MIXT2L3
FILE INFORMATION
FILENAME(S): MIXT2L3
FILE TYPE(S): PRG
FILE SIZE: 5.2K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
36c6b2e74a4f23a5ecff829e2af5e180ba8ad416c7952c516a433a8694b61475
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | MIXT2L3 | PRG | Radd Maxx | 29 | 4 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 3F 40 64 67 30 39 26 63 28 31 | A@q{}?@dg09&c(1|
00000010: 2C 7B 7D 29 26 63 28 32 2C 7B 7D 29 26 63 28 33 |,{})&c(2,{})&c(3|
00000020: 2C 4D 69 78 29 26 64 28 34 2C 55 6E 69 74 20 73 |,Mix)&d(4,Unit s|
00000030: 74 72 65 6E 29 26 64 28 38 2C 7B 7D 29 26 64 28 |tren)&d(8,{})&d(|
00000040: 31 32 2C 7B 7D 29 40 72 52 45 41 44 40 70 52 65 |12,{})@rREAD@pRe|
00000050: 61 64 20 74 68 65 20 77 68 6F 6C 65 20 70 72 6F |ad the whole pro|
00000060: 62 6C 65 6D 2E 20 54 68 69 6E 6B 3A 20 57 68 61 |blem. Think: Wha|
00000070: 74 20 61 72 65 20 74 68 65 20 66 61 63 74 73 3F |t are the facts?|
00000080: 20 20 57 68 61 74 20 69 73 20 62 65 69 6E 67 20 | What is being |
00000090: 61 73 6B 65 64 3F 20 28 50 72 65 73 73 20 61 6E |asked? (Press an|
000000A0: 79 20 6B 65 79 20 74 6F 20 63 6F 6E 74 69 6E 75 |y key to continu|
000000B0: 65 2E 29 40 68 57 68 61 74 20 61 72 65 20 74 68 |e.)@hWhat are th|
000000C0: 65 20 66 61 63 74 73 3F 20 7B 7D 40 68 57 68 61 |e facts? {}@hWha|
000000D0: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
000000E0: 3F 20 26 68 7B 7D 26 68 3F 40 69 28 30 29 40 72 |? &h{}&h?@i(0)@r|
000000F0: 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 6C 6C |DATA ENTRY@pFill|
00000100: 20 69 6E 20 74 68 65 20 67 72 69 64 20 2D 2D 20 | in the grid -- |
00000110: 73 74 61 72 74 20 77 69 74 68 20 74 68 65 20 73 |start with the s|
00000120: 74 72 65 6E 67 74 68 73 20 70 65 72 20 75 6E 69 |trengths per uni|
00000130: 74 2E 40 68 57 68 61 74 20 69 73 20 74 68 65 20 |t.@hWhat is the |
00000140: 73 74 72 65 6E 67 74 68 20 70 65 72 20 7B 7D 3F |strength per {}?|
00000150: 40 68 54 68 65 20 73 74 72 65 6E 67 74 68 20 70 |@hThe strength p|
00000160: 65 72 20 7B 7D 2E 40 69 28 35 2C 69 2C 7B 7D 29 |er {}.@i(5,i,{})|
00000170: 26 64 28 35 2C 7B 7D 29 40 68 57 68 61 74 20 69 |&d(5,{})@hWhat i|
00000180: 73 20 74 68 65 20 73 74 72 65 6E 67 74 68 20 70 |s the strength p|
00000190: 65 72 20 7B 7D 20 6F 66 20 74 68 65 20 7B 7D 3F |er {} of the {}?|
000001A0: 40 68 54 68 65 20 73 74 72 65 6E 67 74 68 20 70 |@hThe strength p|
000001B0: 65 72 20 7B 7D 2E 40 69 28 36 2C 69 2C 7B 7D 29 |er {}.@i(6,i,{})|
000001C0: 26 64 28 36 2C 7B 7D 29 40 68 57 68 61 74 20 69 |&d(6,{})@hWhat i|
000001D0: 73 20 74 68 65 20 73 74 72 65 6E 67 74 68 20 70 |s the strength p|
000001E0: 65 72 20 7B 7D 20 6F 66 20 74 68 65 20 6D 69 78 |er {} of the mix|
000001F0: 3F 40 68 54 68 65 20 73 74 72 65 6E 67 74 68 20 |?@hThe strength |
00000200: 70 65 72 20 7B 7D 20 6F 66 20 74 68 65 20 6D 69 |per {} of the mi|
00000210: 78 20 69 73 20 7B 7D 2E 40 69 28 37 2C 69 2C 7B |x is {}.@i(7,i,{|
00000220: 7D 29 40 70 45 6E 74 65 72 20 74 68 65 20 66 61 |})@pEnter the fa|
00000230: 63 74 73 20 66 72 6F 6D 20 74 68 65 20 70 72 6F |cts from the pro|
00000240: 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 20 67 72 |blem into the gr|
00000250: 69 64 2E 40 68 7B 7D 2E 40 68 54 68 65 20 6E 75 |id.@h{}.@hThe nu|
00000260: 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 69 28 7B 7D |mber of {}.@i({}|
00000270: 2C 69 2C 7B 7D 29 40 70 52 65 70 72 65 73 65 6E |,i,{})@pRepresen|
00000280: 74 20 74 68 65 20 61 6D 6F 75 6E 74 20 6F 66 20 |t the amount of |
00000290: 7B 7D 20 74 6F 20 62 65 20 61 64 64 65 64 2E 40 |{} to be added.@|
000002A0: 68 43 68 6F 6F 73 65 20 61 20 76 61 72 69 61 62 |hChoose a variab|
000002B0: 6C 65 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 |le to represent |
000002C0: 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D |the number of {}|
000002D0: 2E 40 68 55 73 65 20 61 6E 79 20 6C 65 74 74 65 |.@hUse any lette|
000002E0: 72 2C 20 73 75 63 68 20 61 73 20 7B 7D 2E 40 69 |r, such as {}.@i|
000002F0: 28 7B 7D 2C 69 2C 26 76 29 40 70 52 65 70 72 65 |({},i,&v)@pRepre|
00000300: 73 65 6E 74 20 74 68 65 20 23 20 6F 66 20 7B 7D |sent the # of {}|
00000310: 20 69 6E 20 74 68 65 20 6D 69 78 74 75 72 65 20 | in the mixture |
00000320: 69 6E 20 74 65 72 6D 73 20 6F 66 20 22 26 76 22 |in terms of "&v"|
00000330: 20 28 7B 7D 29 2E 40 68 54 68 65 20 73 75 6D 20 | ({}).@hThe sum |
00000340: 6F 66 20 74 68 65 20 71 75 61 6E 74 69 74 69 65 |of the quantitie|
00000350: 73 20 6F 66 20 74 68 65 20 7B 7D 20 77 69 6C 6C |s of the {} will|
00000360: 20 65 71 75 61 6C 20 74 68 65 20 71 75 61 6E 74 | equal the quant|
00000370: 69 74 79 20 6F 66 20 74 68 65 20 6D 69 78 74 75 |ity of the mixtu|
00000380: 72 65 2E 40 68 54 68 65 72 65 20 61 72 65 20 7B |re.@hThere are {|
00000390: 7D 20 69 6E 20 74 68 65 20 6D 69 78 74 75 72 65 |} in the mixture|
000003A0: 2E 40 69 28 31 31 2C 69 2C 7B 7D 29 40 72 50 41 |.@i(11,i,{})@rPA|
000003B0: 52 54 53 40 70 57 72 69 74 65 20 61 6E 20 65 78 |RTS@pWrite an ex|
000003C0: 70 72 65 73 73 69 6F 6E 20 74 6F 20 72 65 70 72 |pression to repr|
000003D0: 65 73 65 6E 74 20 74 68 65 20 61 6D 6F 75 6E 74 |esent the amount|
000003E0: 20 6F 66 20 7B 7D 20 63 6F 6E 74 61 69 6E 65 64 | of {} contained|
000003F0: 20 69 6E 20 65 61 63 68 20 73 6F 6C 75 74 69 6F | in each solutio|
00000400: 6E 2E 40 68 4D 75 6C 74 69 70 6C 79 20 74 68 65 |n.@hMultiply the|
00000410: 20 73 74 72 65 6E 67 74 68 2F 75 6E 69 74 20 62 | strength/unit b|
00000420: 79 20 74 68 65 20 23 20 6F 66 20 7B 7D 2E 40 68 |y the # of {}.@h|
00000430: 73 74 72 65 6E 2F 7B 7D 20 20 5C 66 31 33 2A 20 |stren/{} \f13* |
00000440: 23 20 6F 66 20 7B 7D 20 5C 66 32 32 3D 20 75 6E |# of {} \f22= un|
00000450: 69 74 73 20 6F 66 20 7B 7D 20 5C 6E 20 20 60 7B |its of {} \n `{|
00000460: 7D 20 20 20 20 20 20 20 5C 66 31 33 2A 20 20 20 |} \f13* |
00000470: 20 7B 7D 27 20 20 20 5C 66 32 32 3D 20 75 6E 69 | {}' \f22= uni|
00000480: 74 73 20 6F 66 20 7B 7D 40 69 28 31 33 2C 69 2C |ts of {}@i(13,i,|
00000490: 7B 7D 29 40 68 4D 75 6C 74 69 70 6C 79 20 74 68 |{})@hMultiply th|
000004A0: 65 20 73 74 72 65 6E 67 74 68 2F 75 6E 69 74 20 |e strength/unit |
000004B0: 62 79 20 74 68 65 20 23 20 6F 66 20 7B 7D 2E 40 |by the # of {}.@|
000004C0: 68 73 74 72 65 6E 2F 7B 7D 20 5C 66 31 33 2A 20 |hstren/{} \f13* |
000004D0: 23 20 6F 66 20 7B 7D 20 5C 66 32 32 3D 20 75 6E |# of {} \f22= un|
000004E0: 69 74 73 20 6F 66 20 7B 7D 20 5C 6E 20 60 7B 7D |its of {} \n `{}|
000004F0: 20 20 20 20 20 20 20 20 20 5C 66 31 33 2A 20 20 | \f13* |
00000500: 20 20 7B 7D 27 20 20 20 5C 66 32 32 3D 20 75 6E | {}' \f22= un|
00000510: 69 74 73 20 6F 66 20 7B 7D 40 69 28 31 34 2C 69 |its of {}@i(14,i|
00000520: 2C 7B 7D 29 40 68 4D 75 6C 74 69 70 6C 79 20 74 |,{})@hMultiply t|
00000530: 68 65 20 73 74 72 65 6E 67 74 68 2F 75 6E 69 74 |he strength/unit|
00000540: 20 62 79 20 74 68 65 20 23 20 6F 66 20 7B 7D 2E | by the # of {}.|
00000550: 40 68 73 74 72 65 6E 2F 7B 7D 5C 66 31 33 2A 20 |@hstren/{}\f13* |
00000560: 23 20 6F 66 20 7B 7D 20 5C 66 32 32 3D 20 75 6E |# of {} \f22= un|
00000570: 69 74 73 20 6F 66 20 7B 7D 20 5C 6E 20 20 20 60 |its of {} \n `|
00000580: 7B 7D 20 20 20 20 5C 66 31 33 2A 20 28 7B 7D 29 |{} \f13* ({})|
00000590: 27 20 5C 66 32 32 3D 20 75 6E 69 74 73 20 6F 66 |' \f22= units of|
000005A0: 20 7B 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 20 20 | {}@i(15,i,{}) |
000005B0: 40 72 57 48 4F 4C 45 40 70 55 73 65 20 74 68 65 |@rWHOLE@pUse the|
000005C0: 20 67 72 69 64 20 74 6F 20 77 72 69 74 65 20 61 | grid to write a|
000005D0: 6E 20 65 71 75 61 74 69 6F 6E 20 74 6F 20 72 65 |n equation to re|
000005E0: 6C 61 74 65 20 74 68 65 20 70 61 72 74 73 20 28 |late the parts (|
000005F0: 7B 7D 29 20 74 6F 20 74 68 65 20 77 68 6F 6C 65 |{}) to the whole|
00000600: 20 28 4D 69 78 29 2E 40 68 7B 7D 20 2B 20 28 7B | (Mix).@h{} + ({|
00000610: 7D 20 61 6D 74 29 20 3D 20 54 6F 74 61 6C 20 61 |} amt) = Total a|
00000620: 6D 74 40 68 7B 7D 40 69 28 31 36 2C 69 2C 7B 7D |mt@h{}@i(16,i,{}|
00000630: 29 40 73 40 72 43 4F 4D 50 55 54 45 40 70 53 6F |)@s@rCOMPUTE@pSo|
00000640: 6C 76 65 20 74 68 65 20 65 71 75 61 74 69 6F 6E |lve the equation|
00000650: 20 66 6F 72 20 22 26 76 22 20 28 7B 7D 29 2E 20 | for "&v" ({}). |
00000660: 55 73 65 20 70 65 6E 63 69 6C 20 61 6E 64 20 70 |Use pencil and p|
00000670: 61 70 65 72 2C 20 6F 72 20 75 73 65 20 74 68 65 |aper, or use the|
00000680: 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 | Calculator.@hIs|
00000690: 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E |olate "&v" on on|
000006A0: 65 20 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 |e side of the eq|
000006B0: 75 61 74 69 6F 6E 2E 40 68 54 68 65 20 43 61 6C |uation.@hThe Cal|
000006C0: 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 65 |culator solves e|
000006D0: 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F 75 |quations for you|
000006E0: 20 61 6E 64 20 64 69 73 70 6C 61 79 73 20 74 68 | and displays th|
000006F0: 65 20 73 74 65 70 73 20 69 6E 20 74 68 65 20 73 |e steps in the s|
00000700: 6F 6C 75 74 69 6F 6E 2E 40 69 28 31 36 2C 69 2C |olution.@i(16,i,|
00000710: 26 76 3D 7B 7D 29 40 70 4E 6F 77 20 66 69 6C 6C |&v={})@pNow fill|
00000720: 20 69 6E 20 74 68 65 20 61 6E 73 77 65 72 28 73 | in the answer(s|
00000730: 29 20 74 6F 20 74 68 65 20 70 72 6F 62 6C 65 6D |) to the problem|
00000740: 2E 20 52 65 6D 65 6D 62 65 72 20 74 68 65 20 71 |. Remember the q|
00000750: 75 65 73 74 69 6F 6E 2E 20 26 71 7B 7D 3F 26 71 |uestion. &q{}?&q|
00000760: 26 77 28 31 36 29 40 68 54 68 65 20 6E 75 6D 62 |&w(16)@hThe numb|
00000770: 65 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 20 |er of {} is the |
00000780: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
00000790: 26 76 20 3D 20 60 7B 7D 27 40 69 28 7B 7D 2C 69 |&v = `{}'@i({},i|
000007A0: 2C 7B 7D 29 20 40 73 40 72 43 48 45 43 4B 40 70 |,{}) @s@rCHECK@p|
000007B0: 52 65 72 65 61 64 20 74 68 65 20 70 72 6F 62 6C |Reread the probl|
000007C0: 65 6D 2E 20 43 68 65 63 6B 20 79 6F 75 72 20 61 |em. Check your a|
000007D0: 6E 73 77 65 72 73 2E 20 52 65 70 6C 61 63 65 20 |nswers. Replace |
000007E0: 61 6C 6C 20 76 61 72 69 61 62 6C 65 73 20 69 6E |all variables in|
000007F0: 20 74 68 65 20 67 72 69 64 2E 40 68 54 68 65 20 | the grid.@hThe |
00000800: 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 20 69 73 20 |number of {} is |
00000810: 74 68 65 20 76 61 6C 75 65 20 6F 66 20 7B 7D 2E |the value of {}.|
00000820: 40 68 7B 7D 2E 40 69 28 31 31 2C 69 2C 7B 7D 29 |@h{}.@i(11,i,{})|
00000830: 40 68 53 75 62 73 74 69 74 75 74 65 20 66 6F 72 |@hSubstitute for|
00000840: 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 78 70 | "&v" in the exp|
00000850: 72 65 73 73 69 6F 6E 20 66 6F 72 20 74 68 65 20 |ression for the |
00000860: 61 6D 6F 75 6E 74 20 6F 66 20 7B 7D 2E 40 68 7B |amount of {}.@h{|
00000870: 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 53 75 |}@i({},i,{})@hSu|
00000880: 62 73 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 |bstitute for "&v|
00000890: 22 20 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 |" in the express|
000008A0: 69 6F 6E 20 66 6F 72 20 74 68 65 20 7B 7D 20 69 |ion for the {} i|
000008B0: 6E 20 74 68 65 20 6D 69 78 74 75 72 65 2E 40 68 |n the mixture.@h|
000008C0: 7B 7D 2E 40 69 28 31 35 2C 69 2C 7B 7D 29 26 64 |{}.@i(15,i,{})&d|
000008D0: 28 30 2C 4D 61 6B 65 20 73 75 72 65 20 74 68 65 |(0,Make sure the|
000008E0: 20 73 75 6D 20 6F 66 20 7B 7D 20 65 71 75 61 6C | sum of {} equal|
000008F0: 73 20 74 68 65 20 74 6F 74 61 6C 20 61 6D 6F 75 |s the total amou|
00000900: 6E 74 20 69 6E 20 74 68 65 20 6D 69 78 74 75 72 |nt in the mixtur|
00000910: 65 2E 20 4F 6E 20 74 6F 20 61 20 6E 65 77 20 70 |e. On to a new p|
00000920: 72 6F 62 6C 65 6D 2E 29 40 66 45 69 67 68 74 20 |roblem.)@fEight |
00000930: 71 75 61 72 74 73 20 6F 66 20 61 20 73 6F 6C 75 |quarts of a solu|
00000940: 74 69 6F 6E 20 74 68 61 74 20 69 73 20 31 30 25 |tion that is 10%|
00000950: 20 61 63 69 64 20 69 73 20 74 6F 20 62 65 20 6D | acid is to be m|
00000960: 69 78 65 64 20 77 69 74 68 20 61 20 32 35 25 20 |ixed with a 25% |
00000970: 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E 20 74 6F |acid solution to|
00000980: 20 63 72 65 61 74 65 20 61 20 31 35 25 20 61 63 | create a 15% ac|
00000990: 69 64 20 73 6F 6C 75 74 69 6F 6E 2E 20 48 6F 77 |id solution. How|
000009A0: 20 6D 61 6E 79 20 71 75 61 72 74 73 20 6F 66 20 | many quarts of |
000009B0: 74 68 65 20 32 35 25 20 61 63 69 64 20 77 69 6C |the 25% acid wil|
000009C0: 6C 20 62 65 20 6E 65 65 64 65 64 00 57 65 61 6B |l be needed.Weak|
000009D0: 00 53 74 72 6F 6E 67 00 71 74 73 20 6F 66 20 73 |.Strong.qts of s|
000009E0: 6F 6C 2E 00 71 74 73 20 6F 66 20 70 75 72 65 00 |ol..qts of pure.|
000009F0: 26 71 45 69 67 68 74 20 71 75 61 72 74 73 20 6F |&qEight quarts o|
00000A00: 66 20 61 20 73 6F 6C 75 74 69 6F 6E 20 74 68 61 |f a solution tha|
00000A10: 74 20 69 73 20 31 30 25 20 61 63 69 64 26 71 20 |t is 10% acid&q |
00000A20: 26 71 6D 69 78 65 64 20 77 69 74 68 20 61 20 32 |&qmixed with a 2|
00000A30: 35 25 20 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E |5% acid solution|
00000A40: 26 71 20 26 71 63 72 65 61 74 65 20 61 20 31 35 |&q &qcreate a 15|
00000A50: 25 20 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E 26 |% acid solution&|
00000A60: 71 00 48 6F 77 20 6D 61 6E 79 20 71 75 61 72 74 |q.How many quart|
00000A70: 73 20 6F 66 20 74 68 65 20 32 35 25 20 61 63 69 |s of the 25% aci|
00000A80: 64 20 77 69 6C 6C 20 62 65 20 6E 65 65 64 65 64 |d will be needed|
00000A90: 00 71 75 61 72 74 20 6F 66 20 74 68 65 20 57 65 |.quart of the We|
00000AA0: 61 6B 20 73 6F 6C 75 74 69 6F 6E 00 71 75 61 72 |ak solution.quar|
00000AB0: 74 20 6F 66 20 74 68 65 20 57 65 61 6B 20 73 6F |t of the Weak so|
00000AC0: 6C 75 74 69 6F 6E 20 69 73 20 60 2E 31 27 00 2E |lution is `.1'..|
00000AD0: 31 00 2E 31 00 71 75 61 72 74 00 53 74 72 6F 6E |1..1.quart.Stron|
00000AE0: 67 20 73 6F 6C 75 74 69 6F 6E 00 71 75 61 72 74 |g solution.quart|
00000AF0: 20 6F 66 20 74 68 65 20 53 74 72 6F 6E 67 20 73 | of the Strong s|
00000B00: 6F 6C 75 74 69 6F 6E 20 69 73 20 60 2E 32 35 27 |olution is `.25'|
00000B10: 00 2E 32 35 00 2E 32 35 00 71 75 61 72 74 00 71 |..25..25.quart.q|
00000B20: 75 61 72 74 00 60 2E 31 35 27 00 2E 31 35 00 54 |uart.`.15'..15.T|
00000B30: 68 65 72 65 20 61 72 65 20 26 68 65 69 67 68 74 |here are &height|
00000B40: 20 71 75 61 72 74 73 20 6F 66 20 61 20 73 6F 6C | quarts of a sol|
00000B50: 75 74 69 6F 6E 20 74 68 61 74 20 69 73 20 31 30 |ution that is 10|
00000B60: 25 20 70 75 72 65 20 61 63 69 64 26 68 00 71 75 |% pure acid&h.qu|
00000B70: 61 72 74 73 20 6F 66 20 31 30 25 20 61 63 69 64 |arts of 10% acid|
00000B80: 20 73 6F 6C 75 74 69 6F 6E 20 69 73 20 60 38 27 | solution is `8'|
00000B90: 00 39 00 38 00 53 74 72 6F 6E 67 20 73 6F 6C 75 |.9.8.Strong solu|
00000BA0: 74 69 6F 6E 00 71 75 61 72 74 73 20 6F 66 20 53 |tion.quarts of S|
00000BB0: 74 72 6F 6E 67 20 73 6F 6C 75 74 69 6F 6E 00 60 |trong solution.`|
00000BC0: 73 27 2C 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |s', to represent|
00000BD0: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 71 | the number of q|
00000BE0: 75 61 72 74 73 20 6F 66 20 53 74 72 6F 6E 67 20 |uarts of Strong |
00000BF0: 73 6F 6C 75 74 69 6F 6E 00 31 30 00 71 75 61 72 |solution.10.quar|
00000C00: 74 73 00 74 68 65 20 23 20 6F 66 20 71 75 61 72 |ts.the # of quar|
00000C10: 74 73 20 6F 66 20 53 74 72 6F 6E 67 20 73 6F 6C |ts of Strong sol|
00000C20: 75 74 69 6F 6E 00 57 65 61 6B 20 61 6E 64 20 53 |ution.Weak and S|
00000C30: 74 72 6F 6E 67 20 61 63 69 64 20 73 6F 6C 75 74 |trong acid solut|
00000C40: 69 6F 6E 73 00 60 26 76 2B 38 27 20 71 75 61 72 |ions.`&v+8' quar|
00000C50: 74 73 00 26 76 2B 38 00 61 63 69 64 00 71 75 61 |ts.&v+8.acid.qua|
00000C60: 72 74 73 20 6F 66 20 57 65 61 6B 20 73 6F 6C 75 |rts of Weak solu|
00000C70: 74 69 6F 6E 00 71 74 00 71 74 73 00 57 65 61 6B |tion.qt.qts.Weak|
00000C80: 00 2E 31 00 38 00 57 65 61 6B 00 2E 31 2A 38 00 |..1.8.Weak..1*8.|
00000C90: 71 75 61 72 74 73 20 6F 66 20 53 74 72 6F 6E 67 |quarts of Strong|
00000CA0: 20 73 6F 6C 75 74 69 6F 6E 00 71 74 00 71 74 73 | solution.qt.qts|
00000CB0: 00 53 74 72 6F 6E 67 00 2E 32 35 00 26 76 00 53 |.Strong..25.&v.S|
00000CC0: 74 72 6F 6E 67 00 2E 32 35 2A 26 76 00 71 75 61 |trong..25*&v.qua|
00000CD0: 72 74 73 20 69 6E 20 74 68 65 20 6D 69 78 00 71 |rts in the mix.q|
00000CE0: 74 00 71 74 73 00 6D 69 78 00 2E 31 35 00 26 76 |t.qts.mix..15.&v|
00000CF0: 2B 38 00 6D 69 78 00 2E 31 35 2A 28 26 76 2B 38 |+8.mix..15*(&v+8|
00000D00: 29 00 53 74 72 6F 6E 67 20 61 6E 64 20 57 65 61 |).Strong and Wea|
00000D10: 6B 20 73 6F 6C 75 74 69 6F 6E 73 00 57 65 61 6B |k solutions.Weak|
00000D20: 20 61 6D 74 00 53 74 72 6F 6E 67 20 61 6D 74 00 | amt.Strong amt.|
00000D30: 20 20 60 2E 38 20 20 20 20 20 20 5C 66 31 32 2B | `.8 \f12+|
00000D40: 20 20 20 20 20 2E 32 35 26 76 20 20 5C 66 32 37 | .25&v \f27|
00000D50: 3D 2E 31 35 28 26 76 2B 38 29 27 00 2E 38 2B 2E |=.15(&v+8)'..8+.|
00000D60: 32 35 26 76 3D 2E 31 35 28 26 76 2B 38 29 00 74 |25&v=.15(&v+8).t|
00000D70: 68 65 20 23 20 6F 66 20 71 75 61 72 74 73 20 6F |he # of quarts o|
00000D80: 66 20 53 74 72 6F 6E 67 00 34 00 48 6F 77 20 6D |f Strong.4.How m|
00000D90: 61 6E 79 20 71 75 61 72 74 73 20 6F 66 20 74 68 |any quarts of th|
00000DA0: 65 20 32 35 25 20 61 63 69 64 20 77 69 6C 6C 20 |e 25% acid will |
00000DB0: 62 65 20 6E 65 65 64 65 64 00 71 75 61 72 74 73 |be needed.quarts|
00000DC0: 20 6F 66 20 53 74 72 6F 6E 67 20 73 6F 6C 75 74 | of Strong solut|
00000DD0: 69 6F 6E 00 34 00 31 30 00 34 00 71 75 61 72 74 |ion.4.10.4.quart|
00000DE0: 73 20 69 6E 20 74 68 65 20 6D 69 78 00 60 26 76 |s in the mix.`&v|
00000DF0: 2B 38 27 00 26 76 2B 38 20 3D 20 34 2B 38 20 3D |+8'.&v+8 = 4+8 =|
00000E00: 20 60 31 32 27 2E 20 54 68 65 72 65 20 61 72 65 | `12'. There are|
00000E10: 20 31 32 20 71 75 61 72 74 73 20 69 6E 20 74 68 | 12 quarts in th|
00000E20: 65 20 6D 69 78 00 31 32 00 61 63 69 64 20 69 6E |e mix.12.acid in|
00000E30: 20 74 68 65 20 53 74 72 6F 6E 67 20 73 6F 6C 75 | the Strong solu|
00000E40: 74 69 6F 6E 00 2E 32 35 26 76 20 3D 20 2E 32 35 |tion..25&v = .25|
00000E50: 2A 34 20 3D 20 60 31 27 2E 20 54 68 65 72 65 20 |*4 = `1'. There |
00000E60: 69 73 20 6F 6E 65 20 71 75 61 72 74 20 6F 66 20 |is one quart of |
00000E70: 61 63 69 64 20 69 6E 20 74 68 65 20 53 74 72 6F |acid in the Stro|
00000E80: 6E 67 20 73 6F 6C 75 74 69 6F 6E 2E 00 31 34 00 |ng solution..14.|
00000E90: 31 00 61 6D 6F 75 6E 74 20 6F 66 20 61 63 69 64 |1.amount of acid|
00000EA0: 00 2E 31 35 28 26 76 2B 38 29 20 3D 20 2E 31 35 |..15(&v+8) = .15|
00000EB0: 28 34 2B 38 29 20 3D 20 2E 31 35 2A 31 32 20 3D |(4+8) = .15*12 =|
00000EC0: 20 31 2E 38 2E 20 54 68 65 72 65 20 61 72 65 20 | 1.8. There are |
00000ED0: 60 31 2E 38 27 20 71 75 61 72 74 73 20 6F 66 20 |`1.8' quarts of |
00000EE0: 61 63 69 64 20 69 6E 20 74 68 65 20 6D 69 78 00 |acid in the mix.|
00000EF0: 31 2E 38 00 57 65 61 6B 20 61 6E 64 20 53 74 72 |1.8.Weak and Str|
00000F00: 6F 6E 67 20 73 6F 6C 75 74 69 6F 6E 73 00 40 66 |ong solutions.@f|
00000F10: 48 6F 77 20 6D 61 6E 79 20 70 6F 75 6E 64 73 20 |How many pounds |
00000F20: 6F 66 20 61 20 34 30 25 20 70 75 72 65 20 61 63 |of a 40% pure ac|
00000F30: 69 64 20 73 6F 6C 75 74 69 6F 6E 20 6D 75 73 74 |id solution must|
00000F40: 20 62 65 20 6D 69 78 65 64 20 77 69 74 68 20 31 | be mixed with 1|
00000F50: 30 20 70 6F 75 6E 64 73 20 6F 66 20 61 20 73 6F |0 pounds of a so|
00000F60: 6C 75 74 69 6F 6E 20 74 68 61 74 20 69 73 20 34 |lution that is 4|
00000F70: 38 25 20 70 75 72 65 20 61 63 69 64 20 74 6F 20 |8% pure acid to |
00000F80: 63 72 65 61 74 65 20 61 20 34 35 25 20 61 63 69 |create a 45% aci|
00000F90: 64 20 73 6F 6C 75 74 69 6F 6E 00 57 65 61 6B 00 |d solution.Weak.|
00000FA0: 53 74 72 6F 6E 67 00 6C 62 73 20 6F 66 20 73 6F |Strong.lbs of so|
00000FB0: 6C 2E 00 6C 62 73 20 6F 66 20 61 63 69 64 00 26 |l..lbs of acid.&|
00000FC0: 71 34 30 25 20 70 75 72 65 20 61 63 69 64 20 73 |q40% pure acid s|
00000FD0: 6F 6C 75 74 69 6F 6E 26 71 20 26 71 6D 69 78 65 |olution&q &qmixe|
00000FE0: 64 20 77 69 74 68 20 31 30 20 70 6F 75 6E 64 73 |d with 10 pounds|
00000FF0: 20 6F 66 20 61 20 73 6F 6C 75 74 69 6F 6E 20 74 | of a solution t|
00001000: 68 61 74 20 69 73 20 34 38 25 20 70 75 72 65 26 |hat is 48% pure&|
00001010: 71 20 26 71 63 72 65 61 74 65 20 61 20 34 35 25 |q &qcreate a 45%|
00001020: 20 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E 26 71 | acid solution&q|
00001030: 00 48 6F 77 20 6D 61 6E 79 20 70 6F 75 6E 64 73 |.How many pounds|
00001040: 20 6F 66 20 61 20 34 30 25 20 70 75 72 65 20 61 | of a 40% pure a|
00001050: 63 69 64 20 73 6F 6C 75 74 69 6F 6E 00 70 6F 75 |cid solution.pou|
00001060: 6E 64 20 6F 66 20 74 68 65 20 57 65 61 6B 20 73 |nd of the Weak s|
00001070: 6F 6C 75 74 69 6F 6E 00 70 6F 75 6E 64 20 6F 66 |olution.pound of|
00001080: 20 74 68 65 20 57 65 61 6B 20 73 6F 6C 75 74 69 | the Weak soluti|
00001090: 6F 6E 20 69 73 20 60 2E 34 27 20 70 6F 75 6E 64 |on is `.4' pound|
000010A0: 73 00 2E 34 00 2E 34 00 70 6F 75 6E 64 00 53 74 |s..4..4.pound.St|
000010B0: 72 6F 6E 67 20 73 6F 6C 75 74 69 6F 6E 00 70 6F |rong solution.po|
000010C0: 75 6E 64 20 6F 66 20 74 68 65 20 53 74 72 6F 6E |und of the Stron|
000010D0: 67 20 73 6F 6C 75 74 69 6F 6E 20 69 73 20 60 2E |g solution is `.|
000010E0: 34 38 27 20 70 6F 75 6E 64 73 00 2E 34 38 00 2E |48' pounds..48..|
000010F0: 34 38 00 70 6F 75 6E 64 00 70 6F 75 6E 64 00 2E |48.pound.pound..|
00001100: 34 35 00 2E 34 35 00 54 68 65 72 65 20 61 72 65 |45..45.There are|
00001110: 20 26 68 31 30 20 70 6F 75 6E 64 73 20 6F 66 20 | &h10 pounds of |
00001120: 61 20 73 6F 6C 75 74 69 6F 6E 20 74 68 61 74 20 |a solution that |
00001130: 69 73 20 34 38 25 20 70 75 72 65 20 61 63 69 64 |is 48% pure acid|
00001140: 26 68 00 70 6F 75 6E 64 73 20 6F 66 20 34 38 25 |&h.pounds of 48%|
00001150: 20 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E 20 28 | acid solution (|
00001160: 53 74 72 6F 6E 67 29 20 69 73 20 60 31 30 27 00 |Strong) is `10'.|
00001170: 31 30 00 31 30 00 57 65 61 6B 20 73 6F 6C 75 74 |10.10.Weak solut|
00001180: 69 6F 6E 00 70 6F 75 6E 64 73 20 6F 66 20 57 65 |ion.pounds of We|
00001190: 61 6B 20 73 6F 6C 75 74 69 6F 6E 00 60 77 27 20 |ak solution.`w' |
000011A0: 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 |to represent the|
000011B0: 20 6E 75 6D 62 65 72 20 6F 66 20 70 6F 75 6E 64 | number of pound|
000011C0: 73 20 6F 66 20 57 65 61 6B 20 73 6F 6C 75 74 69 |s of Weak soluti|
000011D0: 6F 6E 00 39 00 70 6F 75 6E 64 73 00 74 68 65 20 |on.9.pounds.the |
000011E0: 23 20 6F 66 20 70 6F 75 6E 64 73 20 6F 66 20 57 |# of pounds of W|
000011F0: 65 61 6B 20 73 6F 6C 75 74 69 6F 6E 00 57 65 61 |eak solution.Wea|
00001200: 6B 20 61 6E 64 20 53 74 72 6F 6E 67 20 61 63 69 |k and Strong aci|
00001210: 64 20 73 6F 6C 75 74 69 6F 6E 73 00 60 26 76 2B |d solutions.`&v+|
00001220: 31 30 27 00 26 76 2B 31 30 00 61 63 69 64 00 70 |10'.&v+10.acid.p|
00001230: 6F 75 6E 64 73 20 6F 66 20 57 65 61 6B 20 73 6F |ounds of Weak so|
00001240: 6C 75 74 69 6F 6E 00 6C 62 00 6C 62 73 00 57 65 |lution.lb.lbs.We|
00001250: 61 6B 00 2E 34 00 26 76 00 57 65 61 6B 00 2E 34 |ak..4.&v.Weak..4|
00001260: 2A 26 76 00 70 6F 75 6E 64 73 20 6F 66 20 53 74 |*&v.pounds of St|
00001270: 72 6F 6E 67 20 73 6F 6C 75 74 69 6F 6E 00 6C 62 |rong solution.lb|
00001280: 00 6C 62 73 00 53 74 72 6F 6E 67 00 2E 34 38 00 |.lbs.Strong..48.|
00001290: 31 30 00 53 74 72 6F 6E 67 00 2E 34 38 2A 31 30 |10.Strong..48*10|
000012A0: 00 70 6F 75 6E 64 73 20 69 6E 20 74 68 65 20 6D |.pounds in the m|
000012B0: 69 78 00 6C 62 00 6C 62 73 00 61 63 69 64 00 2E |ix.lb.lbs.acid..|
000012C0: 34 35 00 26 76 2B 31 30 00 61 63 69 64 00 2E 34 |45.&v+10.acid..4|
000012D0: 35 28 26 76 2B 31 30 29 00 57 65 61 6B 20 61 6E |5(&v+10).Weak an|
000012E0: 64 20 53 74 72 6F 6E 67 20 73 6F 6C 75 74 69 6F |d Strong solutio|
000012F0: 6E 73 00 57 65 61 6B 20 61 6D 74 00 53 74 72 6F |ns.Weak amt.Stro|
00001300: 6E 67 00 60 2E 34 2A 26 76 20 2B 20 34 2E 38 20 |ng.`.4*&v + 4.8 |
00001310: 3D 20 2E 34 35 28 26 76 2B 31 30 29 27 00 2E 34 |= .45(&v+10)'..4|
00001320: 26 76 2B 34 2E 38 20 3D 20 2E 34 35 28 26 76 2B |&v+4.8 = .45(&v+|
00001330: 31 30 29 00 74 68 65 20 23 20 6F 66 20 70 6F 75 |10).the # of pou|
00001340: 6E 64 73 20 6F 66 20 57 65 61 6B 20 73 6F 6C 00 |nds of Weak sol.|
00001350: 36 00 48 6F 77 20 6D 61 6E 79 20 70 6F 75 6E 64 |6.How many pound|
00001360: 73 20 6F 66 20 61 20 34 30 25 20 70 75 72 65 20 |s of a 40% pure |
00001370: 61 63 69 64 20 73 6F 6C 75 74 69 6F 6E 20 6D 75 |acid solution mu|
00001380: 73 74 20 62 65 20 6D 69 78 65 64 00 70 6F 75 6E |st be mixed.poun|
00001390: 64 73 20 6F 66 20 57 65 61 6B 20 73 6F 6C 75 74 |ds of Weak solut|
000013A0: 69 6F 6E 00 36 00 39 00 36 00 70 6F 75 6E 64 73 |ion.6.9.6.pounds|
000013B0: 20 69 6E 20 74 68 65 20 6D 69 78 00 60 26 76 2B | in the mix.`&v+|
000013C0: 31 30 27 00 26 76 2B 31 30 20 3D 20 36 2B 31 30 |10'.&v+10 = 6+10|
000013D0: 20 3D 20 60 31 36 27 2E 20 54 68 65 72 65 20 61 | = `16'. There a|
000013E0: 72 65 20 31 36 20 70 6F 75 6E 64 73 20 69 6E 20 |re 16 pounds in |
000013F0: 74 68 65 20 6D 69 78 00 31 36 00 61 63 69 64 20 |the mix.16.acid |
00001400: 69 6E 20 74 68 65 20 57 65 61 6B 20 73 6F 6C 75 |in the Weak solu|
00001410: 74 69 6F 6E 00 2E 34 2A 26 76 20 3D 20 2E 34 2A |tion..4*&v = .4*|
00001420: 36 20 3D 20 60 32 2E 34 27 2E 20 54 68 65 72 65 |6 = `2.4'. There|
00001430: 20 61 72 65 20 32 2E 34 20 70 6F 75 6E 64 73 20 | are 2.4 pounds |
00001440: 6F 66 20 57 65 61 6B 20 61 63 69 64 2E 00 31 33 |of Weak acid..13|
00001450: 00 32 2E 34 00 61 63 69 64 00 2E 34 35 28 26 76 |.2.4.acid..45(&v|
00001460: 2B 31 30 29 20 3D 20 2E 34 35 28 36 2B 31 30 29 |+10) = .45(6+10)|
00001470: 20 3D 20 60 37 2E 32 27 2E 20 54 68 65 72 65 20 | = `7.2'. There |
00001480: 61 72 65 20 37 2E 32 20 70 6F 75 6E 64 73 20 6F |are 7.2 pounds o|
00001490: 66 20 61 63 69 64 00 37 2E 32 00 57 65 61 6B 20 |f acid.7.2.Weak |
000014A0: 61 6E 64 20 53 74 72 6F 6E 67 20 73 6F 6C 75 74 |and Strong solut|
000014B0: 69 6F 6E 73 00 7C 65 |ions.|e |
A@Q{}?@DG09&C(1,{})&C(2,{})&C(3,MIX)&D(
4,UNIT STREN)&D(8,{})&D(12,{})@RREAD@PRE
AD THE WHOLE PROBLEM. THINK: WHAT ARE TH
E FACTS? WHAT IS BEING ASKED? (PRESS AN
Y KEY TO CONTINUE.)@HWHAT ARE THE FACTS?
{}@HWHAT IS BEING ASKED? &H{}&H?@I(0)@R
DATA ENTRY@PFILL IN THE GRID -- START WI
TH THE STRENGTHS PER UNIT.@HWHAT IS THE
STRENGTH PER {}?@HTHE STRENGTH PER {}.@I
(5,I,{})&D(5,{})@HWHAT IS THE STRENGTH P
ER {} OF THE {}?@HTHE STRENGTH PER {}.@I
(6,I,{})&D(6,{})@HWHAT IS THE STRENGTH P
ER {} OF THE MIX?@HTHE STRENGTH PER {} O
F THE MIX IS {}.@I(7,I,{})@PENTER THE FA
CTS FROM THE PROBLEM INTO THE GRID.@H{}.
@HTHE NUMBER OF {}.@I({},I,{})@PREPRESEN
T THE AMOUNT OF {} TO BE ADDED.@HCHOOSE
A VARIABLE TO REPRESENT THE NUMBER OF {}
.@HUSE ANY LETTER, SUCH AS {}.@I({},I,&V
)@PREPRESENT THE # OF {} IN THE MIXTURE
IN TERMS OF "&V" ({}).@HTHE SUM OF THE Q
UANTITIES OF THE {} WILL EQUAL THE QUANT
ITY OF THE MIXTURE.@HTHERE ARE {} IN THE
MIXTURE.@I(11,I,{})@RPARTS@PWRITE AN EX
PRESSION TO REPRESENT THE AMOUNT OF {} C
ONTAINED IN EACH SOLUTION.@HMULTIPLY THE
STRENGTH/UNIT BY THE # OF {}.@HSTREN/{}
\F13* # OF {} \F22= UNITS OF {} \N `{
} \F13* {}' \F22= UNITS OF {}
@I(13,I,{})@HMULTIPLY THE STRENGTH/UNIT
BY THE # OF {}.@HSTREN/{} \F13* # OF {}
\F22= UNITS OF {} \N `{} \F13*
{}' \F22= UNITS OF {}@I(14,I,{})@HMU
LTIPLY THE STRENGTH/UNIT BY THE # OF {}.
@HSTREN/{}\F13* # OF {} \F22= UNITS OF {
} \N `{} \F13* ({})' \F22= UNITS OF
{}@I(15,I,{}) @RWHOLE@PUSE THE GRID TO
WRITE AN EQUATION TO RELATE THE PARTS (
{}) TO THE WHOLE (MIX).@H{} + ({} AMT) =
TOTAL AMT@H{}@I(16,I,{})@S@RCOMPUTE@PSO
LVE THE EQUATION FOR "&V" ({}). USE PENC
IL AND PAPER, OR USE THE CALCULATOR.@HIS
OLATE "&V" ON ONE SIDE OF THE EQUATION.@
HTHE CALCULATOR SOLVES EQUATIONS FOR YOU
AND DISPLAYS THE STEPS IN THE SOLUTION.
@I(16,I,&V={})@PNOW FILL IN THE ANSWER(S
) TO THE PROBLEM. REMEMBER THE QUESTION.
&Q{}?&Q&W(16)@HTHE NUMBER OF {} IS THE
VALUE OF "&V".@H&V = `{}'@I({},I,{}) @S@
RCHECK@PREREAD THE PROBLEM. CHECK YOUR A
NSWERS. REPLACE ALL VARIABLES IN THE GRI
D.@HTHE NUMBER OF {} IS THE VALUE OF {}.
@H{}.@I(11,I,{})@HSUBSTITUTE FOR "&V" IN
THE EXPRESSION FOR THE AMOUNT OF {}.@H{
}@I({},I,{})@HSUBSTITUTE FOR "&V" IN THE
EXPRESSION FOR THE {} IN THE MIXTURE.@H
{}.@I(15,I,{})&D(0,MAKE SURE THE SUM OF
{} EQUALS THE TOTAL AMOUNT IN THE MIXTUR
E. ON TO A NEW PROBLEM.)@FEIGHT QUARTS O
F A SOLUTION THAT IS 10% ACID IS TO BE M
IXED WITH A 25% ACID SOLUTION TO CREATE
A 15% ACID SOLUTION. HOW MANY QUARTS OF
THE 25% ACID WILL BE NEEDED.WEAK.STRONG.
QTS OF SOL..QTS OF PURE.&QEIGHT QUARTS O
F A SOLUTION THAT IS 10% ACID&Q &QMIXED
WITH A 25% ACID SOLUTION&Q &QCREATE A 15
% ACID SOLUTION&Q.HOW MANY QUARTS OF THE
25% ACID WILL BE NEEDED.QUART OF THE WE
AK SOLUTION.QUART OF THE WEAK SOLUTION I
S `.1'..1..1.QUART.STRONG SOLUTION.QUART
OF THE STRONG SOLUTION IS `.25'..25..25
.QUART.QUART.`.15'..15.THERE ARE &HEIGHT
QUARTS OF A SOLUTION THAT IS 10% PURE A
CID&H.QUARTS OF 10% ACID SOLUTION IS `8'
.9.8.STRONG SOLUTION.QUARTS OF STRONG SO
LUTION.`S', TO REPRESENT THE NUMBER OF Q
UARTS OF STRONG SOLUTION.10.QUARTS.THE #
OF QUARTS OF STRONG SOLUTION.WEAK AND S
TRONG ACID SOLUTIONS.`&V+8' QUARTS.&V+8.
ACID.QUARTS OF WEAK SOLUTION.QT.QTS.WEAK
..1.8.WEAK..1*8.QUARTS OF STRONG SOLUTIO
N.QT.QTS.STRONG..25.&V.STRONG..25*&V.QUA
RTS IN THE MIX.QT.QTS.MIX..15.&V+8.MIX..
15*(&V+8).STRONG AND WEAK SOLUTIONS.WEAK
AMT.STRONG AMT. `.8 \F12+ .25
&V \F27=.15(&V+8)'..8+.25&V=.15(&V+8).T
HE # OF QUARTS OF STRONG.4.HOW MANY QUAR
TS OF THE 25% ACID WILL BE NEEDED.QUARTS
OF STRONG SOLUTION.4.10.4.QUARTS IN THE
MIX.`&V+8'.&V+8 = 4+8 = `12'. THERE ARE
12 QUARTS IN THE MIX.12.ACID IN THE STR
ONG SOLUTION..25&V = .25*4 = `1'. THERE
IS ONE QUART OF ACID IN THE STRONG SOLUT
ION..14.1.AMOUNT OF ACID..15(&V+8) = .15
(4+8) = .15*12 = 1.8. THERE ARE `1.8' QU
ARTS OF ACID IN THE MIX.1.8.WEAK AND STR
ONG SOLUTIONS.@FHOW MANY POUNDS OF A 40%
PURE ACID SOLUTION MUST BE MIXED WITH 1
0 POUNDS OF A SOLUTION THAT IS 48% PURE
ACID TO CREATE A 45% ACID SOLUTION.WEAK.
STRONG.LBS OF SOL..LBS OF ACID.&Q40% PUR
E ACID SOLUTION&Q &QMIXED WITH 10 POUNDS
OF A SOLUTION THAT IS 48% PURE&Q &QCREA
TE A 45% ACID SOLUTION&Q.HOW MANY POUNDS
OF A 40% PURE ACID SOLUTION.POUND OF TH
E WEAK SOLUTION.POUND OF THE WEAK SOLUTI
ON IS `.4' POUNDS..4..4.POUND.STRONG SOL
UTION.POUND OF THE STRONG SOLUTION IS `.
48' POUNDS..48..48.POUND.POUND..45..45.T
HERE ARE &H10 POUNDS OF A SOLUTION THAT
IS 48% PURE ACID&H.POUNDS OF 48% ACID SO
LUTION (STRONG) IS `10'.10.10.WEAK SOLUT
ION.POUNDS OF WEAK SOLUTION.`W' TO REPRE
SENT THE NUMBER OF POUNDS OF WEAK SOLUTI
ON.9.POUNDS.THE # OF POUNDS OF WEAK SOLU
TION.WEAK AND STRONG ACID SOLUTIONS.`&V+
10'.&V+10.ACID.POUNDS OF WEAK SOLUTION.L
B.LBS.WEAK..4.&V.WEAK..4*&V.POUNDS OF ST
RONG SOLUTION.LB.LBS.STRONG..48.10.STRON
G..48*10.POUNDS IN THE MIX.LB.LBS.ACID..
45.&V+10.ACID..45(&V+10).WEAK AND STRONG
SOLUTIONS.WEAK AMT.STRONG.`.4*&V + 4.8
= .45(&V+10)'..4&V+4.8 = .45(&V+10).THE
# OF POUNDS OF WEAK SOL.6.HOW MANY POUND
S OF A 40% PURE ACID SOLUTION MUST BE MI
XED.POUNDS OF WEAK SOLUTION.6.9.6.POUNDS
IN THE MIX.`&V+10'.&V+10 = 6+10 = `16'.
THERE ARE 16 POUNDS IN THE MIX.16.ACID
IN THE WEAK SOLUTION..4*&V = .4*6 = `2.4
'. THERE ARE 2.4 POUNDS OF WEAK ACID..13
.2.4.ACID..45(&V+10) = .45(6+10) = `7.2'
. THERE ARE 7.2 POUNDS OF ACID.7.2.WEAK
AND STRONG SOLUTIONS.|E
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL