COIN2L3
FILE INFORMATION
FILENAME(S): COIN2L3
FILE TYPE(S): PRG
FILE SIZE: 6.2K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
31185b58e67f080a76e288aa1a0eeda5d86382af2201008a22ef36258c2a4ebd
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | COIN2L3 | PRG | Radd Maxx | 12 | 7 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 3F 40 64 67 30 32 26 64 28 31 | A@q{}?@dg02&d(1|
00000010: 2C 7B 7D 29 26 64 28 32 2C 7B 7D 29 26 64 28 33 |,{})&d(2,{})&d(3|
00000020: 2C 54 6F 74 61 6C 29 26 64 28 34 2C 50 72 69 63 |,Total)&d(4,Pric|
00000030: 65 2F 75 6E 69 74 29 26 64 28 38 2C 23 20 6F 66 |e/unit)&d(8,# of|
00000040: 20 63 6F 69 6E 73 29 26 64 28 31 32 2C 56 61 6C | coins)&d(12,Val|
00000050: 75 65 29 40 72 52 45 41 44 40 70 52 65 61 64 20 |ue)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66 61 63 74 73 3F 20 57 68 |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 |y to continue.)@|
000000C0: 68 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 |hWhat are the fa|
000000D0: 63 74 73 3F 20 26 68 7B 7D 26 68 2E 40 68 57 68 |cts? &h{}&h.@hWh|
000000E0: 61 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 |at is being aske|
000000F0: 64 3F 20 26 68 7B 7D 3F 26 68 40 69 28 30 29 40 |d? &h{}?&h@i(0)@|
00000100: 72 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 6C |rDATA ENTRY@pFil|
00000110: 6C 20 69 6E 20 74 68 65 20 67 72 69 64 20 2D 20 |l in the grid - |
00000120: 73 74 61 72 74 20 77 69 74 68 20 74 68 65 20 63 |start with the c|
00000130: 6F 6D 6D 6F 6E 20 75 6E 69 74 2E 20 28 45 78 70 |ommon unit. (Exp|
00000140: 72 65 73 73 20 61 6C 6C 20 76 61 6C 75 65 73 20 |ress all values |
00000150: 69 6E 20 63 65 6E 74 73 29 2E 40 68 57 68 61 74 |in cents).@hWhat|
00000160: 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 | is the value of|
00000170: 20 61 20 7B 7D 3F 40 68 54 68 65 20 76 61 6C 75 | a {}?@hThe valu|
00000180: 65 20 6F 66 20 61 20 7B 7D 2E 40 69 28 35 2C 69 |e of a {}.@i(5,i|
00000190: 2C 7B 7D 29 26 64 28 35 2C 7B 7D 29 40 68 57 68 |,{})&d(5,{})@hWh|
000001A0: 61 74 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 |at is the value |
000001B0: 6F 66 20 61 20 7B 7D 3F 40 68 54 68 65 20 76 61 |of a {}?@hThe va|
000001C0: 6C 75 65 20 6F 66 20 61 20 7B 7D 2E 40 69 28 36 |lue of a {}.@i(6|
000001D0: 2C 69 2C 7B 7D 29 26 64 28 36 2C 7B 7D 20 63 65 |,i,{})&d(6,{} ce|
000001E0: 6E 74 73 29 40 70 45 6E 74 65 72 20 74 68 65 20 |nts)@pEnter the |
000001F0: 66 61 63 74 73 20 66 72 6F 6D 20 74 68 65 20 70 |facts from the p|
00000200: 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 20 |roblem into the |
00000210: 67 72 69 64 2E 20 28 45 78 70 72 65 73 73 20 61 |grid. (Express a|
00000220: 6C 6C 20 76 61 6C 75 65 73 20 69 6E 20 63 65 6E |ll values in cen|
00000230: 74 73 29 2E 40 68 7B 7D 2E 40 68 7B 7D 2E 40 69 |ts).@h{}.@h{}.@i|
00000240: 28 31 35 2C 69 2C 7B 7D 29 40 68 7B 7D 2E 40 68 |(15,i,{})@h{}.@h|
00000250: 7B 7D 2E 40 69 28 31 31 2C 69 2C 7B 7D 29 40 70 |{}.@i(11,i,{})@p|
00000260: 52 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E 75 |Represent the nu|
00000270: 6D 62 65 72 20 6F 66 20 65 61 63 68 20 74 79 70 |mber of each typ|
00000280: 65 20 6F 66 20 63 6F 69 6E 2E 40 68 43 68 6F 6F |e of coin.@hChoo|
00000290: 73 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 6F |se a variable to|
000002A0: 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E | represent the n|
000002B0: 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 68 43 68 |umber of {}.@hCh|
000002C0: 6F 6F 73 65 20 61 6E 79 20 6C 65 74 74 65 72 2C |oose any letter,|
000002D0: 20 73 75 63 68 20 61 73 20 60 7B 7D 27 2C 20 74 | such as `{}', t|
000002E0: 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 |o represent the |
000002F0: 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 69 28 |number of {}.@i(|
00000300: 7B 7D 2C 69 2C 26 76 29 40 68 52 65 70 72 65 73 |{},i,&v)@hRepres|
00000310: 65 6E 74 20 74 68 65 20 6E 75 6D 62 65 72 20 6F |ent the number o|
00000320: 66 20 7B 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 |f {} in terms of|
00000330: 20 22 26 76 22 20 28 74 68 65 20 6E 75 6D 62 65 | "&v" (the numbe|
00000340: 72 20 6F 66 20 7B 7D 29 2E 40 68 7B 7D 40 69 28 |r of {}).@h{}@i(|
00000350: 7B 7D 2C 69 2C 7B 7D 29 40 72 50 41 52 54 53 40 |{},i,{})@rPARTS@|
00000360: 70 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 |pWrite an expres|
00000370: 73 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E |sion to represen|
00000380: 74 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 65 |t the value of e|
00000390: 61 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E |ach type of coin|
000003A0: 2E 40 68 4D 75 6C 74 69 70 6C 79 20 74 68 65 20 |.@hMultiply the |
000003B0: 70 72 69 63 65 2F 75 6E 69 74 20 62 79 20 74 68 |price/unit by th|
000003C0: 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 |e number of {}.@|
000003D0: 68 50 72 69 63 65 2F 75 6E 69 74 20 5C 66 31 32 |hPrice/unit \f12|
000003E0: 2A 20 23 20 7B 7D 20 5C 66 32 35 3D 20 7B 7D 20 |* # {} \f25= {} |
000003F0: 76 61 6C 2E 20 5C 6E 20 60 7B 7D 20 20 20 20 20 |val. \n `{} |
00000400: 5C 66 31 32 2A 20 20 7B 7D 27 20 20 5C 66 32 35 |\f12* {}' \f25|
00000410: 3D 20 7B 7D 20 76 61 6C 2E 40 69 28 7B 7D 2C 69 |= {} val.@i({},i|
00000420: 2C 7B 7D 29 40 68 4E 6F 77 20 6D 75 6C 74 69 70 |,{})@hNow multip|
00000430: 6C 79 20 74 68 65 20 70 72 69 63 65 2F 75 6E 69 |ly the price/uni|
00000440: 74 20 62 79 20 74 68 65 20 6E 75 6D 62 65 72 20 |t by the number |
00000450: 6F 66 20 7B 7D 2E 40 68 50 72 69 63 65 2F 75 6E |of {}.@hPrice/un|
00000460: 69 74 20 5C 66 31 32 2A 20 23 20 7B 7D 20 5C 66 |it \f12* # {} \f|
00000470: 32 35 3D 20 7B 7D 20 76 61 6C 2E 20 5C 6E 20 20 |25= {} val. \n |
00000480: 60 7B 7D 20 20 20 20 20 5C 66 31 32 2A 20 7B 7D |`{} \f12* {}|
00000490: 27 20 20 5C 66 32 35 3D 20 7B 7D 20 76 61 6C 2E |' \f25= {} val.|
000004A0: 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 72 57 48 4F |@i({},i,{})@rWHO|
000004B0: 4C 45 40 70 55 73 65 20 74 68 65 20 74 61 62 6C |LE@pUse the tabl|
000004C0: 65 20 74 6F 20 77 72 69 74 65 20 61 6E 20 65 71 |e to write an eq|
000004D0: 75 61 74 69 6F 6E 20 74 6F 20 72 65 6C 61 74 65 |uation to relate|
000004E0: 20 74 68 65 20 70 61 72 74 73 20 28 7B 7D 29 20 | the parts ({}) |
000004F0: 74 6F 20 74 68 65 20 77 68 6F 6C 65 20 28 54 6F |to the whole (To|
00000500: 74 61 6C 29 2E 40 68 28 7B 7D 20 76 61 6C 29 20 |tal).@h({} val) |
00000510: 5C 66 31 34 2B 20 28 7B 7D 20 76 61 6C 29 5C 66 |\f14+ ({} val)\f|
00000520: 32 39 3D 20 54 6F 74 61 6C 20 76 61 6C 40 68 28 |29= Total val@h(|
00000530: 7B 7D 20 76 61 6C 29 20 5C 66 31 34 2B 20 28 7B |{} val) \f14+ ({|
00000540: 7D 20 76 61 6C 29 5C 66 32 39 3D 20 54 6F 74 61 |} val)\f29= Tota|
00000550: 6C 20 76 61 6C 20 5C 6E 7B 7D 40 69 28 31 36 2C |l val \n{}@i(16,|
00000560: 69 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 54 45 |i,{})@s@rCOMPUTE|
00000570: 40 70 53 6F 6C 76 65 20 74 68 65 20 65 71 75 61 |@pSolve the equa|
00000580: 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 28 7B 7D |tion for "&v"({}|
00000590: 29 2E 20 55 73 65 20 70 65 6E 63 69 6C 20 61 6E |). Use pencil an|
000005A0: 64 20 70 61 70 65 72 2C 20 6F 72 20 75 73 65 20 |d paper, or use |
000005B0: 74 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 |the Calculator.@|
000005C0: 68 49 73 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E |hIsolate "&v" on|
000005D0: 20 6F 6E 65 20 73 69 64 65 20 6F 66 20 74 68 65 | one side of the|
000005E0: 20 65 71 75 61 74 69 6F 6E 2E 40 68 54 68 65 20 | equation.@hThe |
000005F0: 43 61 6C 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 |Calculator solve|
00000600: 73 20 65 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 |s equations for |
00000610: 79 6F 75 20 61 6E 64 20 64 69 73 70 6C 61 79 73 |you and displays|
00000620: 20 74 68 65 20 73 74 65 70 73 20 69 6E 20 74 68 | the steps in th|
00000630: 65 20 73 6F 6C 75 74 69 6F 6E 2E 40 69 28 31 36 |e solution.@i(16|
00000640: 2C 69 2C 7B 7D 29 40 70 4E 6F 77 20 66 69 6C 6C |,i,{})@pNow fill|
00000650: 20 69 6E 20 74 68 65 20 61 6E 73 77 65 72 28 73 | in the answer(s|
00000660: 29 20 74 6F 20 74 68 65 20 70 72 6F 62 6C 65 6D |) to the problem|
00000670: 2E 20 52 65 6D 65 6D 62 65 72 20 74 68 65 20 71 |. Remember the q|
00000680: 75 65 73 74 69 6F 6E 2E 20 26 71 7B 7D 3F 26 71 |uestion. &q{}?&q|
00000690: 26 77 28 31 36 29 40 68 54 68 65 20 6E 75 6D 62 |&w(16)@hThe numb|
000006A0: 65 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 20 |er of {} is the |
000006B0: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
000006C0: 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 73 40 |{}@i({},i,{})@s@|
000006D0: 68 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B |hThe number of {|
000006E0: 7D 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |}.@h{}@i({},i,{}|
000006F0: 29 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 64 |)@rCHECK@pReread|
00000700: 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 68 | the problem. Ch|
00000710: 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 73 |eck your answers|
00000720: 2E 20 52 65 70 6C 61 63 65 20 61 6C 6C 20 76 61 |. Replace all va|
00000730: 72 69 61 62 6C 65 73 20 69 6E 20 74 68 65 20 67 |riables in the g|
00000740: 72 69 64 2E 40 68 53 75 62 73 74 69 74 75 74 65 |rid.@hSubstitute|
00000750: 20 66 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 | for "&v" in the|
00000760: 20 65 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 | expression for |
00000770: 74 68 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 |the value of the|
00000780: 20 7B 7D 2E 20 4E 6F 77 20 63 61 6C 63 75 6C 61 | {}. Now calcula|
00000790: 74 65 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B |te.@h{}@i({},i,{|
000007A0: 7D 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 |})@hSubstitute f|
000007B0: 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 |or "&v" in the e|
000007C0: 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 74 68 |xpression for th|
000007D0: 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 20 7B |e value of the {|
000007E0: 7D 2E 20 20 4E 6F 77 20 63 61 6C 63 75 6C 61 74 |}. Now calculat|
000007F0: 65 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |e.@h{}@i({},i,{}|
00000800: 29 26 64 28 30 2C 43 68 65 63 6B 20 79 6F 75 72 |)&d(0,Check your|
00000810: 20 77 6F 72 6B 2E 20 54 68 65 20 7B 7D 20 73 68 | work. The {} sh|
00000820: 6F 75 6C 64 20 65 71 75 61 6C 20 74 68 65 20 74 |ould equal the t|
00000830: 6F 74 61 6C 20 76 61 6C 75 65 2E 20 4F 6E 20 74 |otal value. On t|
00000840: 6F 20 61 20 6E 65 77 20 70 72 6F 62 6C 65 6D 2E |o a new problem.|
00000850: 29 40 66 42 65 74 68 20 68 61 73 20 37 20 63 6F |)@fBeth has 7 co|
00000860: 69 6E 73 20 77 6F 72 74 68 20 36 35 20 63 65 6E |ins worth 65 cen|
00000870: 74 73 2E 20 53 6F 6D 65 20 6F 66 20 74 68 65 20 |ts. Some of the |
00000880: 63 6F 69 6E 73 20 61 72 65 20 64 69 6D 65 73 20 |coins are dimes |
00000890: 61 6E 64 20 74 68 65 20 72 65 73 74 20 61 72 65 |and the rest are|
000008A0: 20 6E 69 63 6B 65 6C 73 2E 20 48 6F 77 20 6D 61 | nickels. How ma|
000008B0: 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 20 |ny of each type |
000008C0: 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 65 72 |of coin are ther|
000008D0: 65 00 4E 69 63 6B 65 6C 73 00 44 69 6D 65 73 00 |e.Nickels.Dimes.|
000008E0: 42 65 74 68 20 68 61 73 20 37 20 63 6F 69 6E 73 |Beth has 7 coins|
000008F0: 20 77 6F 72 74 68 20 36 35 20 63 65 6E 74 73 00 | worth 65 cents.|
00000900: 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 |How many of each|
00000910: 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 61 72 | type of coin ar|
00000920: 65 20 74 68 65 72 65 00 6E 69 63 6B 65 6C 00 6E |e there.nickel.n|
00000930: 69 63 6B 65 6C 20 69 73 20 60 35 27 20 63 65 6E |ickel is `5' cen|
00000940: 74 73 00 35 00 35 20 63 65 6E 74 73 00 64 69 6D |ts.5.5 cents.dim|
00000950: 65 00 64 69 6D 65 20 69 73 20 60 31 30 27 63 65 |e.dime is `10'ce|
00000960: 6E 74 73 00 31 30 00 31 30 00 53 68 65 20 68 61 |nts.10.10.She ha|
00000970: 73 20 26 68 63 6F 69 6E 73 20 77 6F 72 74 68 20 |s &hcoins worth |
00000980: 36 35 20 63 65 6E 74 73 26 68 00 54 68 65 20 63 |65 cents&h.The c|
00000990: 6F 69 6E 73 20 61 72 65 20 77 6F 72 74 68 20 60 |oins are worth `|
000009A0: 36 35 27 20 63 65 6E 74 73 00 36 35 00 53 68 65 |65' cents.65.She|
000009B0: 20 68 61 73 20 61 20 74 6F 74 61 6C 20 6F 66 20 | has a total of |
000009C0: 37 20 63 6F 69 6E 73 00 54 68 65 20 74 6F 74 61 |7 coins.The tota|
000009D0: 6C 20 6E 75 6D 62 65 72 20 6F 66 20 63 6F 69 6E |l number of coin|
000009E0: 73 20 69 73 20 60 37 27 00 37 00 6E 69 63 6B 65 |s is `7'.7.nicke|
000009F0: 6C 73 00 64 00 64 69 6D 65 73 00 31 30 00 6E 69 |ls.d.dimes.10.ni|
00000A00: 63 6B 65 6C 73 00 64 69 6D 65 73 00 42 65 74 68 |ckels.dimes.Beth|
00000A10: 20 68 61 73 20 61 20 74 6F 74 61 6C 20 6F 66 20 | has a total of |
00000A20: 37 20 63 6F 69 6E 73 2E 20 49 66 20 22 26 76 22 |7 coins. If "&v"|
00000A30: 20 65 71 75 61 6C 73 20 74 68 65 20 23 20 6F 66 | equals the # of|
00000A40: 20 64 69 6D 65 73 2C 20 60 37 2D 26 76 27 20 77 | dimes, `7-&v' w|
00000A50: 6F 75 6C 64 20 72 65 70 72 65 73 65 6E 74 20 74 |ould represent t|
00000A60: 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 6E 69 63 |he number of nic|
00000A70: 6B 65 6C 73 00 39 00 37 2D 26 76 00 64 69 6D 65 |kels.9.7-&v.dime|
00000A80: 73 00 64 69 6D 65 73 00 64 69 6D 65 73 00 31 30 |s.dimes.dimes.10|
00000A90: 00 26 76 00 64 69 6D 65 73 00 31 34 00 31 30 26 |.&v.dimes.14.10&|
00000AA0: 76 00 6E 69 63 6B 65 6C 73 00 6E 69 63 6B 65 6C |v.nickels.nickel|
00000AB0: 73 00 6E 69 63 6B 65 6C 73 00 35 00 28 37 2D 26 |s.nickels.5.(7-&|
00000AC0: 76 29 00 6E 69 63 6B 65 6C 73 00 31 33 00 35 2A |v).nickels.13.5*|
00000AD0: 28 37 2D 26 76 29 00 64 69 6D 65 73 20 61 6E 64 |(7-&v).dimes and|
00000AE0: 20 6E 69 63 6B 65 6C 73 00 6E 69 63 6B 65 6C 73 | nickels.nickels|
00000AF0: 00 64 69 6D 65 73 00 6E 69 63 6B 65 6C 73 00 64 |.dimes.nickels.d|
00000B00: 69 6D 65 73 00 60 35 28 37 2D 26 76 29 20 20 20 |imes.`5(7-&v) |
00000B10: 20 20 20 20 5C 66 31 34 2B 20 20 20 31 30 26 76 | \f14+ 10&v|
00000B20: 20 20 20 20 20 20 20 5C 66 32 39 3D 20 20 20 36 | \f29= 6|
00000B30: 35 27 00 35 28 37 2D 26 76 29 2B 31 30 26 76 3D |5'.5(7-&v)+10&v=|
00000B40: 36 35 00 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 |65.the number of|
00000B50: 20 64 69 6D 65 73 00 26 76 3D 36 00 48 6F 77 20 | dimes.&v=6.How |
00000B60: 6D 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 |many of each typ|
00000B70: 65 20 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 |e of coin are th|
00000B80: 65 72 65 00 64 69 6D 65 73 00 26 76 20 3D 20 36 |ere.dimes.&v = 6|
00000B90: 00 31 30 00 36 00 6E 69 63 6B 65 6C 73 20 69 73 |.10.6.nickels is|
00000BA0: 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 37 2D | the value of 7-|
00000BB0: 26 76 00 37 2D 26 76 20 3D 20 28 37 2D 36 29 20 |&v.7-&v = (7-6) |
00000BC0: 3D 20 60 31 27 00 39 00 31 00 64 69 6D 65 73 00 |= `1'.9.1.dimes.|
00000BD0: 31 30 20 2A 20 26 76 20 3D 20 31 30 20 2A 20 36 |10 * &v = 10 * 6|
00000BE0: 20 3D 20 60 36 30 27 20 63 65 6E 74 73 00 31 34 | = `60' cents.14|
00000BF0: 00 36 30 00 6E 69 63 6B 65 6C 73 00 35 20 2A 20 |.60.nickels.5 * |
00000C00: 28 37 2D 26 76 29 20 3D 20 35 20 2A 20 28 37 2D |(7-&v) = 5 * (7-|
00000C10: 36 29 20 3D 20 60 35 27 20 63 65 6E 74 73 00 31 |6) = `5' cents.1|
00000C20: 33 00 35 00 73 75 6D 20 6F 66 20 74 68 65 20 6E |3.5.sum of the n|
00000C30: 69 63 6B 65 6C 20 61 6E 64 20 64 69 6D 65 20 76 |ickel and dime v|
00000C40: 61 6C 75 65 73 00 40 66 45 6C 6C 65 6E 20 68 61 |alues.@fEllen ha|
00000C50: 73 20 61 20 63 6F 6C 6C 65 63 74 69 6F 6E 20 6F |s a collection o|
00000C60: 66 20 6E 69 63 6B 65 6C 73 20 61 6E 64 20 71 75 |f nickels and qu|
00000C70: 61 72 74 65 72 73 20 77 6F 72 74 68 20 24 32 2E |arters worth $2.|
00000C80: 32 35 2E 20 41 6C 74 6F 67 65 74 68 65 72 20 73 |25. Altogether s|
00000C90: 68 65 20 68 61 73 20 31 37 20 63 6F 69 6E 73 2E |he has 17 coins.|
00000CA0: 20 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 | How many of eac|
00000CB0: 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 61 |h type of coin a|
00000CC0: 72 65 20 74 68 65 72 65 00 4E 69 63 6B 65 6C 73 |re there.Nickels|
00000CD0: 00 51 75 61 72 74 65 72 73 00 41 20 63 6F 6C 6C |.Quarters.A coll|
00000CE0: 65 63 74 69 6F 6E 20 6F 66 20 6E 69 63 6B 65 6C |ection of nickel|
00000CF0: 73 20 61 6E 64 20 71 75 61 72 74 65 72 73 20 77 |s and quarters w|
00000D00: 6F 72 74 68 20 24 32 2E 32 35 00 48 6F 77 20 6D |orth $2.25.How m|
00000D10: 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 |any of each type|
00000D20: 20 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 65 | of coin are the|
00000D30: 72 65 00 6E 69 63 6B 65 6C 00 6E 69 63 6B 65 6C |re.nickel.nickel|
00000D40: 20 69 73 20 60 35 27 20 63 65 6E 74 73 00 35 00 | is `5' cents.5.|
00000D50: 35 20 63 65 6E 74 73 00 71 75 61 72 74 65 72 00 |5 cents.quarter.|
00000D60: 71 75 61 72 74 65 72 20 69 73 20 60 32 35 27 20 |quarter is `25' |
00000D70: 63 65 6E 74 73 00 32 35 00 32 35 00 53 68 65 20 |cents.25.25.She |
00000D80: 68 61 73 20 26 68 61 20 63 6F 6C 6C 65 63 74 69 |has &ha collecti|
00000D90: 6F 6E 20 77 6F 72 74 68 20 24 32 2E 32 35 26 68 |on worth $2.25&h|
00000DA0: 00 54 68 65 20 63 6F 69 6E 73 20 61 72 65 20 77 |.The coins are w|
00000DB0: 6F 72 74 68 20 60 32 32 35 27 20 63 65 6E 74 73 |orth `225' cents|
00000DC0: 00 32 32 35 00 26 68 53 68 65 20 68 61 73 20 31 |.225.&hShe has 1|
00000DD0: 37 20 63 6F 69 6E 73 26 68 00 54 68 65 20 74 6F |7 coins&h.The to|
00000DE0: 74 61 6C 20 6E 75 6D 62 65 72 20 6F 66 20 63 6F |tal number of co|
00000DF0: 69 6E 73 20 69 73 20 60 31 37 27 00 31 37 00 71 |ins is `17'.17.q|
00000E00: 75 61 72 74 65 72 73 00 71 00 71 75 61 72 74 65 |uarters.q.quarte|
00000E10: 72 73 00 31 30 00 6E 69 63 6B 65 6C 73 00 71 75 |rs.10.nickels.qu|
00000E20: 61 72 74 65 72 73 00 45 6C 6C 65 6E 20 68 61 73 |arters.Ellen has|
00000E30: 20 61 20 74 6F 74 61 6C 20 6F 66 20 31 37 20 63 | a total of 17 c|
00000E40: 6F 69 6E 73 2E 20 49 66 20 22 26 76 22 20 65 71 |oins. If "&v" eq|
00000E50: 75 61 6C 73 20 74 68 65 20 23 20 6F 66 20 71 75 |uals the # of qu|
00000E60: 61 72 74 65 72 73 2C 20 60 31 37 2D 26 76 27 20 |arters, `17-&v' |
00000E70: 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 20 23 |represents the #|
00000E80: 20 6F 66 20 6E 69 63 6B 65 6C 73 2E 00 39 00 31 | of nickels..9.1|
00000E90: 37 2D 26 76 00 71 75 61 72 74 65 72 73 00 71 75 |7-&v.quarters.qu|
00000EA0: 61 72 74 65 72 73 00 71 75 61 72 74 65 72 00 32 |arters.quarter.2|
00000EB0: 35 00 26 76 00 71 75 61 72 74 65 72 00 31 34 00 |5.&v.quarter.14.|
00000EC0: 32 35 2A 26 76 00 6E 69 63 6B 65 6C 73 00 6E 69 |25*&v.nickels.ni|
00000ED0: 63 6B 65 6C 73 00 6E 69 63 6B 65 6C 00 35 00 28 |ckels.nickel.5.(|
00000EE0: 31 37 2D 26 76 29 00 6E 69 63 6B 65 6C 00 31 33 |17-&v).nickel.13|
00000EF0: 00 35 2A 28 31 37 2D 26 76 29 00 71 75 61 72 74 |.5*(17-&v).quart|
00000F00: 65 72 73 20 61 6E 64 20 6E 69 63 6B 65 6C 73 00 |ers and nickels.|
00000F10: 6E 69 63 6B 65 6C 00 71 75 61 72 74 65 72 00 6E |nickel.quarter.n|
00000F20: 69 63 6B 65 6C 00 71 75 61 72 74 65 72 00 60 35 |ickel.quarter.`5|
00000F30: 2A 28 31 37 2D 26 76 29 20 20 20 20 20 5C 66 31 |*(17-&v) \f1|
00000F40: 35 2B 20 20 32 35 26 76 20 20 20 20 5C 66 32 39 |5+ 25&v \f29|
00000F50: 3D 20 32 32 35 27 00 35 2A 28 31 37 2D 26 76 29 |= 225'.5*(17-&v)|
00000F60: 2B 32 35 2A 26 76 3D 32 32 35 00 74 68 65 20 6E |+25*&v=225.the n|
00000F70: 75 6D 62 65 72 20 6F 66 20 71 75 61 72 74 65 72 |umber of quarter|
00000F80: 73 00 26 76 3D 37 00 48 6F 77 20 6D 61 6E 79 20 |s.&v=7.How many |
00000F90: 6F 66 20 65 61 63 68 20 74 79 70 65 20 6F 66 20 |of each type of |
00000FA0: 63 6F 69 6E 20 61 72 65 20 74 68 65 72 65 00 71 |coin are there.q|
00000FB0: 75 61 72 74 65 72 73 00 26 76 20 3D 20 60 37 27 |uarters.&v = `7'|
00000FC0: 2E 00 31 30 00 37 00 6E 69 63 6B 65 6C 73 20 69 |..10.7.nickels i|
00000FD0: 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 60 |s the value of `|
00000FE0: 31 37 2D 26 76 27 00 28 31 37 2D 26 76 29 20 3D |17-&v'.(17-&v) =|
00000FF0: 20 31 37 2D 37 20 3D 20 60 31 30 27 00 39 00 31 | 17-7 = `10'.9.1|
00001000: 30 00 71 75 61 72 74 65 72 73 00 32 35 2A 26 76 |0.quarters.25*&v|
00001010: 20 3D 20 32 35 2A 37 20 3D 20 60 31 37 35 27 20 | = 25*7 = `175' |
00001020: 63 65 6E 74 73 2E 00 31 34 00 31 37 35 00 6E 69 |cents..14.175.ni|
00001030: 63 6B 65 6C 73 00 35 2A 28 31 37 2D 26 76 29 20 |ckels.5*(17-&v) |
00001040: 3D 20 35 2A 28 31 37 2D 37 29 20 3D 20 60 35 30 |= 5*(17-7) = `50|
00001050: 27 20 63 65 6E 74 73 2E 00 31 33 00 35 30 00 73 |' cents..13.50.s|
00001060: 75 6D 20 6F 66 20 74 68 65 20 6E 69 63 6B 65 6C |um of the nickel|
00001070: 20 61 6E 64 20 71 75 61 72 74 65 72 20 76 61 6C | and quarter val|
00001080: 75 65 73 00 40 66 4E 65 69 6C 20 68 61 73 20 32 |ues.@fNeil has 2|
00001090: 38 20 63 6F 69 6E 73 20 77 6F 72 74 68 20 24 32 |8 coins worth $2|
000010A0: 2E 33 30 2E 20 53 6F 6D 65 20 6F 66 20 74 68 65 |.30. Some of the|
000010B0: 6D 20 61 72 65 20 6E 69 63 6B 65 6C 73 20 61 6E |m are nickels an|
000010C0: 64 20 74 68 65 20 72 65 73 74 20 61 72 65 20 64 |d the rest are d|
000010D0: 69 6D 65 73 2E 20 48 6F 77 20 6D 61 6E 79 20 6F |imes. How many o|
000010E0: 66 20 65 61 63 68 20 74 79 70 65 20 6F 66 20 63 |f each type of c|
000010F0: 6F 69 6E 20 61 72 65 20 74 68 65 72 65 00 4E 69 |oin are there.Ni|
00001100: 63 6B 65 6C 73 00 44 69 6D 65 73 00 4E 65 69 6C |ckels.Dimes.Neil|
00001110: 20 68 61 73 20 32 38 20 63 6F 69 6E 73 20 77 6F | has 28 coins wo|
00001120: 72 74 68 20 24 32 2E 33 30 00 48 6F 77 20 6D 61 |rth $2.30.How ma|
00001130: 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 20 |ny of each type |
00001140: 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 65 72 |of coin are ther|
00001150: 65 00 6E 69 63 6B 65 6C 00 6E 69 63 6B 65 6C 20 |e.nickel.nickel |
00001160: 69 73 20 60 35 27 20 63 65 6E 74 73 00 35 00 35 |is `5' cents.5.5|
00001170: 20 63 65 6E 74 73 00 64 69 6D 65 00 64 69 6D 65 | cents.dime.dime|
00001180: 20 69 73 20 60 31 30 27 20 63 65 6E 74 73 00 31 | is `10' cents.1|
00001190: 30 00 31 30 00 48 65 20 68 61 73 20 63 6F 69 6E |0.10.He has coin|
000011A0: 73 20 77 6F 72 74 68 20 24 32 2E 33 30 00 54 68 |s worth $2.30.Th|
000011B0: 65 20 74 6F 74 61 6C 20 76 61 6C 75 65 20 6F 66 |e total value of|
000011C0: 20 74 68 65 20 63 6F 69 6E 73 20 69 73 20 60 32 | the coins is `2|
000011D0: 33 30 27 00 32 33 30 00 48 65 20 68 61 73 20 61 |30'.230.He has a|
000011E0: 20 74 6F 74 61 6C 20 6F 66 20 32 38 20 63 6F 69 | total of 28 coi|
000011F0: 6E 73 00 54 68 65 20 74 6F 74 61 6C 20 6E 75 6D |ns.The total num|
00001200: 62 65 72 20 6F 66 20 63 6F 69 6E 73 20 69 73 20 |ber of coins is |
00001210: 60 32 38 27 00 32 38 00 6E 69 63 6B 65 6C 73 00 |`28'.28.nickels.|
00001220: 6E 00 6E 69 63 6B 65 6C 73 00 39 00 64 69 6D 65 |n.nickels.9.dime|
00001230: 73 00 6E 69 63 6B 65 6C 73 00 48 65 20 68 61 73 |s.nickels.He has|
00001240: 20 61 20 74 6F 74 61 6C 20 6F 66 20 32 38 20 63 | a total of 28 c|
00001250: 6F 69 6E 73 2E 20 49 66 20 22 26 76 22 20 69 73 |oins. If "&v" is|
00001260: 20 74 68 65 20 23 20 6F 66 20 6E 69 63 6B 65 6C | the # of nickel|
00001270: 73 2C 20 60 32 38 2D 26 76 27 20 77 6F 75 6C 64 |s, `28-&v' would|
00001280: 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 23 | represent the #|
00001290: 20 6F 66 20 64 69 6D 65 73 2E 00 31 30 00 32 38 | of dimes..10.28|
000012A0: 2D 26 76 00 6E 69 63 6B 65 6C 73 00 6E 69 63 6B |-&v.nickels.nick|
000012B0: 65 6C 73 00 6E 69 63 6B 65 6C 00 35 00 26 76 00 |els.nickel.5.&v.|
000012C0: 6E 69 63 6B 65 6C 00 31 33 00 35 2A 26 76 00 64 |nickel.13.5*&v.d|
000012D0: 69 6D 65 73 00 64 69 6D 65 73 00 64 69 6D 65 00 |imes.dimes.dime.|
000012E0: 31 30 00 28 32 38 2D 26 76 29 00 64 69 6D 65 00 |10.(28-&v).dime.|
000012F0: 31 34 00 31 30 2A 28 32 38 2D 26 76 29 00 64 69 |14.10*(28-&v).di|
00001300: 6D 65 73 20 61 6E 64 20 6E 69 63 6B 65 6C 73 00 |mes and nickels.|
00001310: 6E 69 63 6B 65 6C 00 64 69 6D 65 00 6E 69 63 6B |nickel.dime.nick|
00001320: 65 6C 00 64 69 6D 65 00 20 60 35 2A 26 76 20 20 |el.dime. `5*&v |
00001330: 20 20 20 20 20 20 5C 66 31 34 2B 20 31 30 2A 28 | \f14+ 10*(|
00001340: 32 38 2D 26 76 29 20 5C 66 32 39 3D 20 32 33 30 |28-&v) \f29= 230|
00001350: 27 00 35 2A 26 76 2B 31 30 2A 28 32 38 2D 26 76 |'.5*&v+10*(28-&v|
00001360: 29 3D 32 33 30 00 74 68 65 20 6E 75 6D 62 65 72 |)=230.the number|
00001370: 20 6F 66 20 6E 69 63 6B 65 6C 73 00 26 76 3D 31 | of nickels.&v=1|
00001380: 30 00 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 |0.How many of ea|
00001390: 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 |ch type of coin |
000013A0: 61 72 65 20 74 68 65 72 65 00 6E 69 63 6B 65 6C |are there.nickel|
000013B0: 73 00 26 76 20 3D 20 60 31 30 27 00 39 00 31 30 |s.&v = `10'.9.10|
000013C0: 00 64 69 6D 65 73 20 69 73 20 74 68 65 20 76 61 |.dimes is the va|
000013D0: 6C 75 65 20 6F 66 20 60 32 38 2D 26 76 27 00 32 |lue of `28-&v'.2|
000013E0: 38 2D 26 76 20 3D 20 60 31 38 27 00 31 30 00 31 |8-&v = `18'.10.1|
000013F0: 38 00 6E 69 63 6B 65 6C 73 00 35 2A 26 76 20 3D |8.nickels.5*&v =|
00001400: 20 35 2A 31 30 20 3D 20 60 35 30 27 20 63 65 6E | 5*10 = `50' cen|
00001410: 74 73 00 31 33 00 35 30 00 64 69 6D 65 73 00 31 |ts.13.50.dimes.1|
00001420: 30 2A 28 32 38 2D 26 76 29 20 3D 20 31 30 2A 31 |0*(28-&v) = 10*1|
00001430: 38 20 3D 20 60 31 38 30 27 20 63 65 6E 74 73 00 |8 = `180' cents.|
00001440: 31 34 00 31 38 30 00 73 75 6D 20 6F 66 20 74 68 |14.180.sum of th|
00001450: 65 20 6E 69 63 6B 65 6C 20 61 6E 64 20 64 69 6D |e nickel and dim|
00001460: 65 20 76 61 6C 75 65 73 00 40 66 41 6D 79 20 68 |e values.@fAmy h|
00001470: 61 73 20 33 35 20 63 6F 69 6E 73 2C 20 73 6F 6D |as 35 coins, som|
00001480: 65 20 6F 66 20 77 68 69 63 68 20 61 72 65 20 64 |e of which are d|
00001490: 69 6D 65 73 20 61 6E 64 20 74 68 65 20 72 65 73 |imes and the res|
000014A0: 74 20 61 72 65 20 6E 69 63 6B 65 6C 73 2E 20 49 |t are nickels. I|
000014B0: 66 20 74 68 65 20 74 6F 74 61 6C 20 76 61 6C 75 |f the total valu|
000014C0: 65 20 6F 66 20 68 65 72 20 63 6F 69 6E 73 20 69 |e of her coins i|
000014D0: 73 20 24 32 2E 37 35 2C 20 68 6F 77 20 6D 61 6E |s $2.75, how man|
000014E0: 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 20 6F |y of each type o|
000014F0: 66 20 63 6F 69 6E 20 64 6F 65 73 20 73 68 65 20 |f coin does she |
00001500: 68 61 76 65 00 4E 69 63 6B 65 6C 73 00 44 69 6D |have.Nickels.Dim|
00001510: 65 73 00 54 68 65 72 65 20 61 72 65 20 33 35 20 |es.There are 35 |
00001520: 63 6F 69 6E 73 20 77 69 74 68 20 61 20 74 6F 74 |coins with a tot|
00001530: 61 6C 20 76 61 6C 75 65 20 6F 66 20 24 32 2E 37 |al value of $2.7|
00001540: 35 00 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 |5.How many of ea|
00001550: 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 |ch type of coin |
00001560: 64 6F 65 73 20 73 68 65 20 68 61 76 65 00 6E 69 |does she have.ni|
00001570: 63 6B 65 6C 00 6E 69 63 6B 65 6C 20 69 73 20 60 |ckel.nickel is `|
00001580: 35 27 20 63 65 6E 74 73 00 35 00 35 20 63 65 6E |5' cents.5.5 cen|
00001590: 74 73 00 64 69 6D 65 00 64 69 6D 65 20 69 73 20 |ts.dime.dime is |
000015A0: 60 31 30 27 20 63 65 6E 74 73 00 31 30 00 31 30 |`10' cents.10.10|
000015B0: 00 26 68 54 68 65 20 74 6F 74 61 6C 20 76 61 6C |.&hThe total val|
000015C0: 75 65 20 6F 66 20 68 65 72 20 63 6F 69 6E 73 20 |ue of her coins |
000015D0: 69 73 20 24 32 2E 37 35 26 68 00 54 68 65 20 74 |is $2.75&h.The t|
000015E0: 6F 74 61 6C 20 77 6F 72 74 68 20 6F 66 20 74 68 |otal worth of th|
000015F0: 65 20 63 6F 69 6E 73 20 69 73 20 60 32 37 35 27 |e coins is `275'|
00001600: 20 63 65 6E 74 73 00 32 37 35 00 26 68 41 6D 79 | cents.275.&hAmy|
00001610: 20 68 61 73 20 33 35 20 63 6F 69 6E 73 26 68 00 | has 35 coins&h.|
00001620: 54 68 65 20 74 6F 74 61 6C 20 6E 75 6D 62 65 72 |The total number|
00001630: 20 6F 66 20 63 6F 69 6E 73 20 69 73 20 60 33 35 | of coins is `35|
00001640: 27 00 33 35 00 6E 69 63 6B 65 6C 73 00 6E 00 6E |'.35.nickels.n.n|
00001650: 69 63 6B 65 6C 73 00 39 00 64 69 6D 65 73 00 6E |ickels.9.dimes.n|
00001660: 69 63 6B 65 6C 73 00 41 6D 79 20 68 61 73 20 61 |ickels.Amy has a|
00001670: 20 74 6F 74 61 6C 20 6F 66 20 33 35 20 63 6F 69 | total of 35 coi|
00001680: 6E 73 2E 20 49 66 20 22 26 76 22 20 69 73 20 74 |ns. If "&v" is t|
00001690: 68 65 20 23 20 6F 66 20 6E 69 63 6B 65 6C 73 2C |he # of nickels,|
000016A0: 20 60 33 35 2D 26 76 27 20 72 65 70 72 65 73 65 | `35-&v' represe|
000016B0: 6E 74 73 20 74 68 65 20 23 20 6F 66 20 64 69 6D |nts the # of dim|
000016C0: 65 73 2E 00 31 30 00 33 35 2D 26 76 00 6E 69 63 |es..10.35-&v.nic|
000016D0: 6B 65 6C 73 00 6E 69 63 6B 65 6C 73 00 6E 69 63 |kels.nickels.nic|
000016E0: 6B 65 6C 00 35 00 26 76 00 6E 69 63 6B 65 6C 00 |kel.5.&v.nickel.|
000016F0: 31 33 00 35 2A 26 76 00 64 69 6D 65 73 00 64 69 |13.5*&v.dimes.di|
00001700: 6D 65 73 00 64 69 6D 65 00 31 30 00 28 33 35 2D |mes.dime.10.(35-|
00001710: 26 76 29 00 64 69 6D 65 00 31 34 00 31 30 2A 28 |&v).dime.14.10*(|
00001720: 33 35 2D 26 76 29 00 6E 69 63 6B 65 6C 73 20 61 |35-&v).nickels a|
00001730: 6E 64 20 64 69 6D 65 73 00 6E 69 63 6B 65 6C 00 |nd dimes.nickel.|
00001740: 64 69 6D 65 00 6E 69 63 6B 65 6C 00 64 69 6D 65 |dime.nickel.dime|
00001750: 00 60 35 2A 26 76 20 20 20 20 20 20 20 20 20 5C |.`5*&v \|
00001760: 66 31 34 2B 20 20 31 30 2A 28 33 35 2D 26 76 29 |f14+ 10*(35-&v)|
00001770: 20 5C 66 32 39 3D 20 32 37 35 27 00 35 2A 26 76 | \f29= 275'.5*&v|
00001780: 2B 31 30 2A 28 33 35 2D 26 76 29 3D 32 37 35 00 |+10*(35-&v)=275.|
00001790: 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 6E 69 |the number of ni|
000017A0: 63 6B 65 6C 73 00 26 76 3D 31 35 00 48 6F 77 20 |ckels.&v=15.How |
000017B0: 6D 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 |many of each typ|
000017C0: 65 20 6F 66 20 63 6F 69 6E 20 64 6F 65 73 20 73 |e of coin does s|
000017D0: 68 65 20 68 61 76 65 00 6E 69 63 6B 65 6C 73 00 |he have.nickels.|
000017E0: 26 76 20 3D 20 60 31 35 27 00 39 00 31 35 00 64 |&v = `15'.9.15.d|
000017F0: 69 6D 65 73 20 69 73 20 74 68 65 20 76 61 6C 75 |imes is the valu|
00001800: 65 20 6F 66 20 60 33 35 2D 26 76 27 00 33 35 2D |e of `35-&v'.35-|
00001810: 26 76 20 3D 20 60 32 30 27 00 31 30 00 32 30 00 |&v = `20'.10.20.|
00001820: 6E 69 63 6B 65 6C 73 00 35 2A 26 76 20 3D 20 35 |nickels.5*&v = 5|
00001830: 2A 31 35 20 3D 20 60 37 35 27 20 63 65 6E 74 73 |*15 = `75' cents|
00001840: 2E 00 31 33 00 37 35 00 64 69 6D 65 73 00 31 30 |..13.75.dimes.10|
00001850: 2A 28 33 35 2D 26 76 29 20 3D 20 31 30 2A 32 30 |*(35-&v) = 10*20|
00001860: 20 3D 20 60 32 30 30 27 20 63 65 6E 74 73 00 31 | = `200' cents.1|
00001870: 34 00 32 30 30 00 73 75 6D 20 6F 66 20 74 68 65 |4.200.sum of the|
00001880: 20 6E 69 63 6B 65 6C 20 61 6E 64 20 64 69 6D 65 | nickel and dime|
00001890: 20 76 61 6C 75 65 73 00 7C 35 | values.|5 |
A@Q{}?@DG02&D(1,{})&D(2,{})&D(3,TOTAL)&
D(4,PRICE/UNIT)&D(8,# OF COINS)&D(12,VAL
UE)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE.)@HWHAT AR
E THE FACTS? &H{}&H.@HWHAT IS BEING ASKE
D? &H{}?&H@I(0)@RDATA ENTRY@PFILL IN THE
GRID - START WITH THE COMMON UNIT. (EXP
RESS ALL VALUES IN CENTS).@HWHAT IS THE
VALUE OF A {}?@HTHE VALUE OF A {}.@I(5,I
,{})&D(5,{})@HWHAT IS THE VALUE OF A {}?
@HTHE VALUE OF A {}.@I(6,I,{})&D(6,{} CE
NTS)@PENTER THE FACTS FROM THE PROBLEM I
NTO THE GRID. (EXPRESS ALL VALUES IN CEN
TS).@H{}.@H{}.@I(15,I,{})@H{}.@H{}.@I(11
,I,{})@PREPRESENT THE NUMBER OF EACH TYP
E OF COIN.@HCHOOSE A VARIABLE TO REPRESE
NT THE NUMBER OF {}.@HCHOOSE ANY LETTER,
SUCH AS `{}', TO REPRESENT THE NUMBER O
F {}.@I({},I,&V)@HREPRESENT THE NUMBER O
F {} IN TERMS OF "&V" (THE NUMBER OF {})
.@H{}@I({},I,{})@RPARTS@PWRITE AN EXPRES
SION TO REPRESENT THE VALUE OF EACH TYPE
OF COIN.@HMULTIPLY THE PRICE/UNIT BY TH
E NUMBER OF {}.@HPRICE/UNIT \F12* # {} \
F25= {} VAL. \N `{} \F12* {}' \F25
= {} VAL.@I({},I,{})@HNOW MULTIPLY THE P
RICE/UNIT BY THE NUMBER OF {}.@HPRICE/UN
IT \F12* # {} \F25= {} VAL. \N `{}
\F12* {}' \F25= {} VAL.@I({},I,{})@RWHO
LE@PUSE THE TABLE TO WRITE AN EQUATION T
O RELATE THE PARTS ({}) TO THE WHOLE (TO
TAL).@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL \N{}@I(16,I,{})@S@RCOMPUTE@PSOLVE
THE EQUATION FOR "&V"({}). USE PENCIL AN
D PAPER, OR USE THE CALCULATOR.@HISOLATE
"&V" ON ONE SIDE OF THE EQUATION.@HTHE
CALCULATOR SOLVES EQUATIONS FOR YOU AND
DISPLAYS THE STEPS IN THE SOLUTION.@I(16
,I,{})@PNOW FILL IN THE ANSWER(S) TO THE
PROBLEM. REMEMBER THE QUESTION. &Q{}?&Q
&W(16)@HTHE NUMBER OF {} IS THE VALUE OF
"&V".@H{}@I({},I,{})@S@HTHE NUMBER OF {
}.@H{}@I({},I,{})@RCHECK@PREREAD THE PRO
BLEM. CHECK YOUR ANSWERS. REPLACE ALL VA
RIABLES IN THE GRID.@HSUBSTITUTE FOR "&V
" IN THE EXPRESSION FOR THE VALUE OF THE
{}. NOW CALCULATE.@H{}@I({},I,{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION FOR TH
E VALUE OF THE {}. NOW CALCULATE.@H{}@I
({},I,{})&D(0,CHECK YOUR WORK. THE {} SH
OULD EQUAL THE TOTAL VALUE. ON TO A NEW
PROBLEM.)@FBETH HAS 7 COINS WORTH 65 CEN
TS. SOME OF THE COINS ARE DIMES AND THE
REST ARE NICKELS. HOW MANY OF EACH TYPE
OF COIN ARE THERE.NICKELS.DIMES.BETH HAS
7 COINS WORTH 65 CENTS.HOW MANY OF EACH
TYPE OF COIN ARE THERE.NICKEL.NICKEL IS
`5' CENTS.5.5 CENTS.DIME.DIME IS `10'CE
NTS.10.10.SHE HAS &HCOINS WORTH 65 CENTS
&H.THE COINS ARE WORTH `65' CENTS.65.SHE
HAS A TOTAL OF 7 COINS.THE TOTAL NUMBER
OF COINS IS `7'.7.NICKELS.D.DIMES.10.NI
CKELS.DIMES.BETH HAS A TOTAL OF 7 COINS.
IF "&V" EQUALS THE # OF DIMES, `7-&V' W
OULD REPRESENT THE NUMBER OF NICKELS.9.7
-&V.DIMES.DIMES.DIMES.10.&V.DIMES.14.10&
V.NICKELS.NICKELS.NICKELS.5.(7-&V).NICKE
LS.13.5*(7-&V).DIMES AND NICKELS.NICKELS
.DIMES.NICKELS.DIMES.`5(7-&V) \F14
+ 10&V \F29= 65'.5(7-&V)+10&V=
65.THE NUMBER OF DIMES.&V=6.HOW MANY OF
EACH TYPE OF COIN ARE THERE.DIMES.&V = 6
.10.6.NICKELS IS THE VALUE OF 7-&V.7-&V
= (7-6) = `1'.9.1.DIMES.10 * &V = 10 * 6
= `60' CENTS.14.60.NICKELS.5 * (7-&V) =
5 * (7-6) = `5' CENTS.13.5.SUM OF THE N
ICKEL AND DIME VALUES.@FELLEN HAS A COLL
ECTION OF NICKELS AND QUARTERS WORTH $2.
25. ALTOGETHER SHE HAS 17 COINS. HOW MAN
Y OF EACH TYPE OF COIN ARE THERE.NICKELS
.QUARTERS.A COLLECTION OF NICKELS AND QU
ARTERS WORTH $2.25.HOW MANY OF EACH TYPE
OF COIN ARE THERE.NICKEL.NICKEL IS `5'
CENTS.5.5 CENTS.QUARTER.QUARTER IS `25'
CENTS.25.25.SHE HAS &HA COLLECTION WORTH
$2.25&H.THE COINS ARE WORTH `225' CENTS
.225.&HSHE HAS 17 COINS&H.THE TOTAL NUMB
ER OF COINS IS `17'.17.QUARTERS.Q.QUARTE
RS.10.NICKELS.QUARTERS.ELLEN HAS A TOTAL
OF 17 COINS. IF "&V" EQUALS THE # OF QU
ARTERS, `17-&V' REPRESENTS THE # OF NICK
ELS..9.17-&V.QUARTERS.QUARTERS.QUARTER.2
5.&V.QUARTER.14.25*&V.NICKELS.NICKELS.NI
CKEL.5.(17-&V).NICKEL.13.5*(17-&V).QUART
ERS AND NICKELS.NICKEL.QUARTER.NICKEL.QU
ARTER.`5*(17-&V) \F15+ 25&V \F29
= 225'.5*(17-&V)+25*&V=225.THE NUMBER OF
QUARTERS.&V=7.HOW MANY OF EACH TYPE OF
COIN ARE THERE.QUARTERS.&V = `7'..10.7.N
ICKELS IS THE VALUE OF `17-&V'.(17-&V) =
17-7 = `10'.9.10.QUARTERS.25*&V = 25*7
= `175' CENTS..14.175.NICKELS.5*(17-&V)
= 5*(17-7) = `50' CENTS..13.50.SUM OF TH
E NICKEL AND QUARTER VALUES.@FNEIL HAS 2
8 COINS WORTH $2.30. SOME OF THEM ARE NI
CKELS AND THE REST ARE DIMES. HOW MANY O
F EACH TYPE OF COIN ARE THERE.NICKELS.DI
MES.NEIL HAS 28 COINS WORTH $2.30.HOW MA
NY OF EACH TYPE OF COIN ARE THERE.NICKEL
.NICKEL IS `5' CENTS.5.5 CENTS.DIME.DIME
IS `10' CENTS.10.10.HE HAS COINS WORTH
$2.30.THE TOTAL VALUE OF THE COINS IS `2
30'.230.HE HAS A TOTAL OF 28 COINS.THE T
OTAL NUMBER OF COINS IS `28'.28.NICKELS.
N.NICKELS.9.DIMES.NICKELS.HE HAS A TOTAL
OF 28 COINS. IF "&V" IS THE # OF NICKEL
S, `28-&V' WOULD REPRESENT THE # OF DIME
S..10.28-&V.NICKELS.NICKELS.NICKEL.5.&V.
NICKEL.13.5*&V.DIMES.DIMES.DIME.10.(28-&
V).DIME.14.10*(28-&V).DIMES AND NICKELS.
NICKEL.DIME.NICKEL.DIME. `5*&V \F
14+ 10*(28-&V) \F29= 230'.5*&V+10*(28-&V
)=230.THE NUMBER OF NICKELS.&V=10.HOW MA
NY OF EACH TYPE OF COIN ARE THERE.NICKEL
S.&V = `10'.9.10.DIMES IS THE VALUE OF `
28-&V'.28-&V = `18'.10.18.NICKELS.5*&V =
5*10 = `50' CENTS.13.50.DIMES.10*(28-&V
) = 10*18 = `180' CENTS.14.180.SUM OF TH
E NICKEL AND DIME VALUES.@FAMY HAS 35 CO
INS, SOME OF WHICH ARE DIMES AND THE RES
T ARE NICKELS. IF THE TOTAL VALUE OF HER
COINS IS $2.75, HOW MANY OF EACH TYPE O
F COIN DOES SHE HAVE.NICKELS.DIMES.THERE
ARE 35 COINS WITH A TOTAL VALUE OF $2.7
5.HOW MANY OF EACH TYPE OF COIN DOES SHE
HAVE.NICKEL.NICKEL IS `5' CENTS.5.5 CEN
TS.DIME.DIME IS `10' CENTS.10.10.&HTHE T
OTAL VALUE OF HER COINS IS $2.75&H.THE T
OTAL WORTH OF THE COINS IS `275' CENTS.2
75.&HAMY HAS 35 COINS&H.THE TOTAL NUMBER
OF COINS IS `35'.35.NICKELS.N.NICKELS.9
.DIMES.NICKELS.AMY HAS A TOTAL OF 35 COI
NS. IF "&V" IS THE # OF NICKELS, `35-&V'
REPRESENTS THE # OF DIMES..10.35-&V.NIC
KELS.NICKELS.NICKEL.5.&V.NICKEL.13.5*&V.
DIMES.DIMES.DIME.10.(35-&V).DIME.14.10*(
35-&V).NICKELS AND DIMES.NICKEL.DIME.NIC
KEL.DIME.`5*&V \F14+ 10*(35-&V)
\F29= 275'.5*&V+10*(35-&V)=275.THE NUMB
ER OF NICKELS.&V=15.HOW MANY OF EACH TYP
E OF COIN DOES SHE HAVE.NICKELS.&V = `15
'.9.15.DIMES IS THE VALUE OF `35-&V'.35-
&V = `20'.10.20.NICKELS.5*&V = 5*15 = `7
5' CENTS..13.75.DIMES.10*(35-&V) = 10*20
= `200' CENTS.14.200.SUM OF THE NICKEL
AND DIME VALUES.|5
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL