DIST3L3
FILE INFORMATION
FILENAME(S): DIST3L3
FILE TYPE(S): PRG
FILE SIZE: 5.7K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
35038e1d3aae75ffac2e6500d30fedae430f346bc10bb33dc7ee62041a634da4
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST3L3 | PRG | Radd Maxx | 12 | 0 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 20 20 20 20 20 40 71 7B 7D 40 64 67 30 | A @q{}@dg0|
00000010: 35 26 64 28 31 2C 55 6E 69 74 2F 6D 65 61 73 29 |5&d(1,Unit/meas)|
00000020: 26 63 28 32 2C 7B 7D 29 26 63 28 33 2C 7B 7D 29 |&c(2,{})&c(3,{})|
00000030: 26 64 28 34 2C 52 61 74 65 29 26 64 28 38 2C 54 |&d(4,Rate)&d(8,T|
00000040: 69 6D 65 29 26 64 28 31 32 2C 44 69 73 74 2E 29 |ime)&d(12,Dist.)|
00000050: 40 72 52 45 41 44 40 70 52 65 61 64 20 74 68 65 |@rREAD@pRead the|
00000060: 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D 2E 20 | whole problem. |
00000070: 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 65 20 |Think: What are |
00000080: 74 68 65 20 66 61 63 74 73 3F 20 20 57 68 61 74 |the facts? What|
00000090: 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 3F | is being asked?|
000000A0: 20 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 | (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 29 2E 40 68 | to continue).@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 2E 40 68 57 68 61 74 20 69 73 |ts? {}.@hWhat is|
000000E0: 20 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 7B 7D | being asked? {}|
000000F0: 40 69 28 30 29 40 72 50 4C 41 4E 20 40 70 4C 65 |@i(0)@rPLAN @pLe|
00000100: 74 20 44 7B 7D 20 3D 20 7B 7D 20 64 69 73 74 61 |t D{} = {} dista|
00000110: 6E 63 65 20 61 6E 64 20 5C 6E 44 7B 7D 20 3D 20 |nce and \nD{} = |
00000120: 7B 7D 20 64 69 73 74 61 6E 63 65 2E 20 57 72 69 |{} distance. Wri|
00000130: 74 65 20 61 6E 20 65 71 75 61 74 69 6F 6E 20 74 |te an equation t|
00000140: 68 61 74 20 72 65 6C 61 74 65 73 20 44 7B 7D 20 |hat relates D{} |
00000150: 61 6E 64 20 44 7B 7D 2E 40 68 7B 7D 40 68 7B 7D |and D{}.@h{}@h{}|
00000160: 20 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 64 | shows that {} d|
00000170: 69 73 74 61 6E 63 65 20 77 61 73 20 69 6E 63 72 |istance was incr|
00000180: 65 61 73 65 64 20 62 79 20 7B 7D 2C 20 69 74 20 |eased by {}, it |
00000190: 77 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 64 |would equal {} d|
000001A0: 69 73 74 61 6E 63 65 2E 40 69 28 31 36 2C 63 30 |istance.@i(16,c0|
000001B0: 2C 44 7B 7D 3D 44 7B 7D 29 40 70 4F 6E 65 20 61 |,D{}=D{})@pOne a|
000001C0: 6E 73 77 65 72 20 69 73 20 60 7B 7D 27 2E 20 43 |nswer is `{}'. C|
000001D0: 68 61 6E 67 65 20 79 6F 75 72 20 61 6E 73 77 65 |hange your answe|
000001E0: 72 20 69 66 20 69 74 20 69 73 20 6E 6F 74 20 65 |r if it is not e|
000001F0: 71 75 69 76 61 6C 65 6E 74 2E 20 28 50 72 65 73 |quivalent. (Pres|
00000200: 73 20 72 65 74 75 72 6E 29 40 68 7B 7D 40 68 7B |s return)@h{}@h{|
00000210: 7D 20 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 |} shows that {} |
00000220: 64 69 73 74 61 6E 63 65 20 77 61 73 20 69 6E 63 |distance was inc|
00000230: 72 65 61 73 65 64 20 62 79 20 7B 7D 2C 20 69 74 |reased by {}, it|
00000240: 20 77 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 | would equal {} |
00000250: 64 69 73 74 61 6E 63 65 2E 40 69 28 31 36 2C 63 |distance.@i(16,c|
00000260: 30 2C 44 7B 7D 3D 44 7B 7D 29 40 72 44 41 54 41 |0,D{}=D{})@rDATA|
00000270: 20 45 4E 54 52 59 40 70 46 69 6C 6C 20 69 6E 20 | ENTRY@pFill in |
00000280: 74 68 65 20 75 6E 69 74 73 20 62 79 20 77 68 69 |the units by whi|
00000290: 63 68 20 72 61 74 65 2C 20 74 69 6D 65 20 61 6E |ch rate, time an|
000002A0: 64 20 64 69 73 74 61 6E 63 65 20 61 72 65 20 6D |d distance are m|
000002B0: 65 61 73 75 72 65 64 2E 20 28 55 73 65 20 61 62 |easured. (Use ab|
000002C0: 62 72 65 76 69 61 74 65 64 20 66 6F 72 6D 2E 29 |breviated form.)|
000002D0: 40 68 52 61 74 65 20 6F 66 20 73 70 65 65 64 20 |@hRate of speed |
000002E0: 69 73 20 63 6F 6D 6D 6F 6E 6C 79 20 6D 65 61 73 |is commonly meas|
000002F0: 75 72 65 64 20 69 6E 20 6D 69 6C 65 73 20 70 65 |ured in miles pe|
00000300: 72 20 68 6F 75 72 28 6D 69 2F 68 72 29 2C 20 6D |r hour(mi/hr), m|
00000310: 65 74 65 72 73 20 70 65 72 20 6D 69 6E 75 74 65 |eters per minute|
00000320: 28 6D 2F 6D 69 6E 29 2C 20 65 74 63 2E 40 68 54 |(m/min), etc.@hT|
00000330: 68 65 20 72 61 74 65 20 6F 66 20 73 70 65 65 64 |he rate of speed|
00000340: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
00000350: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
00000360: 7B 7D 2E 40 69 28 35 2C 63 7B 7D 2C 7B 7D 29 40 |{}.@i(5,c{},{})@|
00000370: 68 54 69 6D 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C |hTime is commonl|
00000380: 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 73 65 |y measured in se|
00000390: 63 6F 6E 64 73 20 28 73 65 63 29 2C 20 6D 69 6E |conds (sec), min|
000003A0: 75 74 65 73 20 28 6D 69 6E 29 2C 20 68 6F 75 72 |utes (min), hour|
000003B0: 73 20 28 68 72 29 2C 20 64 61 79 73 20 28 64 61 |s (hr), days (da|
000003C0: 29 2C 20 65 74 63 2E 40 68 54 69 6D 65 20 69 6E |), etc.@hTime in|
000003D0: 20 74 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 | this problem is|
000003E0: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 | measured in {}@|
000003F0: 69 28 39 2C 63 7B 7D 2C 7B 7D 29 40 68 44 69 73 |i(9,c{},{})@hDis|
00000400: 74 61 6E 63 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C |tance is commonl|
00000410: 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 66 65 |y measured in fe|
00000420: 65 74 20 28 66 74 29 2C 20 79 61 72 64 73 20 28 |et (ft), yards (|
00000430: 79 64 29 2C 20 6D 69 6C 65 73 20 28 6D 69 29 2C |yd), miles (mi),|
00000440: 20 6D 65 74 65 72 73 20 28 6D 29 2C 20 6B 69 6C | meters (m), kil|
00000450: 6F 6D 65 74 65 72 73 20 28 6B 6D 29 2C 20 65 74 |ometers (km), et|
00000460: 63 2E 40 68 44 69 73 74 61 6E 63 65 20 69 6E 20 |c.@hDistance in |
00000470: 74 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 20 |this problem is |
00000480: 6D 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 69 |measured in {}@i|
00000490: 28 31 33 2C 63 7B 7D 2C 7B 7D 29 40 70 45 6E 74 |(13,c{},{})@pEnt|
000004A0: 65 72 20 74 68 65 20 66 61 63 74 73 20 66 72 6F |er the facts fro|
000004B0: 6D 20 74 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E |m the problem in|
000004C0: 74 6F 20 74 68 65 20 67 72 69 64 2E 40 68 7B 7D |to the grid.@h{}|
000004D0: 40 68 7B 7D 40 69 28 36 2C 69 2C 7B 7D 29 40 68 |@h{}@i(6,i,{})@h|
000004E0: 7B 7D 40 68 7B 7D 40 69 28 37 2C 69 2C 7B 7D 29 |{}@h{}@i(7,i,{})|
000004F0: 40 70 55 73 65 20 61 20 76 61 72 69 61 62 6C 65 |@pUse a variable|
00000500: 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 | to represent th|
00000510: 65 20 74 69 6D 65 20 65 61 63 68 20 7B 7D 2E 40 |e time each {}.@|
00000520: 68 7B 7D 20 66 6F 72 20 74 68 65 20 73 61 6D 65 |h{} for the same|
00000530: 20 61 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 2C | amount of time,|
00000540: 20 73 6F 20 75 73 65 20 74 68 65 20 73 61 6D 65 | so use the same|
00000550: 20 76 61 72 69 61 62 6C 65 20 74 6F 20 72 65 70 | variable to rep|
00000560: 72 65 73 65 6E 74 20 62 6F 74 68 20 74 68 65 69 |resent both thei|
00000570: 72 20 74 69 6D 65 73 2E 40 68 55 73 65 20 61 20 |r times.@hUse a |
00000580: 76 61 72 69 61 62 6C 65 2C 20 73 75 63 68 20 61 |variable, such a|
00000590: 73 20 60 7B 7D 27 20 74 6F 20 72 65 70 72 65 73 |s `{}' to repres|
000005A0: 65 6E 74 20 74 68 65 20 7B 7D 2E 40 69 28 31 30 |ent the {}.@i(10|
000005B0: 2C 69 2C 26 76 29 40 68 52 65 70 72 65 73 65 6E |,i,&v)@hRepresen|
000005C0: 74 20 74 68 65 20 74 69 6D 65 20 7B 7D 20 69 6E |t the time {} in|
000005D0: 20 74 65 72 6D 73 20 6F 66 20 22 26 76 22 20 28 | terms of "&v" (|
000005E0: 74 68 65 20 74 69 6D 65 20 7B 7D 29 2E 40 68 53 |the time {}).@hS|
000005F0: 69 6E 63 65 20 62 6F 74 68 20 6F 66 20 74 68 65 |ince both of the|
00000600: 6D 20 7B 7D 20 66 6F 72 20 74 68 65 20 73 61 6D |m {} for the sam|
00000610: 65 20 61 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 |e amount of time|
00000620: 2C 20 75 73 65 20 74 68 65 20 73 61 6D 65 20 76 |, use the same v|
00000630: 61 72 69 61 62 6C 65 2C 20 60 26 76 27 20 74 6F |ariable, `&v' to|
00000640: 20 72 65 70 72 65 73 65 6E 74 20 7B 7D 20 74 69 | represent {} ti|
00000650: 6D 65 2E 40 69 28 31 31 2C 69 2C 26 76 29 40 72 |me.@i(11,i,&v)@r|
00000660: 50 41 52 54 53 40 70 57 72 69 74 65 20 65 78 70 |PARTS@pWrite exp|
00000670: 72 65 73 73 69 6F 6E 73 20 74 6F 20 72 65 70 72 |ressions to repr|
00000680: 65 73 65 6E 74 20 74 62 65 20 64 69 73 74 61 6E |esent tbe distan|
00000690: 63 65 20 7B 7D 2E 40 68 52 61 74 65 2A 54 69 6D |ce {}.@hRate*Tim|
000006A0: 65 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 |e = Distance@hRa|
000006B0: 74 65 20 20 5C 66 30 36 2A 20 5C 66 30 38 54 69 |te \f06* \f08Ti|
000006C0: 6D 65 20 5C 66 31 33 3D 20 44 69 73 74 61 6E 63 |me \f13= Distanc|
000006D0: 65 20 5C 6E 7B 7D 40 69 28 31 34 2C 69 2C 7B 7D |e \n{}@i(14,i,{}|
000006E0: 29 40 68 52 61 74 65 2A 54 69 6D 65 20 3D 20 44 |)@hRate*Time = D|
000006F0: 69 73 74 61 6E 63 65 40 68 52 61 74 65 20 20 5C |istance@hRate \|
00000700: 66 30 36 2A 20 5C 66 30 38 54 69 6D 65 20 5C 66 |f06* \f08Time \f|
00000710: 31 33 3D 20 44 69 73 74 61 6E 63 65 20 5C 6E 7B |13= Distance \n{|
00000720: 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 40 72 57 48 |}@i(15,i,{})@rWH|
00000730: 4F 4C 45 26 64 28 31 36 2C 20 29 40 70 53 75 62 |OLE&d(16, )@pSub|
00000740: 73 74 69 74 75 74 65 20 79 6F 75 72 20 65 78 70 |stitute your exp|
00000750: 72 65 73 73 69 6F 6E 73 20 66 6F 72 20 44 7B 7D |ressions for D{}|
00000760: 20 61 6E 64 20 44 7B 7D 20 69 6E 20 74 68 65 20 | and D{} in the |
00000770: 65 71 75 61 74 69 6F 6E 3A 20 44 7B 7D 20 3D 20 |equation: D{} = |
00000780: 44 7B 7D 40 68 44 7B 7D 20 3D 20 7B 7D 20 61 6E |D{}@hD{} = {} an|
00000790: 64 20 44 7B 7D 20 3D 20 7B 7D 2E 40 68 7B 7D 20 |d D{} = {}.@h{} |
000007A0: 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 64 69 |shows that {} di|
000007B0: 73 74 61 6E 63 65 20 69 73 20 7B 7D 20 67 72 65 |stance is {} gre|
000007C0: 61 74 65 72 20 74 68 61 6E 20 7B 7D 20 64 69 73 |ater than {} dis|
000007D0: 74 61 6E 63 65 2E 40 69 28 31 36 2C 69 2C 7B 7D |tance.@i(16,i,{}|
000007E0: 29 40 73 40 72 43 4F 4D 50 55 54 45 40 70 53 6F |)@s@rCOMPUTE@pSo|
000007F0: 6C 76 65 20 74 68 65 20 65 71 75 61 74 69 6F 6E |lve the equation|
00000800: 20 66 6F 72 20 22 26 76 22 2E 20 55 73 65 20 70 | for "&v". Use p|
00000810: 61 70 65 72 20 61 6E 64 20 70 65 6E 63 69 6C 20 |aper and pencil |
00000820: 61 6E 64 20 65 6E 74 65 72 20 74 68 65 20 66 69 |and enter the fi|
00000830: 6E 61 6C 20 65 71 75 61 74 69 6F 6E 2C 20 6F 72 |nal equation, or|
00000840: 20 75 73 65 20 74 68 65 20 43 61 6C 63 75 6C 61 | use the Calcula|
00000850: 74 6F 72 2E 40 68 49 73 6F 6C 61 74 65 20 22 26 |tor.@hIsolate "&|
00000860: 76 22 20 6F 6E 20 6F 6E 65 20 73 69 64 65 20 6F |v" on one side o|
00000870: 66 20 74 68 65 20 65 71 75 61 74 69 6F 6E 2E 40 |f the equation.@|
00000880: 68 54 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 20 |hThe Calculator |
00000890: 73 6F 6C 76 65 73 20 65 71 75 61 74 69 6F 6E 73 |solves equations|
000008A0: 20 66 6F 72 20 79 6F 75 20 61 6E 64 20 64 69 73 | for you and dis|
000008B0: 70 6C 61 79 73 20 74 68 65 20 73 74 65 70 73 20 |plays the steps |
000008C0: 69 6E 20 74 68 65 20 73 6F 6C 75 74 69 6F 6E 2E |in the solution.|
000008D0: 40 69 28 31 36 2C 69 2C 26 76 3D 7B 7D 29 40 70 |@i(16,i,&v={})@p|
000008E0: 4E 6F 77 20 79 6F 75 20 61 72 65 20 72 65 61 64 |Now you are read|
000008F0: 79 20 74 6F 20 61 6E 73 77 65 72 20 74 68 65 20 |y to answer the |
00000900: 71 75 65 73 74 69 6F 6E 2E 20 45 6E 74 65 72 20 |question. Enter |
00000910: 79 6F 75 72 20 61 6E 73 77 65 72 20 69 6E 20 74 |your answer in t|
00000920: 68 65 20 67 72 69 64 2E 26 71 7B 7D 26 71 26 77 |he grid.&q{}&q&w|
00000930: 28 31 36 29 40 68 54 68 65 20 74 69 6D 65 20 66 |(16)@hThe time f|
00000940: 6F 72 20 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |or {} is equal t|
00000950: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |o the value of "|
00000960: 26 76 22 2E 40 68 54 68 65 20 74 69 6D 65 20 66 |&v".@hThe time f|
00000970: 6F 72 20 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |or {} is equal t|
00000980: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |o the value of "|
00000990: 26 76 22 2E 20 26 76 20 3D 20 7B 7D 2C 20 73 6F |&v". &v = {}, so|
000009A0: 20 65 6E 74 65 72 20 7B 7D 27 2E 40 69 28 31 30 | enter {}'.@i(10|
000009B0: 2C 69 2C 7B 7D 29 26 64 28 31 31 2C 7B 7D 29 40 |,i,{})&d(11,{})@|
000009C0: 73 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 64 |s@rCHECK@pReread|
000009D0: 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 68 | the problem. Ch|
000009E0: 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 73 |eck your answers|
000009F0: 2E 20 45 76 61 6C 75 61 74 65 20 74 68 65 20 72 |. Evaluate the r|
00000A00: 65 6D 61 69 6E 69 6E 67 20 65 78 70 72 65 73 73 |emaining express|
00000A10: 69 6F 6E 73 20 69 6E 20 74 68 65 20 67 72 69 64 |ions in the grid|
00000A20: 2E 26 77 28 31 36 29 40 68 53 75 62 73 74 69 74 |.&w(16)@hSubstit|
00000A30: 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 6E 20 |ute for "&v" in |
00000A40: 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E 20 66 |the expression f|
00000A50: 6F 72 20 7B 7D 20 64 69 73 74 61 6E 63 65 2E 20 |or {} distance. |
00000A60: 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 20 74 |Then calculate t|
00000A70: 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D 20 72 |he result.@h{} r|
00000A80: 65 70 72 65 73 65 6E 74 73 20 7B 7D 20 64 69 73 |epresents {} dis|
00000A90: 74 61 6E 63 65 20 61 6E 64 20 26 76 3D 7B 7D 40 |tance and &v={}@|
00000AA0: 69 28 31 34 2C 69 2C 7B 7D 29 40 68 53 75 62 73 |i(14,i,{})@hSubs|
00000AB0: 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 |titute for "&v" |
00000AC0: 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F |in the expressio|
00000AD0: 6E 20 66 6F 72 20 7B 7D 20 64 69 73 74 61 6E 63 |n for {} distanc|
00000AE0: 65 2E 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 |e. Then calculat|
00000AF0: 65 20 74 68 65 20 72 65 73 75 6C 74 2E 40 68 7B |e the result.@h{|
00000B00: 7D 20 72 65 70 72 65 73 65 6E 74 73 20 7B 7D 20 |} represents {} |
00000B10: 64 69 73 74 61 6E 63 65 20 61 6E 64 20 26 76 3D |distance and &v=|
00000B20: 7B 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 26 64 28 |{}@i(15,i,{})&d(|
00000B30: 30 2C 43 68 65 63 6B 20 79 6F 75 72 20 77 6F 72 |0,Check your wor|
00000B40: 6B 2E 20 7B 7D 20 64 69 73 74 61 6E 63 65 20 2B |k. {} distance +|
00000B50: 20 7B 7D 20 73 68 6F 75 6C 64 20 65 71 75 61 6C | {} should equal|
00000B60: 20 7B 7D 20 64 69 73 74 61 6E 63 65 2E 20 47 65 | {} distance. Ge|
00000B70: 74 20 72 65 61 64 79 20 66 6F 72 20 61 20 6E 65 |t ready for a ne|
00000B80: 77 20 70 72 6F 62 6C 65 6D 2E 29 40 66 52 6F 62 |w problem.)@fRob|
00000B90: 69 6E 20 73 77 69 6D 73 20 35 30 20 79 61 72 64 |in swims 50 yard|
00000BA0: 73 20 65 61 63 68 20 6D 69 6E 75 74 65 20 61 6E |s each minute an|
00000BB0: 64 20 54 69 6D 20 73 77 69 6D 73 20 34 35 20 79 |d Tim swims 45 y|
00000BC0: 64 2F 6D 69 6E 2E 20 48 6F 77 20 6C 6F 6E 67 20 |d/min. How long |
00000BD0: 77 69 6C 6C 20 69 74 20 74 61 6B 65 20 52 6F 62 |will it take Rob|
00000BE0: 69 6E 20 74 6F 20 67 65 74 20 31 20 6C 61 70 20 |in to get 1 lap |
00000BF0: 28 32 35 20 79 61 72 64 73 29 20 61 68 65 61 64 |(25 yards) ahead|
00000C00: 20 6F 66 20 54 69 6D 3F 00 52 6F 62 69 6E 00 54 | of Tim?.Robin.T|
00000C10: 69 6D 00 52 6F 62 69 6E 20 73 77 69 6D 73 20 35 |im.Robin swims 5|
00000C20: 30 20 79 61 72 64 73 20 65 61 63 68 20 6D 69 6E |0 yards each min|
00000C30: 75 74 65 20 61 6E 64 20 54 69 6D 20 73 77 69 6D |ute and Tim swim|
00000C40: 73 20 34 35 20 79 64 2F 6D 69 6E 20 75 6E 74 69 |s 45 yd/min unti|
00000C50: 6C 20 73 68 65 20 69 73 20 32 35 20 79 61 72 64 |l she is 25 yard|
00000C60: 73 20 61 68 65 61 64 00 26 68 48 6F 77 20 6C 6F |s ahead.&hHow lo|
00000C70: 6E 67 20 77 69 6C 6C 20 69 74 20 74 61 6B 65 20 |ng will it take |
00000C80: 52 6F 62 69 6E 20 74 6F 20 67 65 74 20 31 20 6C |Robin to get 1 l|
00000C90: 61 70 20 28 32 35 20 79 61 72 64 73 29 20 61 68 |ap (25 yards) ah|
00000CA0: 65 61 64 20 6F 66 20 54 69 6D 3F 26 68 00 72 00 |ead of Tim?&h.r.|
00000CB0: 52 6F 62 69 6E 27 73 00 74 00 54 69 6D 27 73 00 |Robin's.t.Tim's.|
00000CC0: 72 00 74 00 54 68 65 79 20 62 6F 74 68 20 73 74 |r.t.They both st|
00000CD0: 61 72 74 20 73 77 69 6D 6D 69 6E 67 20 61 74 20 |art swimming at |
00000CE0: 74 68 65 20 73 61 6D 65 20 74 69 6D 65 20 61 6E |the same time an|
00000CF0: 64 20 63 6F 6E 74 69 6E 75 65 20 75 6E 74 69 6C |d continue until|
00000D00: 20 52 6F 62 69 6E 20 68 61 73 20 73 77 75 6D 20 | Robin has swum |
00000D10: 32 35 20 79 61 72 64 73 20 6D 6F 72 65 20 74 68 |25 yards more th|
00000D20: 61 6E 20 54 69 6D 2E 00 60 44 74 2B 32 35 3D 44 |an Tim..`Dt+25=D|
00000D30: 72 27 00 69 66 20 54 69 6D 27 73 00 32 35 20 79 |r'.if Tim's.25 y|
00000D40: 61 72 64 73 00 52 6F 62 69 6E 27 73 00 74 2B 32 |ards.Robin's.t+2|
00000D50: 35 00 72 00 44 74 2B 32 35 3D 44 72 00 54 68 65 |5.r.Dt+25=Dr.The|
00000D60: 79 20 62 6F 74 68 20 73 74 61 72 74 20 73 77 69 |y both start swi|
00000D70: 6D 6D 69 6E 67 20 61 74 20 74 68 65 20 73 61 6D |mming at the sam|
00000D80: 65 20 74 69 6D 65 20 61 6E 64 20 63 6F 6E 74 69 |e time and conti|
00000D90: 6E 75 65 20 75 6E 74 69 6C 20 52 6F 62 69 6E 20 |nue until Robin |
00000DA0: 68 61 73 20 73 77 75 6D 20 32 35 20 79 61 72 64 |has swum 25 yard|
00000DB0: 73 20 6D 6F 72 65 20 74 68 61 6E 20 54 69 6D 2E |s more than Tim.|
00000DC0: 00 60 44 74 2B 32 35 3D 44 72 27 00 69 66 20 54 |.`Dt+25=Dr'.if T|
00000DD0: 69 6D 27 73 00 32 35 20 79 61 72 64 73 00 52 6F |im's.25 yards.Ro|
00000DE0: 62 69 6E 27 73 00 74 2B 32 35 00 72 00 79 61 72 |bin's.t+25.r.yar|
00000DF0: 64 73 20 70 65 72 20 6D 69 6E 75 74 65 20 28 60 |ds per minute (`|
00000E00: 79 64 2F 6D 69 6E 27 29 00 36 00 79 64 2F 6D 69 |yd/min').6.yd/mi|
00000E10: 6E 00 6D 69 6E 75 74 65 73 20 28 60 6D 69 6E 27 |n.minutes (`min'|
00000E20: 29 2E 00 33 00 6D 69 6E 00 79 61 72 64 73 20 28 |)..3.min.yards (|
00000E30: 60 79 64 27 29 2E 00 32 00 79 64 00 26 68 52 6F |`yd')..2.yd.&hRo|
00000E40: 62 69 6E 20 73 77 69 6D 73 20 35 30 20 79 61 72 |bin swims 50 yar|
00000E50: 64 73 20 65 61 63 68 20 6D 69 6E 75 74 65 26 68 |ds each minute&h|
00000E60: 2E 00 52 6F 62 69 6E 27 73 20 72 61 74 65 20 69 |..Robin's rate i|
00000E70: 73 20 60 35 30 27 20 79 61 72 64 73 20 70 65 72 |s `50' yards per|
00000E80: 20 6D 69 6E 75 74 65 2E 00 35 30 00 26 68 54 69 | minute..50.&hTi|
00000E90: 6D 20 73 77 69 6D 73 20 34 35 20 79 64 2F 6D 69 |m swims 45 yd/mi|
00000EA0: 6E 2E 26 68 00 54 69 6D 27 73 20 72 61 74 65 20 |n.&h.Tim's rate |
00000EB0: 69 73 20 60 34 35 27 20 79 61 72 64 73 20 70 65 |is `45' yards pe|
00000EC0: 72 20 6D 69 6E 75 74 65 2E 00 34 35 00 70 65 72 |r minute..45.per|
00000ED0: 73 6F 6E 27 73 20 74 69 6D 65 00 42 6F 74 68 20 |son's time.Both |
00000EE0: 70 65 6F 70 6C 65 20 73 77 69 6D 00 74 00 61 6D |people swim.t.am|
00000EF0: 6F 75 6E 74 20 6F 66 20 74 69 6D 65 20 74 68 61 |ount of time tha|
00000F00: 74 20 52 6F 62 69 6E 20 73 70 65 6E 74 20 73 77 |t Robin spent sw|
00000F10: 69 6D 6D 69 6E 67 00 74 68 61 74 20 54 69 6D 20 |imming.that Tim |
00000F20: 73 77 69 6D 73 00 74 68 61 74 20 52 6F 62 69 6E |swims.that Robin|
00000F30: 20 73 77 69 6D 73 00 73 77 69 6D 00 54 69 6D 27 | swims.swim.Tim'|
00000F40: 73 00 74 68 61 74 20 65 61 63 68 20 70 65 72 73 |s.that each pers|
00000F50: 6F 6E 20 73 77 75 6D 00 60 35 30 20 20 5C 66 30 |on swum.`50 \f0|
00000F60: 36 2A 20 5C 66 30 38 20 26 76 27 20 5C 66 31 33 |6* \f08 &v' \f13|
00000F70: 3D 20 52 6F 62 69 6E 27 73 20 64 69 73 74 2E 20 |= Robin's dist. |
00000F80: 00 35 30 26 76 00 60 34 35 20 20 5C 66 30 36 2A |.50&v.`45 \f06*|
00000F90: 20 5C 66 30 38 20 26 76 27 20 5C 66 31 33 3D 20 | \f08 &v' \f13= |
00000FA0: 54 69 6D 27 73 20 64 69 73 74 2E 00 34 35 26 76 |Tim's dist..45&v|
00000FB0: 00 72 00 74 00 74 2B 32 35 00 72 00 72 00 35 30 |.r.t.t+25.r.r.50|
00000FC0: 26 76 00 74 00 34 35 26 76 00 60 34 35 26 76 2B |&v.t.45&v.`45&v+|
00000FD0: 32 35 20 3D 20 35 30 26 76 27 00 52 6F 62 69 6E |25 = 50&v'.Robin|
00000FE0: 27 73 00 32 35 20 79 61 72 64 73 00 54 69 6D 27 |'s.25 yards.Tim'|
00000FF0: 73 00 34 35 26 76 2B 32 35 3D 35 30 26 76 00 35 |s.45&v+25=50&v.5|
00001000: 00 48 6F 77 20 6C 6F 6E 67 20 77 69 6C 6C 20 69 |.How long will i|
00001010: 74 20 74 61 6B 65 20 52 6F 62 69 6E 20 74 6F 20 |t take Robin to |
00001020: 67 65 74 20 31 20 6C 61 70 20 28 32 35 20 79 61 |get 1 lap (25 ya|
00001030: 72 64 73 29 20 61 68 65 61 64 20 6F 66 20 54 69 |rds) ahead of Ti|
00001040: 6D 3F 00 62 6F 74 68 20 52 6F 62 69 6E 20 61 6E |m?.both Robin an|
00001050: 64 20 54 69 6D 00 62 6F 74 68 20 52 6F 62 69 6E |d Tim.both Robin|
00001060: 20 61 6E 64 20 54 69 6D 00 35 00 35 00 35 00 35 | and Tim.5.5.5.5|
00001070: 00 52 6F 62 69 6E 27 73 00 35 30 26 76 00 52 6F |.Robin's.50&v.Ro|
00001080: 62 69 6E 27 73 00 35 2C 20 73 6F 20 35 30 2A 35 |bin's.5, so 50*5|
00001090: 2C 20 6F 72 20 60 32 35 30 27 20 79 61 72 64 73 |, or `250' yards|
000010A0: 20 69 73 20 74 68 65 20 64 69 73 74 61 6E 63 65 | is the distance|
000010B0: 20 74 68 61 74 20 52 6F 62 69 6E 20 73 77 61 6D | that Robin swam|
000010C0: 2E 00 32 35 30 00 54 69 6D 27 73 00 34 35 26 76 |..250.Tim's.45&v|
000010D0: 00 54 69 6D 27 73 00 35 2C 20 73 6F 20 34 35 2A |.Tim's.5, so 45*|
000010E0: 35 20 6F 72 2C 60 32 32 35 27 20 79 61 72 64 73 |5 or,`225' yards|
000010F0: 20 69 73 20 74 68 65 20 64 69 73 74 61 6E 63 65 | is the distance|
00001100: 20 74 68 61 74 20 54 69 6D 20 73 77 61 6D 2E 00 | that Tim swam..|
00001110: 32 32 35 00 54 69 6D 27 73 00 32 35 20 79 61 72 |225.Tim's.25 yar|
00001120: 64 73 00 52 6F 62 69 6E 27 73 00 40 66 41 6C 69 |ds.Robin's.@fAli|
00001130: 73 6F 6E 20 63 61 6E 20 72 65 61 64 20 31 30 30 |son can read 100|
00001140: 20 77 6F 72 64 73 20 70 65 72 20 6D 69 6E 75 74 | words per minut|
00001150: 65 20 28 77 2F 6D 69 6E 29 20 61 6E 64 20 53 74 |e (w/min) and St|
00001160: 65 76 65 6E 20 63 61 6E 20 72 65 61 64 20 38 30 |even can read 80|
00001170: 20 77 2F 6D 69 6E 2E 20 49 66 20 74 68 65 79 20 | w/min. If they |
00001180: 61 72 65 20 62 6F 74 68 20 73 74 61 72 74 69 6E |are both startin|
00001190: 67 20 74 6F 20 72 65 61 64 20 74 68 65 20 73 61 |g to read the sa|
000011A0: 6D 65 20 62 6F 6F 6B 2C 20 61 66 74 65 72 20 68 |me book, after h|
000011B0: 6F 77 20 6D 75 63 68 20 74 69 6D 65 20 77 69 6C |ow much time wil|
000011C0: 6C 20 41 6C 69 73 6F 6E 20 62 65 20 32 32 35 20 |l Alison be 225 |
000011D0: 77 6F 72 64 73 20 61 68 65 61 64 20 6F 66 20 53 |words ahead of S|
000011E0: 74 65 76 65 6E 3F 00 41 6C 69 73 6F 6E 00 53 74 |teven?.Alison.St|
000011F0: 65 76 65 6E 00 54 68 65 79 20 73 74 61 72 74 20 |even.They start |
00001200: 72 65 61 64 69 6E 67 20 61 74 20 74 68 65 20 73 |reading at the s|
00001210: 61 6D 65 20 74 69 6D 65 2C 20 61 6E 64 20 41 6C |ame time, and Al|
00001220: 69 73 6F 6E 27 73 20 72 61 74 65 20 69 73 20 66 |ison's rate is f|
00001230: 61 73 74 65 72 20 74 68 61 6E 20 53 74 65 76 65 |aster than Steve|
00001240: 6E 27 73 00 26 68 41 66 74 65 72 20 68 6F 77 20 |n's.&hAfter how |
00001250: 6D 75 63 68 20 74 69 6D 65 20 77 69 6C 6C 20 41 |much time will A|
00001260: 6C 69 73 6F 6E 20 62 65 20 32 32 35 20 77 6F 72 |lison be 225 wor|
00001270: 64 73 20 61 68 65 61 64 26 68 3F 00 61 00 41 6C |ds ahead&h?.a.Al|
00001280: 69 73 6F 6E 27 73 00 73 00 53 74 65 76 65 6E 27 |ison's.s.Steven'|
00001290: 73 00 61 00 73 00 60 44 73 2B 32 32 35 20 3D 20 |s.a.s.`Ds+225 = |
000012A0: 44 61 27 20 73 68 6F 77 73 20 74 68 61 74 2C 20 |Da' shows that, |
000012B0: 69 6E 20 74 6F 74 61 6C 2C 20 41 6C 69 73 6F 6E |in total, Alison|
000012C0: 20 77 69 6C 6C 20 68 61 76 65 20 72 65 61 64 20 | will have read |
000012D0: 32 32 35 20 77 6F 72 64 73 20 6D 6F 72 65 20 74 |225 words more t|
000012E0: 68 61 6E 20 53 74 65 76 65 6E 2E 00 60 44 73 2B |han Steven..`Ds+|
000012F0: 32 32 35 20 3D 20 44 61 27 00 69 66 20 53 74 65 |225 = Da'.if Ste|
00001300: 76 65 6E 27 73 00 32 32 35 00 41 6C 69 73 6F 6E |ven's.225.Alison|
00001310: 27 73 00 73 2B 32 32 35 00 61 00 44 73 2B 32 32 |'s.s+225.a.Ds+22|
00001320: 35 20 3D 20 44 61 00 60 44 73 2B 32 32 35 20 3D |5 = Da.`Ds+225 =|
00001330: 20 44 61 27 20 73 68 6F 77 73 20 74 68 61 74 2C | Da' shows that,|
00001340: 20 69 6E 20 74 6F 74 61 6C 2C 20 41 6C 69 73 6F | in total, Aliso|
00001350: 6E 20 77 69 6C 6C 20 68 61 76 65 20 72 65 61 64 |n will have read|
00001360: 20 32 32 35 20 77 6F 72 64 73 20 6D 6F 72 65 20 | 225 words more |
00001370: 74 68 61 6E 20 53 74 65 76 65 6E 2E 00 60 44 73 |than Steven..`Ds|
00001380: 2B 32 32 35 20 3D 20 44 61 27 00 69 66 20 53 74 |+225 = Da'.if St|
00001390: 65 76 65 6E 27 73 00 32 32 35 00 41 6C 69 73 6F |even's.225.Aliso|
000013A0: 6E 27 73 00 73 2B 32 32 35 00 61 00 77 6F 72 64 |n's.s+225.a.word|
000013B0: 73 20 70 65 72 20 6D 69 6E 75 74 65 28 60 77 2F |s per minute(`w/|
000013C0: 6D 69 6E 27 29 00 34 00 77 2F 6D 69 6E 00 6D 69 |min').4.w/min.mi|
000013D0: 6E 75 74 65 73 20 28 60 6D 69 6E 27 29 00 33 00 |nutes (`min').3.|
000013E0: 6D 69 6E 00 77 6F 72 64 73 20 28 60 77 27 29 2E |min.words (`w').|
000013F0: 00 31 00 77 00 41 6C 69 73 6F 6E 20 72 65 61 64 |.1.w.Alison read|
00001400: 73 20 26 68 31 30 30 20 77 6F 72 64 73 20 70 65 |s &h100 words pe|
00001410: 72 20 6D 69 6E 75 74 65 26 68 2E 00 41 6C 69 73 |r minute&h..Alis|
00001420: 6F 6E 27 73 20 72 61 74 65 20 69 73 20 60 31 30 |on's rate is `10|
00001430: 30 27 20 77 2F 6D 69 6E 2E 00 31 30 30 00 53 74 |0' w/min..100.St|
00001440: 65 76 65 6E 27 73 20 72 65 61 64 73 20 26 68 38 |even's reads &h8|
00001450: 30 20 77 2F 6D 69 6E 26 68 2E 00 53 74 65 76 65 |0 w/min&h..Steve|
00001460: 6E 27 73 20 72 61 74 65 20 69 73 20 60 38 30 27 |n's rate is `80'|
00001470: 20 77 2F 6D 69 6E 2E 00 38 30 00 70 65 72 73 6F | w/min..80.perso|
00001480: 6E 20 72 65 61 64 73 00 42 6F 74 68 20 70 65 6F |n reads.Both peo|
00001490: 70 6C 65 20 72 65 61 64 00 61 00 74 69 6D 65 20 |ple read.a.time |
000014A0: 41 6C 69 73 6F 6E 20 73 70 65 6E 64 73 20 72 65 |Alison spends re|
000014B0: 61 64 69 6E 67 00 53 74 65 76 65 6E 20 73 70 65 |ading.Steven spe|
000014C0: 6E 64 73 20 72 65 61 64 69 6E 67 00 41 6C 69 73 |nds reading.Alis|
000014D0: 6F 6E 20 73 70 65 6E 64 73 20 72 65 61 64 69 6E |on spends readin|
000014E0: 67 00 72 65 61 64 00 53 74 65 76 65 6E 27 73 20 |g.read.Steven's |
000014F0: 72 65 61 64 69 6E 67 00 6F 72 20 69 6E 20 74 68 |reading.or in th|
00001500: 69 73 20 63 61 73 65 2C 20 74 68 65 20 6E 75 6D |is case, the num|
00001510: 62 65 72 20 6F 66 20 77 6F 72 64 73 20 65 61 63 |ber of words eac|
00001520: 68 20 70 65 72 73 6F 6E 20 72 65 61 64 73 00 60 |h person reads.`|
00001530: 31 30 30 20 20 5C 66 30 36 2A 20 5C 66 30 38 20 |100 \f06* \f08 |
00001540: 26 76 27 20 5C 66 31 33 3D 20 23 20 6F 66 20 77 |&v' \f13= # of w|
00001550: 6F 72 64 73 00 31 30 30 26 76 00 60 38 30 20 20 |ords.100&v.`80 |
00001560: 5C 66 30 36 2A 20 20 5C 66 30 38 20 26 76 27 20 |\f06* \f08 &v' |
00001570: 20 5C 66 31 33 3D 20 23 20 6F 66 20 77 6F 72 64 | \f13= # of word|
00001580: 73 00 38 30 26 76 00 61 00 73 00 73 2B 32 32 35 |s.80&v.a.s.s+225|
00001590: 00 61 00 61 00 31 30 30 26 76 00 73 00 38 30 26 |.a.a.100&v.s.80&|
000015A0: 76 00 60 38 30 26 76 2B 32 32 35 20 3D 20 31 30 |v.`80&v+225 = 10|
000015B0: 30 26 76 27 00 41 6C 69 73 6F 6E 27 73 00 32 32 |0&v'.Alison's.22|
000015C0: 35 20 77 6F 72 64 73 00 53 74 65 76 65 6E 27 73 |5 words.Steven's|
000015D0: 00 38 30 26 76 2B 32 32 35 3D 31 30 30 26 76 00 |.80&v+225=100&v.|
000015E0: 31 31 2E 32 35 00 61 66 74 65 72 20 68 6F 77 20 |11.25.after how |
000015F0: 6D 75 63 68 20 74 69 6D 65 20 77 69 6C 6C 20 41 |much time will A|
00001600: 6C 69 73 6F 6E 20 62 65 20 32 32 35 20 77 6F 72 |lison be 225 wor|
00001610: 64 73 20 61 68 65 61 64 00 62 6F 74 68 20 6F 66 |ds ahead.both of|
00001620: 20 74 68 65 6D 00 41 6C 69 73 6F 6E 00 31 31 2E | them.Alison.11.|
00001630: 32 35 00 31 31 2E 32 35 00 31 31 2E 32 35 00 31 |25.11.25.11.25.1|
00001640: 31 2E 32 35 00 41 6C 69 73 6F 6E 27 73 00 31 30 |1.25.Alison's.10|
00001650: 30 26 76 00 41 6C 69 73 6F 6E 27 73 00 31 31 2E |0&v.Alison's.11.|
00001660: 32 35 2C 20 73 6F 20 31 30 30 26 76 20 3D 20 31 |25, so 100&v = 1|
00001670: 30 30 20 2A 20 31 31 2E 32 35 20 3D 20 60 31 31 |00 * 11.25 = `11|
00001680: 32 35 27 00 31 31 32 35 00 53 74 65 76 65 6E 27 |25'.1125.Steven'|
00001690: 73 00 38 30 26 76 00 53 74 65 76 65 6E 27 73 00 |s.80&v.Steven's.|
000016A0: 31 31 2E 32 35 2C 20 73 6F 20 38 30 26 76 20 3D |11.25, so 80&v =|
000016B0: 20 38 30 20 2A 20 31 31 2E 32 35 20 3D 20 60 39 | 80 * 11.25 = `9|
000016C0: 30 30 27 00 39 30 30 00 53 74 65 76 65 6E 27 73 |00'.900.Steven's|
000016D0: 00 32 32 35 00 41 6C 69 73 6F 6E 27 73 00 7C 65 |.225.Alison's.|e|
A @Q{}@DG05&D(1,UNIT/MEAS)&C(2,{})
&C(3,{})&D(4,RATE)&D(8,TIME)&D(12,DIST.)
@RREAD@PREAD THE WHOLE PROBLEM. THINK: W
HAT ARE THE FACTS? WHAT IS BEING ASKED?
(PRESS ANY KEY TO CONTINUE).@HWHAT ARE
THE FACTS? {}.@HWHAT IS BEING ASKED? {}
@I(0)@RPLAN @PLET D{} = {} DISTANCE AND
\ND{} = {} DISTANCE. WRITE AN EQUATION T
HAT RELATES D{} AND D{}.@H{}@H{} SHOWS T
HAT {} DISTANCE WAS INCREASED BY {}, IT
WOULD EQUAL {} DISTANCE.@I(16,C0,D{}=D{}
)@PONE ANSWER IS `{}'. CHANGE YOUR ANSWE
R IF IT IS NOT EQUIVALENT. (PRESS RETURN
)@H{}@H{} SHOWS THAT {} DISTANCE WAS INC
REASED BY {}, IT WOULD EQUAL {} DISTANCE
.@I(16,C0,D{}=D{})@RDATA ENTRY@PFILL IN
THE UNITS BY WHICH RATE, TIME AND DISTAN
CE ARE MEASURED. (USE ABBREVIATED FORM.)
@HRATE OF SPEED IS COMMONLY MEASURED IN
MILES PER HOUR(MI/HR), METERS PER MINUTE
(M/MIN), ETC.@HTHE RATE OF SPEED IN THIS
PROBLEM IS MEASURED IN {}.@I(5,C{},{})@
HTIME IS COMMONLY MEASURED IN SECONDS (S
EC), MINUTES (MIN), HOURS (HR), DAYS (DA
), ETC.@HTIME IN THIS PROBLEM IS MEASURE
D IN {}@I(9,C{},{})@HDISTANCE IS COMMONL
Y MEASURED IN FEET (FT), YARDS (YD), MIL
ES (MI), METERS (M), KILOMETERS (KM), ET
C.@HDISTANCE IN THIS PROBLEM IS MEASURED
IN {}@I(13,C{},{})@PENTER THE FACTS FRO
M THE PROBLEM INTO THE GRID.@H{}@H{}@I(6
,I,{})@H{}@H{}@I(7,I,{})@PUSE A VARIABLE
TO REPRESENT THE TIME EACH {}.@H{} FOR
THE SAME AMOUNT OF TIME, SO USE THE SAME
VARIABLE TO REPRESENT BOTH THEIR TIMES.
@HUSE A VARIABLE, SUCH AS `{}' TO REPRES
ENT THE {}.@I(10,I,&V)@HREPRESENT THE TI
ME {} IN TERMS OF "&V" (THE TIME {}).@HS
INCE BOTH OF THEM {} FOR THE SAME AMOUNT
OF TIME, USE THE SAME VARIABLE, `&V' TO
REPRESENT {} TIME.@I(11,I,&V)@RPARTS@PW
RITE EXPRESSIONS TO REPRESENT TBE DISTAN
CE {}.@HRATE*TIME = DISTANCE@HRATE \F06
* \F08TIME \F13= DISTANCE \N{}@I(14,I,{}
)@HRATE*TIME = DISTANCE@HRATE \F06* \F0
8TIME \F13= DISTANCE \N{}@I(15,I,{})@RWH
OLE&D(16, )@PSUBSTITUTE YOUR EXPRESSIONS
FOR D{} AND D{} IN THE EQUATION: D{} =
D{}@HD{} = {} AND D{} = {}.@H{} SHOWS TH
AT {} DISTANCE IS {} GREATER THAN {} DIS
TANCE.@I(16,I,{})@S@RCOMPUTE@PSOLVE THE
EQUATION FOR "&V". USE PAPER AND PENCIL
AND ENTER THE FINAL EQUATION, OR USE THE
CALCULATOR.@HISOLATE "&V" ON ONE SIDE O
F THE EQUATION.@HTHE CALCULATOR SOLVES E
QUATIONS FOR YOU AND DISPLAYS THE STEPS
IN THE SOLUTION.@I(16,I,&V={})@PNOW YOU
ARE READY TO ANSWER THE QUESTION. ENTER
YOUR ANSWER IN THE GRID.&Q{}&Q&W(16)@HTH
E TIME FOR {} IS EQUAL TO THE VALUE OF "
&V".@HTHE TIME FOR {} IS EQUAL TO THE VA
LUE OF "&V". &V = {}, SO ENTER {}'.@I(10
,I,{})&D(11,{})@S@RCHECK@PREREAD THE PRO
BLEM. CHECK YOUR ANSWERS. EVALUATE THE R
EMAINING EXPRESSIONS IN THE GRID.&W(16)@
HSUBSTITUTE FOR "&V" IN THE EXPRESSION F
OR {} DISTANCE. THEN CALCULATE THE RESUL
T.@H{} REPRESENTS {} DISTANCE AND &V={}@
I(14,I,{})@HSUBSTITUTE FOR "&V" IN THE E
XPRESSION FOR {} DISTANCE. THEN CALCULAT
E THE RESULT.@H{} REPRESENTS {} DISTANCE
AND &V={}@I(15,I,{})&D(0,CHECK YOUR WOR
K. {} DISTANCE + {} SHOULD EQUAL {} DIST
ANCE. GET READY FOR A NEW PROBLEM.)@FROB
IN SWIMS 50 YARDS EACH MINUTE AND TIM SW
IMS 45 YD/MIN. HOW LONG WILL IT TAKE ROB
IN TO GET 1 LAP (25 YARDS) AHEAD OF TIM?
.ROBIN.TIM.ROBIN SWIMS 50 YARDS EACH MIN
UTE AND TIM SWIMS 45 YD/MIN UNTIL SHE IS
25 YARDS AHEAD.&HHOW LONG WILL IT TAKE
ROBIN TO GET 1 LAP (25 YARDS) AHEAD OF T
IM?&H.R.ROBIN'S.T.TIM'S.R.T.THEY BOTH ST
ART SWIMMING AT THE SAME TIME AND CONTIN
UE UNTIL ROBIN HAS SWUM 25 YARDS MORE TH
AN TIM..`DT+25=DR'.IF TIM'S.25 YARDS.ROB
IN'S.T+25.R.DT+25=DR.THEY BOTH START SWI
MMING AT THE SAME TIME AND CONTINUE UNTI
L ROBIN HAS SWUM 25 YARDS MORE THAN TIM.
.`DT+25=DR'.IF TIM'S.25 YARDS.ROBIN'S.T+
25.R.YARDS PER MINUTE (`YD/MIN').6.YD/MI
N.MINUTES (`MIN')..3.MIN.YARDS (`YD')..2
.YD.&HROBIN SWIMS 50 YARDS EACH MINUTE&H
..ROBIN'S RATE IS `50' YARDS PER MINUTE.
.50.&HTIM SWIMS 45 YD/MIN.&H.TIM'S RATE
IS `45' YARDS PER MINUTE..45.PERSON'S TI
ME.BOTH PEOPLE SWIM.T.AMOUNT OF TIME THA
T ROBIN SPENT SWIMMING.THAT TIM SWIMS.TH
AT ROBIN SWIMS.SWIM.TIM'S.THAT EACH PERS
ON SWUM.`50 \F06* \F08 &V' \F13= ROBIN'
S DIST. .50&V.`45 \F06* \F08 &V' \F13=
TIM'S DIST..45&V.R.T.T+25.R.R.50&V.T.45&
V.`45&V+25 = 50&V'.ROBIN'S.25 YARDS.TIM'
S.45&V+25=50&V.5.HOW LONG WILL IT TAKE R
OBIN TO GET 1 LAP (25 YARDS) AHEAD OF TI
M?.BOTH ROBIN AND TIM.BOTH ROBIN AND TIM
.5.5.5.5.ROBIN'S.50&V.ROBIN'S.5, SO 50*5
, OR `250' YARDS IS THE DISTANCE THAT RO
BIN SWAM..250.TIM'S.45&V.TIM'S.5, SO 45*
5 OR,`225' YARDS IS THE DISTANCE THAT TI
M SWAM..225.TIM'S.25 YARDS.ROBIN'S.@FALI
SON CAN READ 100 WORDS PER MINUTE (W/MIN
) AND STEVEN CAN READ 80 W/MIN. IF THEY
ARE BOTH STARTING TO READ THE SAME BOOK,
AFTER HOW MUCH TIME WILL ALISON BE 225
WORDS AHEAD OF STEVEN?.ALISON.STEVEN.THE
Y START READING AT THE SAME TIME, AND AL
ISON'S RATE IS FASTER THAN STEVEN'S.&HAF
TER HOW MUCH TIME WILL ALISON BE 225 WOR
DS AHEAD&H?.A.ALISON'S.S.STEVEN'S.A.S.`D
S+225 = DA' SHOWS THAT, IN TOTAL, ALISON
WILL HAVE READ 225 WORDS MORE THAN STEV
EN..`DS+225 = DA'.IF STEVEN'S.225.ALISON
'S.S+225.A.DS+225 = DA.`DS+225 = DA' SHO
WS THAT, IN TOTAL, ALISON WILL HAVE READ
225 WORDS MORE THAN STEVEN..`DS+225 = D
A'.IF STEVEN'S.225.ALISON'S.S+225.A.WORD
S PER MINUTE(`W/MIN').4.W/MIN.MINUTES (`
MIN').3.MIN.WORDS (`W')..1.W.ALISON READ
S &H100 WORDS PER MINUTE&H..ALISON'S RAT
E IS `100' W/MIN..100.STEVEN'S READS &H8
0 W/MIN&H..STEVEN'S RATE IS `80' W/MIN..
80.PERSON READS.BOTH PEOPLE READ.A.TIME
ALISON SPENDS READING.STEVEN SPENDS READ
ING.ALISON SPENDS READING.READ.STEVEN'S
READING.OR IN THIS CASE, THE NUMBER OF W
ORDS EACH PERSON READS.`100 \F06* \F08
&V' \F13= # OF WORDS.100&V.`80 \F06* \
F08 &V' \F13= # OF WORDS.80&V.A.S.S+225
.A.A.100&V.S.80&V.`80&V+225 = 100&V'.ALI
SON'S.225 WORDS.STEVEN'S.80&V+225=100&V.
11.25.AFTER HOW MUCH TIME WILL ALISON BE
225 WORDS AHEAD.BOTH OF THEM.ALISON.11.
25.11.25.11.25.11.25.ALISON'S.100&V.ALIS
ON'S.11.25, SO 100&V = 100 * 11.25 = `11
25'.1125.STEVEN'S.80&V.STEVEN'S.11.25, S
O 80&V = 80 * 11.25 = `900'.900.STEVEN'S
.225.ALISON'S.|E
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL