  |value of "&v".@h|
000006C0: 7B 7D 40 69 28 7B 7D 2C  69 2C 7B 7D 29 40 73 40  |{}@i({},i,{})@s@|
000006D0: 68 54 68 65 20 6E 75 6D  62 65 72 20 6F 66 20 7B  |hThe number of {|
000006E0: 7D 2E 40 68 7B 7D 40 69  28 7B 7D 2C 69 2C 7B 7D  |}.@h{}@i({},i,{}|
000006F0: 29 40 72 43 48 45 43 4B  40 70 52 65 72 65 61 64  |)@rCHECK@pReread|
00000700: 20 74 68 65 20 70 72 6F  62 6C 65 6D 2E 20 43 68  | the problem. Ch|
00000710: 65 63 6B 20 79 6F 75 72  20 61 6E 73 77 65 72 73  |eck your answers|
00000720: 2E 20 52 65 70 6C 61 63  65 20 61 6C 6C 20 76 61  |. Replace all va|
00000730: 72 69 61 62 6C 65 73 20  69 6E 20 74 68 65 20 67  |riables in the g|
00000740: 72 69 64 2E 40 68 53 75  62 73 74 69 74 75 74 65  |rid.@hSubstitute|
00000750: 20 66 6F 72 20 22 26 76  22 20 69 6E 20 74 68 65  | for "&v" in the|
00000760: 20 65 78 70 72 65 73 73  69 6F 6E 20 66 6F 72 20  | expression for |
00000770: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 74 68 65  |the value of the|
00000780: 20 7B 7D 2E 20 4E 6F 77  20 63 61 6C 63 75 6C 61  | {}. Now calcula|
00000790: 74 65 2E 40 68 7B 7D 40  69 28 7B 7D 2C 69 2C 7B  |te.@h{}@i({},i,{|
000007A0: 7D 29 40 68 53 75 62 73  74 69 74 75 74 65 20 66  |})@hSubstitute f|
000007B0: 6F 72 20 22 26 76 22 20  69 6E 20 74 68 65 20 65  |or "&v" in the e|
000007C0: 78 70 72 65 73 73 69 6F  6E 20 66 6F 72 20 74 68  |xpression for th|
000007D0: 65 20 76 61 6C 75 65 20  6F 66 20 74 68 65 20 7B  |e value of the {|
000007E0: 7D 2E 20 20 4E 6F 77 20  63 61 6C 63 75 6C 61 74  |}.  Now calculat|
000007F0: 65 2E 40 68 7B 7D 40 69  28 7B 7D 2C 69 2C 7B 7D  |e.@h{}@i({},i,{}|
00000800: 29 26 64 28 30 2C 43 68  65 63 6B 20 79 6F 75 72  |)&d(0,Check your|
00000810: 20 77 6F 72 6B 2E 20 54  68 65 20 7B 7D 20 73 68  | work. The {} sh|
00000820: 6F 75 6C 64 20 65 71 75  61 6C 20 74 68 65 20 74  |ould equal the t|
00000830: 6F 74 61 6C 20 76 61 6C  75 65 2E 20 4F 6E 20 74  |otal value. On t|
00000840: 6F 20 61 20 6E 65 77 20  70 72 6F 62 6C 65 6D 2E  |o a new problem.|
00000850: 29 40 66 42 65 74 68 20  68 61 73 20 37 20 63 6F  |)@fBeth has 7 co|
00000860: 69 6E 73 20 77 6F 72 74  68 20 36 35 20 63 65 6E  |ins worth 65 cen|
00000870: 74 73 2E 20 53 6F 6D 65  20 6F 66 20 74 68 65 20  |ts. Some of the |
00000880: 63 6F 69 6E 73 20 61 72  65 20 64 69 6D 65 73 20  |coins are dimes |
00000890: 61 6E 64 20 74 68 65 20  72 65 73 74 20 61 72 65  |and the rest are|
000008A0: 20 6E 69 63 6B 65 6C 73  2E 20 48 6F 77 20 6D 61  | nickels. How ma|
000008B0: 6E 79 20 6F 66 20 65 61  63 68 20 74 79 70 65 20  |ny of each type |
000008C0: 6F 66 20 63 6F 69 6E 20  61 72 65 20 74 68 65 72  |of coin are ther|
000008D0: 65 00 4E 69 63 6B 65 6C  73 00 44 69 6D 65 73 00  |e.Nickels.Dimes.|
000008E0: 42 65 74 68 20 68 61 73  20 37 20 63 6F 69 6E 73  |Beth has 7 coins|
000008F0: 20 77 6F 72 74 68 20 36  35 20 63 65 6E 74 73 00  | worth 65 cents.|
00000900: 48 6F 77 20 6D 61 6E 79  20 6F 66 20 65 61 63 68  |How many of each|
00000910: 20 74 79 70 65 20 6F 66  20 63 6F 69 6E 20 61 72  | type of coin ar|
00000920: 65 20 74 68 65 72 65 00  6E 69 63 6B 65 6C 00 6E  |e there.nickel.n|
00000930: 69 63 6B 65 6C 20 69 73  20 60 35 27 20 63 65 6E  |ickel is `5' cen|
00000940: 74 73 00 35 00 35 20 63  65 6E 74 73 00 64 69 6D  |ts.5.5 cents.dim|
00000950: 65 00 64 69 6D 65 20 69  73 20 60 31 30 27 63 65  |e.dime is `10'ce|
00000960: 6E 74 73 00 31 30 00 31  30 00 53 68 65 20 68 61  |nts.10.10.She ha|
00000970: 73 20 26 68 63 6F 69 6E  73 20 77 6F 72 74 68 20  |s &hcoins worth |
00000980: 36 35 20 63 65 6E 74 73  26 68 00 54 68 65 20 63  |65 cents&h.The c|
00000990: 6F 69 6E 73 20 61 72 65  20 77 6F 72 74 68 20 60  |oins are worth `|
000009A0: 36 35 27 20 63 65 6E 74  73 00 36 35 00 53 68 65  |65' cents.65.She|
000009B0: 20 68 61 73 20 61 20 74  6F 74 61 6C 20 6F 66 20  | has a total of |
000009C0: 37 20 63 6F 69 6E 73 00  54 68 65 20 74 6F 74 61  |7 coins.The tota|
000009D0: 6C 20 6E 75 6D 62 65 72  20 6F 66 20 63 6F 69 6E  |l number of coin|
000009E0: 73 20 69 73 20 60 37 27  00 37 00 6E 69 63 6B 65  |s is `7'.7.nicke|
000009F0: 6C 73 00 64 00 64 69 6D  65 73 00 31 30 00 6E 69  |ls.d.dimes.10.ni|
00000A00: 63 6B 65 6C 73 00 64 69  6D 65 73 00 42 65 74 68  |ckels.dimes.Beth|
00000A10: 20 68 61 73 20 61 20 74  6F 74 61 6C 20 6F 66 20  | has a total of |
00000A20: 37 20 63 6F 69 6E 73 2E  20 49 66 20 22 26 76 22  |7 coins. If "&v"|
00000A30: 20 65 71 75 61 6C 73 20  74 68 65 20 23 20 6F 66  | equals the # of|
00000A40: 20 64 69 6D 65 73 2C 20  60 37 2D 26 76 27 20 77  | dimes, `7-&v' w|
00000A50: 6F 75 6C 64 20 72 65 70  72 65 73 65 6E 74 20 74  |ould represent t|
00000A60: 68 65 20 6E 75 6D 62 65  72 20 6F 66 20 6E 69 63  |he number of nic|
00000A70: 6B 65 6C 73 00 39 00 37  2D 26 76 00 64 69 6D 65  |kels.9.7-&v.dime|
00000A80: 73 00 64 69 6D 65 73 00  64 69 6D 65 73 00 31 30  |s.dimes.dimes.10|
00000A90: 00 26 76 00 64 69 6D 65  73 00 31 34 00 31 30 26  |.&v.dimes.14.10&|
00000AA0: 76 00 6E 69 63 6B 65 6C  73 00 6E 69 63 6B 65 6C  |v.nickels.nickel|
00000AB0: 73 00 6E 69 63 6B 65 6C  73 00 35 00 28 37 2D 26  |s.nickels.5.(7-&|
00000AC0: 76 29 00 6E 69 63 6B 65  6C 73 00 31 33 00 35 2A  |v).nickels.13.5*|
00000AD0: 28 37 2D 26 76 29 00 64  69 6D 65 73 20 61 6E 64  |(7-&v).dimes and|
00000AE0: 20 6E 69 63 6B 65 6C 73  00 6E 69 63 6B 65 6C 73  | nickels.nickels|
00000AF0: 00 64 69 6D 65 73 00 6E  69 63 6B 65 6C 73 00 64  |.dimes.nickels.d|
00000B00: 69 6D 65 73 00 60 35 28  37 2D 26 76 29 20 20 20  |imes.`5(7-&v)   |
00000B10: 20 20 20 20 5C 66 31 34  2B 20 20 20 31 30 26 76  |    \f14+   10&v|
00000B20: 20 20 20 20 20 20 20 5C  66 32 39 3D 20 20 20 36  |       \f29=   6|
00000B30: 35 27 00 35 28 37 2D 26  76 29 2B 31 30 26 76 3D  |5'.5(7-&v)+10&v=|
00000B40: 36 35 00 74 68 65 20 6E  75 6D 62 65 72 20 6F 66  |65.the number of|
00000B50: 20 64 69 6D 65 73 00 26  76 3D 36 00 48 6F 77 20  | dimes.&v=6.How |
00000B60: 6D 61 6E 79 20 6F 66 20  65 61 63 68 20 74 79 70  |many of each typ|
00000B70: 65 20 6F 66 20 63 6F 69  6E 20 61 72 65 20 74 68  |e of coin are th|
00000B80: 65 72 65 00 64 69 6D 65  73 00 26 76 20 3D 20 36  |ere.dimes.&v = 6|
00000B90: 00 31 30 00 36 00 6E 69  63 6B 65 6C 73 20 69 73  |.10.6.nickels is|
00000BA0: 20 74 68 65 20 76 61 6C  75 65 20 6F 66 20 37 2D  | the value of 7-|
00000BB0: 26 76 00 37 2D 26 76 20  3D 20 28 37 2D 36 29 20  |&v.7-&v = (7-6) |
00000BC0: 3D 20 60 31 27 00 39 00  31 00 64 69 6D 65 73 00  |= `1'.9.1.dimes.|
00000BD0: 31 30 20 2A 20 26 76 20  3D 20 31 30 20 2A 20 36  |10 * &v = 10 * 6|
00000BE0: 20 3D 20 60 36 30 27 20  63 65 6E 74 73 00 31 34  | = `60' cents.14|
00000BF0: 00 36 30 00 6E 69 63 6B  65 6C 73 00 35 20 2A 20  |.60.nickels.5 * |
00000C00: 28 37 2D 26 76 29 20 3D  20 35 20 2A 20 28 37 2D  |(7-&v) = 5 * (7-|
00000C10: 36 29 20 3D 20 60 35 27  20 63 65 6E 74 73 00 31  |6) = `5' cents.1|
00000C20: 33 00 35 00 73 75 6D 20  6F 66 20 74 68 65 20 6E  |3.5.sum of the n|
00000C30: 69 63 6B 65 6C 20 61 6E  64 20 64 69 6D 65 20 76  |ickel and dime v|
00000C40: 61 6C 75 65 73 00 40 66  45 6C 6C 65 6E 20 68 61  |alues.@fEllen ha|
00000C50: 73 20 61 20 63 6F 6C 6C  65 63 74 69 6F 6E 20 6F  |s a collection o|
00000C60: 66 20 6E 69 63 6B 65 6C  73 20 61 6E 64 20 71 75  |f nickels and qu|
00000C70: 61 72 74 65 72 73 20 77  6F 72 74 68 20 24 32 2E  |arters worth $2.|
00000C80: 32 35 2E 20 41 6C 74 6F  67 65 74 68 65 72 20 73  |25. Altogether s|
00000C90: 68 65 20 68 61 73 20 31  37 20 63 6F 69 6E 73 2E  |he has 17 coins.|
00000CA0: 20 48 6F 77 20 6D 61 6E  79 20 6F 66 20 65 61 63  | How many of eac|
00000CB0: 68 20 74 79 70 65 20 6F  66 20 63 6F 69 6E 20 61  |h type of coin a|
00000CC0: 72 65 20 74 68 65 72 65  00 4E 69 63 6B 65 6C 73  |re there.Nickels|
00000CD0: 00 51 75 61 72 74 65 72  73 00 41 20 63 6F 6C 6C  |.Quarters.A coll|
00000CE0: 65 63 74 69 6F 6E 20 6F  66 20 6E 69 63 6B 65 6C  |ection of nickel|
00000CF0: 73 20 61 6E 64 20 71 75  61 72 74 65 72 73 20 77  |s and quarters w|
00000D00: 6F 72 74 68 20 24 32 2E  32 35 00 48 6F 77 20 6D  |orth $2.25.How m|
00000D10: 61 6E 79 20 6F 66 20 65  61 63 68 20 74 79 70 65  |any of each type|
00000D20: 20 6F 66 20 63 6F 69 6E  20 61 72 65 20 74 68 65  | of coin are the|
00000D30: 72 65 00 6E 69 63 6B 65  6C 00 6E 69 63 6B 65 6C  |re.nickel.nickel|
00000D40: 20 69 73 20 60 35 27 20  63 65 6E 74 73 00 35 00  | is `5' cents.5.|
00000D50: 35 20 63 65 6E 74 73 00  71 75 61 72 74 65 72 00  |5 cents.quarter.|
00000D60: 71 75 61 72 74 65 72 20  69 73 20 60 32 35 27 20  |quarter is `25' |
00000D70: 63 65 6E 74 73 00 32 35  00 32 35 00 53 68 65 20  |cents.25.25.She |
00000D80: 68 61 73 20 26 68 61 20  63 6F 6C 6C 65 63 74 69  |has &ha collecti|
00000D90: 6F 6E 20 77 6F 72 74 68  20 24 32 2E 32 35 26 68  |on worth $2.25&h|
00000DA0: 00 54 68 65 20 63 6F 69  6E 73 20 61 72 65 20 77  |.The coins are w|
00000DB0: 6F 72 74 68 20 60 32 32  35 27 20 63 65 6E 74 73  |orth `225' cents|
00000DC0: 00 32 32 35 00 26 68 53  68 65 20 68 61 73 20 31  |.225.&hShe has 1|
00000DD0: 37 20 63 6F 69 6E 73 26  68 00 54 68 65 20 74 6F  |7 coins&h.The to|
00000DE0: 74 61 6C 20 6E 75 6D 62  65 72 20 6F 66 20 63 6F  |tal number of co|
00000DF0: 69 6E 73 20 69 73 20 60  31 37 27 00 31 37 00 71  |ins is `17'.17.q|
00000E00: 75 61 72 74 65 72 73 00  71 00 71 75 61 72 74 65  |uarters.q.quarte|
00000E10: 72 73 00 31 30 00 6E 69  63 6B 65 6C 73 00 71 75  |rs.10.nickels.qu|
00000E20: 61 72 74 65 72 73 00 45  6C 6C 65 6E 20 68 61 73  |arters.Ellen has|
00000E30: 20 61 20 74 6F 74 61 6C  20 6F 66 20 31 37 20 63  | a total of 17 c|
00000E40: 6F 69 6E 73 2E 20 49 66  20 22 26 76 22 20 65 71  |oins. If "&v" eq|
00000E50: 75 61 6C 73 20 74 68 65  20 23 20 6F 66 20 71 75  |uals the # of qu|
00000E60: 61 72 74 65 72 73 2C 20  60 31 37 2D 26 76 27 20  |arters, `17-&v' |
00000E70: 72 65 70 72 65 73 65 6E  74 73 20 74 68 65 20 23  |represents the #|
00000E80: 20 6F 66 20 6E 69 63 6B  65 6C 73 2E 00 39 00 31  | of nickels..9.1|
00000E90: 37 2D 26 76 00 71 75 61  72 74 65 72 73 00 71 75  |7-&v.quarters.qu|
00000EA0: 61 72 74 65 72 73 00 71  75 61 72 74 65 72 00 32  |arters.quarter.2|
00000EB0: 35 00 26 76 00 71 75 61  72 74 65 72 00 31 34 00  |5.&v.quarter.14.|
00000EC0: 32 35 2A 26 76 00 6E 69  63 6B 65 6C 73 00 6E 69  |25*&v.nickels.ni|
00000ED0: 63 6B 65 6C 73 00 6E 69  63 6B 65 6C 00 35 00 28  |ckels.nickel.5.(|
00000EE0: 31 37 2D 26 76 29 00 6E  69 63 6B 65 6C 00 31 33  |17-&v).nickel.13|
00000EF0: 00 35 2A 28 31 37 2D 26  76 29 00 71 75 61 72 74  |.5*(17-&v).quart|
00000F00: 65 72 73 20 61 6E 64 20  6E 69 63 6B 65 6C 73 00  |ers and nickels.|
00000F10: 6E 69 63 6B 65 6C 00 71  75 61 72 74 65 72 00 6E  |nickel.quarter.n|
00000F20: 69 63 6B 65 6C 00 71 75  61 72 74 65 72 00 60 35  |ickel.quarter.`5|
00000F30: 2A 28 31 37 2D 26 76 29  20 20 20 20 20 5C 66 31  |*(17-&v)     \f1|
00000F40: 35 2B 20 20 32 35 26 76  20 20 20 20 5C 66 32 39  |5+  25&v    \f29|
00000F50: 3D 20 32 32 35 27 00 35  2A 28 31 37 2D 26 76 29  |= 225'.5*(17-&v)|
00000F60: 2B 32 35 2A 26 76 3D 32  32 35 00 74 68 65 20 6E  |+25*&v=225.the n|
00000F70: 75 6D 62 65 72 20 6F 66  20 71 75 61 72 74 65 72  |umber of quarter|
00000F80: 73 00 26 76 3D 37 00 48  6F 77 20 6D 61 6E 79 20  |s.&v=7.How many |
00000F90: 6F 66 20 65 61 63 68 20  74 79 70 65 20 6F 66 20  |of each type of |
00000FA0: 63 6F 69 6E 20 61 72 65  20 74 68 65 72 65 00 71  |coin are there.q|
00000FB0: 75 61 72 74 65 72 73 00  26 76 20 3D 20 60 37 27  |uarters.&v = `7'|
00000FC0: 2E 00 31 30 00 37 00 6E  69 63 6B 65 6C 73 20 69  |..10.7.nickels i|
00000FD0: 73 20 74 68 65 20 76 61  6C 75 65 20 6F 66 20 60  |s the value of `|
00000FE0: 31 37 2D 26 76 27 00 28  31 37 2D 26 76 29 20 3D  |17-&v'.(17-&v) =|
00000FF0: 20 31 37 2D 37 20 3D 20  60 31 30 27 00 39 00 31  | 17-7 = `10'.9.1|
00001000: 30 00 71 75 61 72 74 65  72 73 00 32 35 2A 26 76  |0.quarters.25*&v|
00001010: 20 3D 20 32 35 2A 37 20  3D 20 60 31 37 35 27 20  | = 25*7 = `175' |
00001020: 63 65 6E 74 73 2E 00 31  34 00 31 37 35 00 6E 69  |cents..14.175.ni|
00001030: 63 6B 65 6C 73 00 35 2A  28 31 37 2D 26 76 29 20  |ckels.5*(17-&v) |
00001040: 3D 20 35 2A 28 31 37 2D  37 29 20 3D 20 60 35 30  |= 5*(17-7) = `50|
00001050: 27 20 63 65 6E 74 73 2E  00 31 33 00 35 30 00 73  |' cents..13.50.s|
00001060: 75 6D 20 6F 66 20 74 68  65 20 6E 69 63 6B 65 6C  |um of the nickel|
00001070: 20 61 6E 64 20 71 75 61  72 74 65 72 20 76 61 6C  | and quarter val|
00001080: 75 65 73 00 40 66 4E 65  69 6C 20 68 61 73 20 32  |ues.@fNeil has 2|
00001090: 38 20 63 6F 69 6E 73 20  77 6F 72 74 68 20 24 32  |8 coins worth $2|
000010A0: 2E 33 30 2E 20 53 6F 6D  65 20 6F 66 20 74 68 65  |.30. Some of the|
000010B0: 6D 20 61 72 65 20 6E 69  63 6B 65 6C 73 20 61 6E  |m are nickels an|
000010C0: 64 20 74 68 65 20 72 65  73 74 20 61 72 65 20 64  |d the rest are d|
000010D0: 69 6D 65 73 2E 20 48 6F  77 20 6D 61 6E 79 20 6F  |imes. How many o|
000010E0: 66 20 65 61 63 68 20 74  79 70 65 20 6F 66 20 63  |f each type of c|
000010F0: 6F 69 6E 20 61 72 65 20  74 68 65 72 65 00 4E 69  |oin are there.Ni|
00001100: 63 6B 65 6C 73 00 44 69  6D 65 73 00 4E 65 69 6C  |ckels.Dimes.Neil|
00001110: 20 68 61 73 20 32 38 20  63 6F 69 6E 73 20 77 6F  | has 28 coins wo|
00001120: 72 74 68 20 24 32 2E 33  30 00 48 6F 77 20 6D 61  |rth $2.30.How ma|
00001130: 6E 79 20 6F 66 20 65 61  63 68 20 74 79 70 65 20  |ny of each type |
00001140: 6F 66 20 63 6F 69 6E 20  61 72 65 20 74 68 65 72  |of coin are ther|
00001150: 65 00 6E 69 63 6B 65 6C  00 6E 69 63 6B 65 6C 20  |e.nickel.nickel |
00001160: 69 73 20 60 35 27 20 63  65 6E 74 73 00 35 00 35  |is `5' cents.5.5|
00001170: 20 63 65 6E 74 73 00 64  69 6D 65 00 64 69 6D 65  | cents.dime.dime|
00001180: 20 69 73 20 60 31 30 27  20 63 65 6E 74 73 00 31  | is `10' cents.1|
00001190: 30 00 31 30 00 48 65 20  68 61 73 20 63 6F 69 6E  |0.10.He has coin|
000011A0: 73 20 77 6F 72 74 68 20  24 32 2E 33 30 00 54 68  |s worth $2.30.Th|
000011B0: 65 20 74 6F 74 61 6C 20  76 61 6C 75 65 20 6F 66  |e total value of|
000011C0: 20 74 68 65 20 63 6F 69  6E 73 20 69 73 20 60 32  | the coins is `2|
000011D0: 33 30 27 00 32 33 30 00  48 65 20 68 61 73 20 61  |30'.230.He has a|
000011E0: 20 74 6F 74 61 6C 20 6F  66 20 32 38 20 63 6F 69  | total of 28 coi|
000011F0: 6E 73 00 54 68 65 20 74  6F 74 61 6C 20 6E 75 6D  |ns.The total num|
00001200: 62 65 72 20 6F 66 20 63  6F 69 6E 73 20 69 73 20  |ber of coins is |
00001210: 60 32 38 27 00 32 38 00  6E 69 63 6B 65 6C 73 00  |`28'.28.nickels.|
00001220: 6E 00 6E 69 63 6B 65 6C  73 00 39 00 64 69 6D 65  |n.nickels.9.dime|
00001230: 73 00 6E 69 63 6B 65 6C  73 00 48 65 20 68 61 73  |s.nickels.He has|
00001240: 20 61 20 74 6F 74 61 6C  20 6F 66 20 32 38 20 63  | a total of 28 c|
00001250: 6F 69 6E 73 2E 20 49 66  20 22 26 76 22 20 69 73  |oins. If "&v" is|
00001260: 20 74 68 65 20 23 20 6F  66 20 6E 69 63 6B 65 6C  | the # of nickel|
00001270: 73 2C 20 60 32 38 2D 26  76 27 20 77 6F 75 6C 64  |s, `28-&v' would|
00001280: 20 72 65 70 72 65 73 65  6E 74 20 74 68 65 20 23  | represent the #|
00001290: 20 6F 66 20 64 69 6D 65  73 2E 00 31 30 00 32 38  | of dimes..10.28|
000012A0: 2D 26 76 00 6E 69 63 6B  65 6C 73 00 6E 69 63 6B  |-&v.nickels.nick|
000012B0: 65 6C 73 00 6E 69 63 6B  65 6C 00 35 00 26 76 00  |els.nickel.5.&v.|
000012C0: 6E 69 63 6B 65 6C 00 31  33 00 35 2A 26 76 00 64  |nickel.13.5*&v.d|
000012D0: 69 6D 65 73 00 64 69 6D  65 73 00 64 69 6D 65 00  |imes.dimes.dime.|
000012E0: 31 30 00 28 32 38 2D 26  76 29 00 64 69 6D 65 00  |10.(28-&v).dime.|
000012F0: 31 34 00 31 30 2A 28 32  38 2D 26 76 29 00 64 69  |14.10*(28-&v).di|
00001300: 6D 65 73 20 61 6E 64 20  6E 69 63 6B 65 6C 73 00  |mes and nickels.|
00001310: 6E 69 63 6B 65 6C 00 64  69 6D 65 00 6E 69 63 6B  |nickel.dime.nick|
00001320: 65 6C 00 64 69 6D 65 00  20 60 35 2A 26 76 20 20  |el.dime. `5*&v  |
00001330: 20 20 20 20 20 20 5C 66  31 34 2B 20 31 30 2A 28  |      \f14+ 10*(|
00001340: 32 38 2D 26 76 29 20 5C  66 32 39 3D 20 32 33 30  |28-&v) \f29= 230|
00001350: 27 00 35 2A 26 76 2B 31  30 2A 28 32 38 2D 26 76  |'.5*&v+10*(28-&v|
00001360: 29 3D 32 33 30 00 74 68  65 20 6E 75 6D 62 65 72  |)=230.the number|
00001370: 20 6F 66 20 6E 69 63 6B  65 6C 73 00 26 76 3D 31  | of nickels.&v=1|
00001380: 30 00 48 6F 77 20 6D 61  6E 79 20 6F 66 20 65 61  |0.How many of ea|
00001390: 63 68 20 74 79 70 65 20  6F 66 20 63 6F 69 6E 20  |ch type of coin |
000013A0: 61 72 65 20 74 68 65 72  65 00 6E 69 63 6B 65 6C  |are there.nickel|
000013B0: 73 00 26 76 20 3D 20 60  31 30 27 00 39 00 31 30  |s.&v = `10'.9.10|
000013C0: 00 64 69 6D 65 73 20 69  73 20 74 68 65 20 76 61  |.dimes is the va|
000013D0: 6C 75 65 20 6F 66 20 60  32 38 2D 26 76 27 00 32  |lue of `28-&v'.2|
000013E0: 38 2D 26 76 20 3D 20 60  31 38 27 00 31 30 00 31  |8-&v = `18'.10.1|
000013F0: 38 00 6E 69 63 6B 65 6C  73 00 35 2A 26 76 20 3D  |8.nickels.5*&v =|
00001400: 20 35 2A 31 30 20 3D 20  60 35 30 27 20 63 65 6E  | 5*10 = `50' cen|
00001410: 74 73 00 31 33 00 35 30  00 64 69 6D 65 73 00 31  |ts.13.50.dimes.1|
00001420: 30 2A 28 32 38 2D 26 76  29 20 3D 20 31 30 2A 31  |0*(28-&v) = 10*1|
00001430: 38 20 3D 20 60 31 38 30  27 20 63 65 6E 74 73 00  |8 = `180' cents.|
00001440: 31 34 00 31 38 30 00 73  75 6D 20 6F 66 20 74 68  |14.180.sum of th|
00001450: 65 20 6E 69 63 6B 65 6C  20 61 6E 64 20 64 69 6D  |e nickel and dim|
00001460: 65 20 76 61 6C 75 65 73  00 40 66 41 6D 79 20 68  |e values.@fAmy h|
00001470: 61 73 20 33 35 20 63 6F  69 6E 73 2C 20 73 6F 6D  |as 35 coins, som|
00001480: 65 20 6F 66 20 77 68 69  63 68 20 61 72 65 20 64  |e of which are d|
00001490: 69 6D 65 73 20 61 6E 64  20 74 68 65 20 72 65 73  |imes and the res|
000014A0: 74 20 61 72 65 20 6E 69  63 6B 65 6C 73 2E 20 49  |t are nickels. I|
000014B0: 66 20 74 68 65 20 74 6F  74 61 6C 20 76 61 6C 75  |f the total valu|
000014C0: 65 20 6F 66 20 68 65 72  20 63 6F 69 6E 73 20 69  |e of her coins i|
000014D0: 73 20 24 32 2E 37 35 2C  20 68 6F 77 20 6D 61 6E  |s $2.75, how man|
000014E0: 79 20 6F 66 20 65 61 63  68 20 74 79 70 65 20 6F  |y of each type o|
000014F0: 66 20 63 6F 69 6E 20 64  6F 65 73 20 73 68 65 20  |f coin does she |
00001500: 68 61 76 65 00 4E 69 63  6B 65 6C 73 00 44 69 6D  |have.Nickels.Dim|
00001510: 65 73 00 54 68 65 72 65  20 61 72 65 20 33 35 20  |es.There are 35 |
00001520: 63 6F 69 6E 73 20 77 69  74 68 20 61 20 74 6F 74  |coins with a tot|
00001530: 61 6C 20 76 61 6C 75 65  20 6F 66 20 24 32 2E 37  |al value of $2.7|
00001540: 35 00 48 6F 77 20 6D 61  6E 79 20 6F 66 20 65 61  |5.How many of ea|
00001550: 63 68 20 74 79 70 65 20  6F 66 20 63 6F 69 6E 20  |ch type of coin |
00001560: 64 6F 65 73 20 73 68 65  20 68 61 76 65 00 6E 69  |does she have.ni|
00001570: 63 6B 65 6C 00 6E 69 63  6B 65 6C 20 69 73 20 60  |ckel.nickel is `|
00001580: 35 27 20 63 65 6E 74 73  00 35 00 35 20 63 65 6E  |5' cents.5.5 cen|
00001590: 74 73 00 64 69 6D 65 00  64 69 6D 65 20 69 73 20  |ts.dime.dime is |
000015A0: 60 31 30 27 20 63 65 6E  74 73 00 31 30 00 31 30  |`10' cents.10.10|
000015B0: 00 26 68 54 68 65 20 74  6F 74 61 6C 20 76 61 6C  |.&hThe total val|
000015C0: 75 65 20 6F 66 20 68 65  72 20 63 6F 69 6E 73 20  |ue of her coins |
000015D0: 69 73 20 24 32 2E 37 35  26 68 00 54 68 65 20 74  |is $2.75&h.The t|
000015E0: 6F 74 61 6C 20 77 6F 72  74 68 20 6F 66 20 74 68  |otal worth of th|
000015F0: 65 20 63 6F 69 6E 73 20  69 73 20 60 32 37 35 27  |e coins is `275'|
00001600: 20 63 65 6E 74 73 00 32  37 35 00 26 68 41 6D 79  | cents.275.&hAmy|
00001610: 20 68 61 73 20 33 35 20  63 6F 69 6E 73 26 68 00  | has 35 coins&h.|
00001620: 54 68 65 20 74 6F 74 61  6C 20 6E 75 6D 62 65 72  |The total number|
00001630: 20 6F 66 20 63 6F 69 6E  73 20 69 73 20 60 33 35  | of coins is `35|
00001640: 27 00 33 35 00 6E 69 63  6B 65 6C 73 00 6E 00 6E  |'.35.nickels.n.n|
00001650: 69 63 6B 65 6C 73 00 39  00 64 69 6D 65 73 00 6E  |ickels.9.dimes.n|
00001660: 69 63 6B 65 6C 73 00 41  6D 79 20 68 61 73 20 61  |ickels.Amy has a|
00001670: 20 74 6F 74 61 6C 20 6F  66 20 33 35 20 63 6F 69  | total of 35 coi|
00001680: 6E 73 2E 20 49 66 20 22  26 76 22 20 69 73 20 74  |ns. If "&v" is t|
00001690: 68 65 20 23 20 6F 66 20  6E 69 63 6B 65 6C 73 2C  |he # of nickels,|
000016A0: 20 60 33 35 2D 26 76 27  20 72 65 70 72 65 73 65  | `35-&v' represe|
000016B0: 6E 74 73 20 74 68 65 20  23 20 6F 66 20 64 69 6D  |nts the # of dim|
000016C0: 65 73 2E 00 31 30 00 33  35 2D 26 76 00 6E 69 63  |es..10.35-&v.nic|
000016D0: 6B 65 6C 73 00 6E 69 63  6B 65 6C 73 00 6E 69 63  |kels.nickels.nic|
000016E0: 6B 65 6C 00 35 00 26 76  00 6E 69 63 6B 65 6C 00  |kel.5.&v.nickel.|
000016F0: 31 33 00 35 2A 26 76 00  64 69 6D 65 73 00 64 69  |13.5*&v.dimes.di|
00001700: 6D 65 73 00 64 69 6D 65  00 31 30 00 28 33 35 2D  |mes.dime.10.(35-|
00001710: 26 76 29 00 64 69 6D 65  00 31 34 00 31 30 2A 28  |&v).dime.14.10*(|
00001720: 33 35 2D 26 76 29 00 6E  69 63 6B 65 6C 73 20 61  |35-&v).nickels a|
00001730: 6E 64 20 64 69 6D 65 73  00 6E 69 63 6B 65 6C 00  |nd dimes.nickel.|
00001740: 64 69 6D 65 00 6E 69 63  6B 65 6C 00 64 69 6D 65  |dime.nickel.dime|
00001750: 00 60 35 2A 26 76 20 20  20 20 20 20 20 20 20 5C  |.`5*&v         \|
00001760: 66 31 34 2B 20 20 31 30  2A 28 33 35 2D 26 76 29  |f14+  10*(35-&v)|
00001770: 20 5C 66 32 39 3D 20 32  37 35 27 00 35 2A 26 76  | \f29= 275'.5*&v|
00001780: 2B 31 30 2A 28 33 35 2D  26 76 29 3D 32 37 35 00  |+10*(35-&v)=275.|
00001790: 74 68 65 20 6E 75 6D 62  65 72 20 6F 66 20 6E 69  |the number of ni|
000017A0: 63 6B 65 6C 73 00 26 76  3D 31 35 00 48 6F 77 20  |ckels.&v=15.How |
000017B0: 6D 61 6E 79 20 6F 66 20  65 61 63 68 20 74 79 70  |many of each typ|
000017C0: 65 20 6F 66 20 63 6F 69  6E 20 64 6F 65 73 20 73  |e of coin does s|
000017D0: 68 65 20 68 61 76 65 00  6E 69 63 6B 65 6C 73 00  |he have.nickels.|
000017E0: 26 76 20 3D 20 60 31 35  27 00 39 00 31 35 00 64  |&v = `15'.9.15.d|
000017F0: 69 6D 65 73 20 69 73 20  74 68 65 20 76 61 6C 75  |imes is the valu|
00001800: 65 20 6F 66 20 60 33 35  2D 26 76 27 00 33 35 2D  |e of `35-&v'.35-|
00001810: 26 76 20 3D 20 60 32 30  27 00 31 30 00 32 30 00  |&v = `20'.10.20.|
00001820: 6E 69 63 6B 65 6C 73 00  35 2A 26 76 20 3D 20 35  |nickels.5*&v = 5|
00001830: 2A 31 35 20 3D 20 60 37  35 27 20 63 65 6E 74 73  |*15 = `75' cents|
00001840: 2E 00 31 33 00 37 35 00  64 69 6D 65 73 00 31 30  |..13.75.dimes.10|
00001850: 2A 28 33 35 2D 26 76 29  20 3D 20 31 30 2A 32 30  |*(35-&v) = 10*20|
00001860: 20 3D 20 60 32 30 30 27  20 63 65 6E 74 73 00 31  | = `200' cents.1|
00001870: 34 00 32 30 30 00 73 75  6D 20 6F 66 20 74 68 65  |4.200.sum of the|
00001880: 20 6E 69 63 6B 65 6C 20  61 6E 64 20 64 69 6D 65  | nickel and dime|
00001890: 20 76 61 6C 75 65 73 00  7C 35                    | values.|5      |
 A@Q{}?@DG02&D(1,{})&D(2,{})&D(3,TOTAL)&
D(4,PRICE/UNIT)&D(8,# OF COINS)&D(12,VAL
UE)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE.)@HWHAT AR
E THE FACTS? &H{}&H.@HWHAT IS BEING ASKE
D? &H{}?&H@I(0)@RDATA ENTRY@PFILL IN THE
 GRID - START WITH THE COMMON UNIT. (EXP
RESS ALL VALUES IN CENTS).@HWHAT IS THE 
VALUE OF A {}?@HTHE VALUE OF A {}.@I(5,I
,{})&D(5,{})@HWHAT IS THE VALUE OF A {}?
@HTHE VALUE OF A {}.@I(6,I,{})&D(6,{} CE
NTS)@PENTER THE FACTS FROM THE PROBLEM I
NTO THE GRID. (EXPRESS ALL VALUES IN CEN
TS).@H{}.@H{}.@I(15,I,{})@H{}.@H{}.@I(11
,I,{})@PREPRESENT THE NUMBER OF EACH TYP
E OF COIN.@HCHOOSE A VARIABLE TO REPRESE
NT THE NUMBER OF {}.@HCHOOSE ANY LETTER,
 SUCH AS `{}', TO REPRESENT THE NUMBER O
F {}.@I({},I,&V)@HREPRESENT THE NUMBER O
F {} IN TERMS OF "&V" (THE NUMBER OF {})
.@H{}@I({},I,{})@RPARTS@PWRITE AN EXPRES
SION TO REPRESENT THE VALUE OF EACH TYPE
 OF COIN.@HMULTIPLY THE PRICE/UNIT BY TH
E NUMBER OF {}.@HPRICE/UNIT \F12* # {} \
F25= {} VAL. \N `{}     \F12*  {}'  \F25
= {} VAL.@I({},I,{})@HNOW MULTIPLY THE P
RICE/UNIT BY THE NUMBER OF {}.@HPRICE/UN
IT \F12* # {} \F25= {} VAL. \N  `{}     
\F12* {}'  \F25= {} VAL.@I({},I,{})@RWHO
LE@PUSE THE TABLE TO WRITE AN EQUATION T
O RELATE THE PARTS ({}) TO THE WHOLE (TO
TAL).@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL \N{}@I(16,I,{})@S@RCOMPUTE@PSOLVE 
THE EQUATION FOR "&V"({}). USE PENCIL AN
D PAPER, OR USE THE CALCULATOR.@HISOLATE
 "&V" ON ONE SIDE OF THE EQUATION.@HTHE 
CALCULATOR SOLVES EQUATIONS FOR YOU AND 
DISPLAYS THE STEPS IN THE SOLUTION.@I(16
,I,{})@PNOW FILL IN THE ANSWER(S) TO THE
 PROBLEM. REMEMBER THE QUESTION. &Q{}?&Q
&W(16)@HTHE NUMBER OF {} IS THE VALUE OF
 "&V".@H{}@I({},I,{})@S@HTHE NUMBER OF {
}.@H{}@I({},I,{})@RCHECK@PREREAD THE PRO
BLEM. CHECK YOUR ANSWERS. REPLACE ALL VA
RIABLES IN THE GRID.@HSUBSTITUTE FOR "&V
" IN THE EXPRESSION FOR THE VALUE OF THE
 {}. NOW CALCULATE.@H{}@I({},I,{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION FOR TH
E VALUE OF THE {}.  NOW CALCULATE.@H{}@I
({},I,{})&D(0,CHECK YOUR WORK. THE {} SH
OULD EQUAL THE TOTAL VALUE. ON TO A NEW 
PROBLEM.)@FBETH HAS 7 COINS WORTH 65 CEN
TS. SOME OF THE COINS ARE DIMES AND THE 
REST ARE NICKELS. HOW MANY OF EACH TYPE 
OF COIN ARE THERE.NICKELS.DIMES.BETH HAS
 7 COINS WORTH 65 CENTS.HOW MANY OF EACH
 TYPE OF COIN ARE THERE.NICKEL.NICKEL IS
 `5' CENTS.5.5 CENTS.DIME.DIME IS `10'CE
NTS.10.10.SHE HAS &HCOINS WORTH 65 CENTS
&H.THE COINS ARE WORTH `65' CENTS.65.SHE
 HAS A TOTAL OF 7 COINS.THE TOTAL NUMBER
 OF COINS IS `7'.7.NICKELS.D.DIMES.10.NI
CKELS.DIMES.BETH HAS A TOTAL OF 7 COINS.
 IF "&V" EQUALS THE # OF DIMES, `7-&V' W
OULD REPRESENT THE NUMBER OF NICKELS.9.7
-&V.DIMES.DIMES.DIMES.10.&V.DIMES.14.10&
V.NICKELS.NICKELS.NICKELS.5.(7-&V).NICKE
LS.13.5*(7-&V).DIMES AND NICKELS.NICKELS
.DIMES.NICKELS.DIMES.`5(7-&V)       \F14
+   10&V       \F29=   65'.5(7-&V)+10&V=
65.THE NUMBER OF DIMES.&V=6.HOW MANY OF 
EACH TYPE OF COIN ARE THERE.DIMES.&V = 6
.10.6.NICKELS IS THE VALUE OF 7-&V.7-&V 
= (7-6) = `1'.9.1.DIMES.10 * &V = 10 * 6
 = `60' CENTS.14.60.NICKELS.5 * (7-&V) =
 5 * (7-6) = `5' CENTS.13.5.SUM OF THE N
ICKEL AND DIME VALUES.@FELLEN HAS A COLL
ECTION OF NICKELS AND QUARTERS WORTH $2.
25. ALTOGETHER SHE HAS 17 COINS. HOW MAN
Y OF EACH TYPE OF COIN ARE THERE.NICKELS
.QUARTERS.A COLLECTION OF NICKELS AND QU
ARTERS WORTH $2.25.HOW MANY OF EACH TYPE
 OF COIN ARE THERE.NICKEL.NICKEL IS `5' 
CENTS.5.5 CENTS.QUARTER.QUARTER IS `25' 
CENTS.25.25.SHE HAS &HA COLLECTION WORTH
 $2.25&H.THE COINS ARE WORTH `225' CENTS
.225.&HSHE HAS 17 COINS&H.THE TOTAL NUMB
ER OF COINS IS `17'.17.QUARTERS.Q.QUARTE
RS.10.NICKELS.QUARTERS.ELLEN HAS A TOTAL
 OF 17 COINS. IF "&V" EQUALS THE # OF QU
ARTERS, `17-&V' REPRESENTS THE # OF NICK
ELS..9.17-&V.QUARTERS.QUARTERS.QUARTER.2
5.&V.QUARTER.14.25*&V.NICKELS.NICKELS.NI
CKEL.5.(17-&V).NICKEL.13.5*(17-&V).QUART
ERS AND NICKELS.NICKEL.QUARTER.NICKEL.QU
ARTER.`5*(17-&V)     \F15+  25&V    \F29
= 225'.5*(17-&V)+25*&V=225.THE NUMBER OF
 QUARTERS.&V=7.HOW MANY OF EACH TYPE OF 
COIN ARE THERE.QUARTERS.&V = `7'..10.7.N
ICKELS IS THE VALUE OF `17-&V'.(17-&V) =
 17-7 = `10'.9.10.QUARTERS.25*&V = 25*7 
= `175' CENTS..14.175.NICKELS.5*(17-&V) 
= 5*(17-7) = `50' CENTS..13.50.SUM OF TH
E NICKEL AND QUARTER VALUES.@FNEIL HAS 2
8 COINS WORTH $2.30. SOME OF THEM ARE NI
CKELS AND THE REST ARE DIMES. HOW MANY O
F EACH TYPE OF COIN ARE THERE.NICKELS.DI
MES.NEIL HAS 28 COINS WORTH $2.30.HOW MA
NY OF EACH TYPE OF COIN ARE THERE.NICKEL
.NICKEL IS `5' CENTS.5.5 CENTS.DIME.DIME
 IS `10' CENTS.10.10.HE HAS COINS WORTH 
$2.30.THE TOTAL VALUE OF THE COINS IS `2
30'.230.HE HAS A TOTAL OF 28 COINS.THE T
OTAL NUMBER OF COINS IS `28'.28.NICKELS.
N.NICKELS.9.DIMES.NICKELS.HE HAS A TOTAL
 OF 28 COINS. IF "&V" IS THE # OF NICKEL
S, `28-&V' WOULD REPRESENT THE # OF DIME
S..10.28-&V.NICKELS.NICKELS.NICKEL.5.&V.
NICKEL.13.5*&V.DIMES.DIMES.DIME.10.(28-&
V).DIME.14.10*(28-&V).DIMES AND NICKELS.
NICKEL.DIME.NICKEL.DIME. `5*&V        \F
14+ 10*(28-&V) \F29= 230'.5*&V+10*(28-&V
)=230.THE NUMBER OF NICKELS.&V=10.HOW MA
NY OF EACH TYPE OF COIN ARE THERE.NICKEL
S.&V = `10'.9.10.DIMES IS THE VALUE OF `
28-&V'.28-&V = `18'.10.18.NICKELS.5*&V =
 5*10 = `50' CENTS.13.50.DIMES.10*(28-&V
) = 10*18 = `180' CENTS.14.180.SUM OF TH
E NICKEL AND DIME VALUES.@FAMY HAS 35 CO
INS, SOME OF WHICH ARE DIMES AND THE RES
T ARE NICKELS. IF THE TOTAL VALUE OF HER
 COINS IS $2.75, HOW MANY OF EACH TYPE O
F COIN DOES SHE HAVE.NICKELS.DIMES.THERE
 ARE 35 COINS WITH A TOTAL VALUE OF $2.7
5.HOW MANY OF EACH TYPE OF COIN DOES SHE
 HAVE.NICKEL.NICKEL IS `5' CENTS.5.5 CEN
TS.DIME.DIME IS `10' CENTS.10.10.&HTHE T
OTAL VALUE OF HER COINS IS $2.75&H.THE T
OTAL WORTH OF THE COINS IS `275' CENTS.2
75.&HAMY HAS 35 COINS&H.THE TOTAL NUMBER
 OF COINS IS `35'.35.NICKELS.N.NICKELS.9
.DIMES.NICKELS.AMY HAS A TOTAL OF 35 COI
NS. IF "&V" IS THE # OF NICKELS, `35-&V'
 REPRESENTS THE # OF DIMES..10.35-&V.NIC
KELS.NICKELS.NICKEL.5.&V.NICKEL.13.5*&V.
DIMES.DIMES.DIME.10.(35-&V).DIME.14.10*(
35-&V).NICKELS AND DIMES.NICKEL.DIME.NIC
KEL.DIME.`5*&V         \F14+  10*(35-&V)
 \F29= 275'.5*&V+10*(35-&V)=275.THE NUMB
ER OF NICKELS.&V=15.HOW MANY OF EACH TYP
E OF COIN DOES SHE HAVE.NICKELS.&V = `15
'.9.15.DIMES IS THE VALUE OF `35-&V'.35-
&V = `20'.10.20.NICKELS.5*&V = 5*15 = `7
5' CENTS..13.75.DIMES.10*(35-&V) = 10*20
 = `200' CENTS.14.200.SUM OF THE NICKEL 
AND DIME VALUES.|5
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL