DIST4L4
FILE INFORMATION
FILENAME(S): DIST4L4
FILE TYPE(S): PRG
FILE SIZE: 6.7K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
36ca8d5b607949336166d500e3692f7c60e9b7622f6292452333ff876a0ad5f3
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST4L4 | PRG | Radd Maxx | 7 | 2 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 40 64 67 30 34 26 64 28 31 2C | A@q{}@dg04&d(1,|
00000010: 55 2F 6D 65 61 73 29 26 63 28 32 2C 7B 7D 29 26 |U/meas)&c(2,{})&|
00000020: 63 28 33 2C 7B 7D 29 26 63 28 34 2C 54 6F 74 2E |c(3,{})&c(4,Tot.|
00000030: 29 26 64 28 35 2C 52 61 74 65 29 26 64 28 31 30 |)&d(5,Rate)&d(10|
00000040: 2C 54 69 6D 65 29 26 64 28 31 35 2C 44 69 73 74 |,Time)&d(15,Dist|
00000050: 2E 29 40 72 52 45 41 44 40 70 52 65 61 64 20 74 |.)@rREAD@pRead t|
00000060: 68 65 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D |he whole problem|
00000070: 2E 20 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 |. Think: What ar|
00000080: 65 20 74 68 65 20 66 61 63 74 73 3F 20 57 68 61 |e the facts? Wha|
00000090: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
000000A0: 3F 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 |? (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 68 | to continue.)@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 40 68 57 68 61 74 20 69 73 20 |ts? {}@hWhat is |
000000E0: 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 7B 7D 40 |being asked? {}@|
000000F0: 69 28 30 29 40 72 50 4C 41 4E 20 40 70 4C 65 74 |i(0)@rPLAN @pLet|
00000100: 20 44 7B 7D 3D 7B 7D 20 61 6E 64 20 44 7B 7D 3D | D{}={} and D{}=|
00000110: 7B 7D 2E 20 57 72 69 74 65 20 61 6E 20 65 71 75 |{}. Write an equ|
00000120: 61 74 69 6F 6E 20 74 6F 20 72 65 6C 61 74 65 20 |ation to relate |
00000130: 44 7B 7D 20 61 6E 64 20 44 7B 7D 20 74 6F 20 74 |D{} and D{} to t|
00000140: 68 65 20 54 6F 74 61 6C 20 64 69 73 74 2E 40 68 |he Total dist.@h|
00000150: 7B 7D 40 68 7B 7D 40 69 28 32 30 2C 63 30 2C 20 |{}@h{}@i(20,c0, |
00000160: 29 40 70 4F 6E 65 20 61 6E 73 77 65 72 20 69 73 |)@pOne answer is|
00000170: 20 7B 7D 2E 20 43 68 61 6E 67 65 20 79 6F 75 72 | {}. Change your|
00000180: 20 61 6E 73 77 65 72 20 69 66 20 69 74 20 69 73 | answer if it is|
00000190: 20 6E 6F 74 20 65 71 75 69 76 61 6C 65 6E 74 2E | not equivalent.|
000001A0: 20 28 50 72 65 73 73 20 72 65 74 75 72 6E 29 40 | (Press return)@|
000001B0: 68 7B 7D 40 68 7B 7D 40 69 28 32 30 2C 63 30 2C |h{}@h{}@i(20,c0,|
000001C0: 20 29 40 72 44 41 54 41 20 45 4E 54 52 59 40 70 | )@rDATA ENTRY@p|
000001D0: 46 69 6C 6C 20 69 6E 20 74 68 65 20 75 6E 69 74 |Fill in the unit|
000001E0: 73 20 62 79 20 77 68 69 63 68 20 72 61 74 65 2C |s by which rate,|
000001F0: 20 74 69 6D 65 20 61 6E 64 20 64 69 73 74 61 6E | time and distan|
00000200: 63 65 20 61 72 65 20 6D 65 61 73 75 72 65 64 2E |ce are measured.|
00000210: 40 68 52 61 74 65 20 69 73 20 63 6F 6D 6D 6F 6E |@hRate is common|
00000220: 6C 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 6D |ly measured in m|
00000230: 69 6C 65 73 20 70 65 72 20 68 6F 75 72 28 6D 69 |iles per hour(mi|
00000240: 2F 68 72 29 2C 20 66 65 65 74 20 70 65 72 20 73 |/hr), feet per s|
00000250: 65 63 6F 6E 64 28 66 74 2F 73 65 63 29 2C 20 6D |econd(ft/sec), m|
00000260: 65 74 65 72 73 20 70 65 72 20 6D 69 6E 75 74 65 |eters per minute|
00000270: 28 6D 2F 6D 69 6E 29 2C 20 65 74 63 2E 40 68 54 |(m/min), etc.@hT|
00000280: 68 65 20 72 61 74 65 20 6F 66 20 73 70 65 65 64 |he rate of speed|
00000290: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
000002A0: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
000002B0: 60 7B 7D 27 2E 40 69 28 36 2C 63 7B 7D 2C 7B 7D |`{}'.@i(6,c{},{}|
000002C0: 29 40 68 54 69 6D 65 20 69 73 20 63 6F 6D 6D 6F |)@hTime is commo|
000002D0: 6E 6C 79 20 6D 65 61 73 75 72 65 64 20 69 73 20 |nly measured is |
000002E0: 73 65 63 6F 6E 64 73 28 73 65 63 29 2C 20 6D 69 |seconds(sec), mi|
000002F0: 6E 75 74 65 73 28 6D 69 6E 29 2C 20 68 6F 75 72 |nutes(min), hour|
00000300: 73 28 68 72 29 2C 20 64 61 79 73 28 64 61 29 2C |s(hr), days(da),|
00000310: 20 65 74 63 2E 40 68 54 69 6D 65 20 69 6E 20 74 | etc.@hTime in t|
00000320: 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 20 6D |his problem is m|
00000330: 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 69 28 |easured in {}@i(|
00000340: 31 31 2C 63 7B 7D 2C 7B 7D 29 40 68 44 69 73 74 |11,c{},{})@hDist|
00000350: 61 6E 63 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C 79 |ance is commonly|
00000360: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 66 65 65 | measured in fee|
00000370: 74 28 66 74 29 2C 20 79 61 72 64 73 28 79 64 29 |t(ft), yards(yd)|
00000380: 2C 20 6D 69 6C 65 73 28 6D 69 29 2C 20 6D 65 74 |, miles(mi), met|
00000390: 65 72 73 28 6D 29 2C 20 6B 69 6C 6F 6D 65 74 65 |ers(m), kilomete|
000003A0: 72 73 28 6B 6D 29 2C 20 65 74 63 2E 40 68 44 69 |rs(km), etc.@hDi|
000003B0: 73 74 61 6E 63 65 20 69 6E 20 74 68 69 73 20 70 |stance in this p|
000003C0: 72 6F 62 6C 65 6D 20 69 73 20 6D 65 61 73 75 72 |roblem is measur|
000003D0: 65 64 20 69 6E 20 7B 7D 40 69 28 31 36 2C 63 7B |ed in {}@i(16,c{|
000003E0: 7D 2C 7B 7D 29 40 70 45 6E 74 65 72 20 74 68 65 |},{})@pEnter the|
000003F0: 20 66 61 63 74 73 20 66 72 6F 6D 20 74 68 65 20 | facts from the |
00000400: 70 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 |problem into the|
00000410: 20 67 72 69 64 2E 40 68 7B 7D 40 68 7B 7D 40 69 | grid.@h{}@h{}@i|
00000420: 28 31 39 2C 69 2C 7B 7D 29 40 68 7B 7D 40 68 7B |(19,i,{})@h{}@h{|
00000430: 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 7B 7D |}@i({},i,{})@h{}|
00000440: 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 |@h{}@i({},i,{})@|
00000450: 68 7B 7D 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B |h{}@h{}@i({},i,{|
00000460: 7D 29 40 70 52 65 70 72 65 73 65 6E 74 20 7B 7D |})@pRepresent {}|
00000470: 2E 40 68 53 69 6E 63 65 20 74 68 65 20 71 75 65 |.@hSince the que|
00000480: 73 74 69 6F 6E 20 7B 7D 2C 20 75 73 65 20 61 20 |stion {}, use a |
00000490: 76 61 72 69 61 62 6C 65 20 74 6F 20 72 65 70 72 |variable to repr|
000004A0: 65 73 65 6E 74 20 7B 7D 2E 40 68 55 73 65 20 61 |esent {}.@hUse a|
000004B0: 20 76 61 72 69 61 62 6C 65 2C 20 73 75 63 68 20 | variable, such |
000004C0: 61 73 20 60 7B 7D 27 20 74 6F 20 72 65 70 72 65 |as `{}' to repre|
000004D0: 73 65 6E 74 20 7B 7D 2E 20 40 69 28 7B 7D 2C 69 |sent {}. @i({},i|
000004E0: 2C 26 76 29 40 68 52 65 70 72 65 73 65 6E 74 20 |,&v)@hRepresent |
000004F0: 7B 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 20 22 |{} in terms of "|
00000500: 26 76 22 20 28 7B 7D 2E 40 68 7B 7D 40 69 28 7B |&v" ({}.@h{}@i({|
00000510: 7D 2C 69 2C 7B 7D 29 40 72 50 41 52 54 53 40 70 |},i,{})@rPARTS@p|
00000520: 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 73 |Write an express|
00000530: 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |ion to represent|
00000540: 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 74 72 | the distance tr|
00000550: 61 76 65 6C 6C 65 64 20 61 74 20 65 61 63 68 20 |avelled at each |
00000560: 72 61 74 65 2E 40 68 52 61 74 65 2A 54 69 6D 65 |rate.@hRate*Time|
00000570: 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 74 | = Distance@hRat|
00000580: 65 20 7B 7D 20 5C 6E 7B 7D 40 69 28 31 37 2C 69 |e {} \n{}@i(17,i|
00000590: 2C 7B 7D 29 29 40 68 52 61 74 65 2A 54 69 6D 65 |,{}))@hRate*Time|
000005A0: 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 74 | = Distance@hRat|
000005B0: 65 20 7B 7D 20 5C 6E 7B 7D 40 69 28 31 38 2C 69 |e {} \n{}@i(18,i|
000005C0: 2C 7B 7D 29 40 72 57 48 4F 4C 45 26 64 28 32 30 |,{})@rWHOLE&d(20|
000005D0: 2C 20 29 40 70 53 75 62 73 74 69 74 75 74 65 20 |, )@pSubstitute |
000005E0: 79 6F 75 72 20 65 78 70 72 65 73 73 69 6F 6E 73 |your expressions|
000005F0: 20 66 6F 72 20 7B 7D 2C 20 7B 7D 20 61 6E 64 20 | for {}, {} and |
00000600: 54 6F 74 61 6C 20 69 6E 20 74 68 65 20 65 71 75 |Total in the equ|
00000610: 61 74 69 6F 6E 2E 20 5C 6E 45 71 75 61 74 69 6F |ation. \nEquatio|
00000620: 6E 20 3A 20 44 7B 7D 2B 44 7B 7D 20 3D 20 7B 7D |n : D{}+D{} = {}|
00000630: 40 68 44 7B 7D 20 3D 20 7B 7D 2C 20 44 7B 7D 20 |@hD{} = {}, D{} |
00000640: 3D 20 7B 7D 20 61 6E 64 20 54 6F 74 61 6C 20 3D |= {} and Total =|
00000650: 20 7B 7D 2E 40 68 7B 7D 20 5C 6E 7B 7D 40 69 28 | {}.@h{} \n{}@i(|
00000660: 32 30 2C 69 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 |20,i,{})@s@rCOMP|
00000670: 55 54 45 40 70 53 6F 6C 76 65 20 74 68 65 20 65 |UTE@pSolve the e|
00000680: 71 75 61 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 |quation for "&v"|
00000690: 2E 20 55 73 65 20 70 61 70 65 72 20 61 6E 64 20 |. Use paper and |
000006A0: 70 65 6E 63 69 6C 20 61 6E 64 20 65 6E 74 65 72 |pencil and enter|
000006B0: 20 74 68 65 20 66 69 6E 61 6C 20 65 71 75 61 74 | the final equat|
000006C0: 69 6F 6E 2C 20 6F 72 20 75 73 65 20 74 68 65 20 |ion, or use the |
000006D0: 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 | Calculator.@hIs|
000006E0: 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E |olate "&v" on on|
000006F0: 65 20 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 |e side of the eq|
00000700: 75 61 74 69 6F 6E 2E 40 68 54 68 65 20 43 61 6C |uation.@hThe Cal|
00000710: 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 65 |culator solves e|
00000720: 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F 75 |quations for you|
00000730: 20 61 6E 64 20 64 69 73 70 6C 61 79 73 20 74 68 | and displays th|
00000740: 65 20 73 74 65 70 73 20 69 6E 20 74 68 65 20 73 |e steps in the s|
00000750: 6F 6C 75 74 69 6F 6E 2E 40 69 28 32 30 2C 69 2C |olution.@i(20,i,|
00000760: 26 76 3D 7B 7D 29 40 70 45 6E 74 65 72 20 79 6F |&v={})@pEnter yo|
00000770: 75 72 20 61 6E 73 77 65 72 73 20 74 6F 20 74 68 |ur answers to th|
00000780: 65 20 70 72 6F 62 6C 65 6D 20 69 6E 20 74 68 65 |e problem in the|
00000790: 20 67 72 69 64 2E 20 52 65 6D 65 6D 62 65 72 20 | grid. Remember |
000007A0: 74 68 65 20 71 75 65 73 74 69 6F 6E 2E 20 26 71 |the question. &q|
000007B0: 7B 7D 26 71 40 68 54 68 65 20 7B 7D 20 69 73 20 |{}&q@hThe {} is |
000007C0: 65 71 75 61 6C 20 74 6F 20 74 68 65 20 76 61 6C |equal to the val|
000007D0: 75 65 20 6F 66 20 7B 7D 2E 40 68 26 76 20 3D 20 |ue of {}.@h&v = |
000007E0: 7B 7D 2C 20 73 6F 20 7B 7D 2E 40 69 28 7B 7D 2C |{}, so {}.@i({},|
000007F0: 69 2C 7B 7D 29 20 40 73 40 72 43 48 45 43 4B 40 |i,{}) @s@rCHECK@|
00000800: 70 52 65 72 65 61 64 20 74 68 65 20 70 72 6F 62 |pReread the prob|
00000810: 6C 65 6D 2E 20 43 68 65 63 6B 20 79 6F 75 72 20 |lem. Check your |
00000820: 61 6E 73 77 65 72 73 2E 20 45 76 61 6C 75 61 74 |answers. Evaluat|
00000830: 65 20 74 68 65 20 72 65 6D 61 69 6E 69 6E 67 20 |e the remaining |
00000840: 65 78 70 72 65 73 73 69 6F 6E 73 20 69 6E 20 74 |expressions in t|
00000850: 68 65 20 67 72 69 64 2E 40 68 53 75 62 73 74 69 |he grid.@hSubsti|
00000860: 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 6E |tute for "&v" in|
00000870: 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E 20 | the expression |
00000880: 66 6F 72 20 7B 7D 2E 20 54 68 65 6E 20 63 61 6C |for {}. Then cal|
00000890: 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 75 6C |culate the resul|
000008A0: 74 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |t.@h{}@i({},i,{}|
000008B0: 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 6F |)@hSubstitute fo|
000008C0: 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 78 |r "&v" in the ex|
000008D0: 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 7B 7D 2E |pression for {}.|
000008E0: 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 20 | Then calculate |
000008F0: 74 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D 40 |the result.@h{}@|
00000900: 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 53 75 62 73 |i({},i,{})@hSubs|
00000910: 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 |titute for "&v" |
00000920: 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F |in the expressio|
00000930: 6E 20 66 6F 72 20 7B 7D 2E 20 54 68 65 6E 20 63 |n for {}. Then c|
00000940: 61 6C 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 |alculate the res|
00000950: 75 6C 74 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C |ult.@h{}@i({},i,|
00000960: 7B 7D 29 26 64 28 30 2C 43 68 65 63 6B 20 79 6F |{})&d(0,Check yo|
00000970: 75 72 20 77 6F 72 6B 2E 20 54 68 65 20 73 75 6D |ur work. The sum|
00000980: 20 6F 66 20 74 68 65 20 7B 7D 20 64 69 73 74 61 | of the {} dista|
00000990: 6E 63 65 73 20 73 68 6F 75 6C 64 20 65 71 75 61 |nces should equa|
000009A0: 6C 20 7B 7D 2E 20 4F 6E 20 74 6F 20 61 20 6E 65 |l {}. On to a ne|
000009B0: 77 20 70 72 6F 62 6C 65 6D 2E 29 40 66 41 6D 79 |w problem.)@fAmy|
000009C0: 20 64 72 6F 76 65 20 36 30 30 20 6D 69 6C 65 73 | drove 600 miles|
000009D0: 20 69 6E 20 31 35 20 68 6F 75 72 73 2E 20 53 68 | in 15 hours. Sh|
000009E0: 65 20 73 74 61 72 74 65 64 20 64 72 69 76 69 6E |e started drivin|
000009F0: 67 20 61 74 20 35 30 20 6D 69 2F 68 72 20 61 6E |g at 50 mi/hr an|
00000A00: 64 20 74 68 65 6E 20 62 61 64 20 77 65 61 74 68 |d then bad weath|
00000A10: 65 72 20 66 6F 72 63 65 64 20 68 65 72 20 74 6F |er forced her to|
00000A20: 20 73 6C 6F 77 20 64 6F 77 6E 20 74 6F 20 32 35 | slow down to 25|
00000A30: 20 6D 69 2F 68 72 2E 20 46 6F 72 20 68 6F 77 20 | mi/hr. For how |
00000A40: 6D 61 6E 79 20 68 6F 75 72 73 20 64 69 64 20 73 |many hours did s|
00000A50: 68 65 20 64 72 69 76 65 20 61 74 20 32 35 20 6D |he drive at 25 m|
00000A60: 69 2F 68 72 3F 00 46 61 73 74 00 53 6C 6F 77 00 |i/hr?.Fast.Slow.|
00000A70: 41 6D 79 20 64 72 6F 76 65 20 36 30 30 20 6D 69 |Amy drove 600 mi|
00000A80: 6C 65 73 20 61 74 20 74 77 6F 20 72 61 74 65 73 |les at two rates|
00000A90: 2C 20 35 30 20 6D 69 2F 68 72 20 61 6E 64 20 32 |, 50 mi/hr and 2|
00000AA0: 35 20 6D 69 2F 68 72 2E 00 26 68 48 6F 77 20 6D |5 mi/hr..&hHow m|
00000AB0: 61 6E 79 20 68 6F 75 72 73 20 64 69 64 20 73 68 |any hours did sh|
00000AC0: 65 20 64 72 69 76 65 20 61 74 20 32 35 20 6D 69 |e drive at 25 mi|
00000AD0: 2F 68 72 3F 26 68 00 66 00 41 6D 79 27 73 20 66 |/hr?&h.f.Amy's f|
00000AE0: 61 73 74 20 64 69 73 74 2E 00 73 00 68 65 72 20 |ast dist..s.her |
00000AF0: 73 6C 6F 77 20 64 69 73 74 00 66 00 73 00 54 68 |slow dist.f.s.Th|
00000B00: 65 20 73 75 6D 20 6F 66 20 68 65 72 20 46 61 73 |e sum of her Fas|
00000B10: 74 20 61 6E 64 20 53 6C 6F 77 20 64 69 73 74 61 |t and Slow dista|
00000B20: 6E 63 65 73 20 69 73 20 65 71 75 61 6C 20 74 6F |nces is equal to|
00000B30: 20 74 68 65 20 54 6F 74 61 6C 20 64 69 73 74 61 | the Total dista|
00000B40: 6E 63 65 2E 00 60 44 66 20 2B 20 44 73 20 3D 20 |nce..`Df + Ds = |
00000B50: 54 6F 74 61 6C 27 20 73 68 6F 77 73 20 74 68 61 |Total' shows tha|
00000B60: 74 20 74 68 65 20 73 75 6D 20 6F 66 20 68 65 72 |t the sum of her|
00000B70: 20 53 6C 6F 77 20 61 6E 64 20 46 61 73 74 20 64 | Slow and Fast d|
00000B80: 69 73 74 61 6E 63 65 73 20 69 73 20 65 71 75 61 |istances is equa|
00000B90: 6C 20 74 6F 20 74 68 65 20 54 6F 74 61 6C 20 64 |l to the Total d|
00000BA0: 69 73 74 61 6E 63 65 2E 00 44 66 2B 44 73 3D 54 |istance..Df+Ds=T|
00000BB0: 6F 74 61 6C 00 54 68 65 20 73 75 6D 20 6F 66 20 |otal.The sum of |
00000BC0: 68 65 72 20 46 61 73 74 20 61 6E 64 20 53 6C 6F |her Fast and Slo|
00000BD0: 77 20 64 69 73 74 61 6E 63 65 73 20 69 73 20 65 |w distances is e|
00000BE0: 71 75 61 6C 20 74 6F 20 74 68 65 20 54 6F 74 61 |qual to the Tota|
00000BF0: 6C 20 64 69 73 74 61 6E 63 65 2E 00 60 44 66 20 |l distance..`Df |
00000C00: 2B 20 44 73 20 3D 20 54 6F 74 61 6C 27 20 73 68 |+ Ds = Total' sh|
00000C10: 6F 77 73 20 74 68 61 74 20 74 68 65 20 73 75 6D |ows that the sum|
00000C20: 20 6F 66 20 68 65 72 20 53 6C 6F 77 20 61 6E 64 | of her Slow and|
00000C30: 20 46 61 73 74 20 64 69 73 74 61 6E 63 65 73 20 | Fast distances |
00000C40: 69 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 |is equal to the |
00000C50: 54 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 |Total distance..|
00000C60: 6D 69 2F 68 72 00 34 00 6D 69 2F 68 72 00 68 6F |mi/hr.4.mi/hr.ho|
00000C70: 75 72 73 2E 20 28 60 68 72 27 29 00 32 00 68 72 |urs. (`hr').2.hr|
00000C80: 00 6D 69 6C 65 73 2E 20 28 60 6D 69 27 29 00 32 |.miles. (`mi').2|
00000C90: 00 6D 69 00 26 68 41 6D 79 20 64 72 6F 76 65 20 |.mi.&hAmy drove |
00000CA0: 36 30 30 20 6D 69 6C 65 73 26 68 2E 00 54 68 65 |600 miles&h..The|
00000CB0: 20 74 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 20 | total distance |
00000CC0: 64 72 69 76 65 6E 20 69 73 20 60 36 30 30 27 20 |driven is `600' |
00000CD0: 6D 69 6C 65 73 2E 00 36 30 30 00 41 6D 79 20 64 |miles..600.Amy d|
00000CE0: 72 6F 76 65 20 36 30 30 20 6D 69 6C 65 73 20 69 |rove 600 miles i|
00000CF0: 6E 20 26 68 31 35 20 68 6F 75 72 73 26 68 2E 00 |n &h15 hours&h..|
00000D00: 54 68 65 20 74 6F 74 61 6C 20 74 69 6D 65 20 69 |The total time i|
00000D10: 73 20 60 31 35 27 20 68 6F 75 72 73 2E 00 31 34 |s `15' hours..14|
00000D20: 00 31 35 00 26 68 53 68 65 20 73 74 61 72 74 65 |.15.&hShe starte|
00000D30: 64 20 64 72 69 76 69 6E 67 20 61 74 20 35 30 20 |d driving at 50 |
00000D40: 6D 69 2F 68 72 26 68 00 54 68 65 20 66 61 73 74 |mi/hr&h.The fast|
00000D50: 20 72 61 74 65 20 69 73 20 60 35 30 27 20 6D 69 | rate is `50' mi|
00000D60: 2F 68 72 2E 00 37 00 35 30 00 53 68 65 20 68 61 |/hr..7.50.She ha|
00000D70: 64 20 74 6F 20 73 6C 6F 77 20 64 6F 77 6E 20 74 |d to slow down t|
00000D80: 6F 20 26 68 32 35 20 6D 69 2F 68 72 26 68 2E 00 |o &h25 mi/hr&h..|
00000D90: 54 68 65 20 73 6C 6F 77 20 72 61 74 65 20 69 73 |The slow rate is|
00000DA0: 20 60 32 35 27 20 6D 69 2F 68 72 2E 00 38 00 32 | `25' mi/hr..8.2|
00000DB0: 35 00 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 |5.the number of |
00000DC0: 68 6F 75 72 73 20 73 68 65 20 74 72 61 76 65 6C |hours she travel|
00000DD0: 6C 65 64 20 61 74 20 65 61 63 68 20 6F 66 20 74 |led at each of t|
00000DE0: 68 65 20 72 61 74 65 73 00 69 73 3A 20 22 48 6F |he rates.is: "Ho|
00000DF0: 77 20 6C 6F 6E 67 20 64 69 64 20 73 68 65 20 74 |w long did she t|
00000E00: 72 61 76 65 6C 20 61 74 20 32 35 20 6D 69 2F 68 |ravel at 25 mi/h|
00000E10: 72 3F 22 00 74 68 65 20 53 6C 6F 77 20 64 72 69 |r?".the Slow dri|
00000E20: 76 69 6E 67 20 74 69 6D 65 2E 00 73 00 74 68 65 |ving time..s.the|
00000E30: 20 6E 75 6D 62 65 72 20 6F 66 20 68 6F 75 72 73 | number of hours|
00000E40: 20 41 6D 79 20 64 72 6F 76 65 20 61 74 20 32 35 | Amy drove at 25|
00000E50: 20 6D 69 2F 68 72 20 28 74 68 65 20 53 6C 6F 77 | mi/hr (the Slow|
00000E60: 20 73 70 65 65 64 29 00 31 33 00 74 68 65 20 74 | speed).13.the t|
00000E70: 69 6D 65 20 41 6D 79 20 64 72 6F 76 65 20 61 74 |ime Amy drove at|
00000E80: 20 35 30 20 6D 69 2F 68 72 00 74 68 65 20 74 69 | 50 mi/hr.the ti|
00000E90: 6D 65 20 73 68 65 20 64 72 6F 76 65 20 61 74 20 |me she drove at |
00000EA0: 32 35 20 6D 69 2F 68 72 29 00 53 68 65 20 64 72 |25 mi/hr).She dr|
00000EB0: 6F 76 65 20 66 6F 72 20 61 20 74 6F 74 61 6C 20 |ove for a total |
00000EC0: 6F 66 20 31 35 20 68 6F 75 72 73 2E 20 46 6F 72 |of 15 hours. For|
00000ED0: 20 22 26 76 22 20 68 72 73 20 73 68 65 20 64 72 | "&v" hrs she dr|
00000EE0: 6F 76 65 20 73 6C 6F 77 6C 79 2E 20 46 6F 72 20 |ove slowly. For |
00000EF0: 74 68 65 20 72 65 6D 61 69 6E 69 6E 67 20 74 69 |the remaining ti|
00000F00: 6D 65 2C 20 60 31 35 2D 26 76 27 2C 20 73 68 65 |me, `15-&v', she|
00000F10: 20 64 72 6F 76 65 20 66 61 73 74 2E 00 31 32 00 | drove fast..12.|
00000F20: 31 35 2D 26 76 00 5C 66 30 35 2A 20 20 5C 66 30 |15-&v.\f05* \f0|
00000F30: 37 54 69 6D 65 20 20 5C 66 31 34 3D 20 44 69 73 |7Time \f14= Dis|
00000F40: 74 61 6E 63 65 00 60 35 30 20 20 5C 66 30 35 2A |tance.`50 \f05*|
00000F50: 20 20 5C 66 30 37 28 31 35 2D 26 76 29 27 20 5C | \f07(15-&v)' \|
00000F60: 66 31 34 3D 20 46 61 73 74 20 64 69 73 74 61 6E |f14= Fast distan|
00000F70: 63 65 00 35 30 28 31 35 2D 26 76 00 5C 66 30 35 |ce.50(15-&v.\f05|
00000F80: 2A 20 20 5C 66 30 37 54 69 6D 65 20 20 5C 66 31 |* \f07Time \f1|
00000F90: 32 3D 20 44 69 73 74 61 6E 63 65 00 60 32 35 20 |2= Distance.`25 |
00000FA0: 20 5C 66 30 35 2A 20 20 5C 66 30 37 20 26 76 27 | \f05* \f07 &v'|
00000FB0: 20 5C 66 31 32 3D 20 53 6C 6F 77 20 64 69 73 74 | \f12= Slow dist|
00000FC0: 61 6E 63 65 00 32 35 26 76 00 44 66 00 44 73 00 |ance.25&v.Df.Ds.|
00000FD0: 66 00 73 00 54 6F 74 61 6C 00 66 00 35 30 28 31 |f.s.Total.f.50(1|
00000FE0: 35 2D 26 76 29 00 73 00 32 35 26 76 00 36 30 30 |5-&v).s.25&v.600|
00000FF0: 00 46 61 73 74 20 64 69 73 74 2E 20 5C 66 31 32 |.Fast dist. \f12|
00001000: 2B 20 53 6C 6F 77 20 64 69 73 74 2E 20 20 5C 66 |+ Slow dist. \f|
00001010: 32 35 3D 20 54 6F 74 61 6C 20 64 69 73 74 2E 00 |25= Total dist..|
00001020: 60 35 30 28 31 35 2D 26 76 29 20 5C 66 31 32 2B |`50(15-&v) \f12+|
00001030: 20 20 20 20 32 35 26 76 20 5C 66 32 35 3D 20 36 | 25&v \f25= 6|
00001040: 30 30 27 00 35 30 28 31 35 2D 26 76 29 2B 32 35 |00'.50(15-&v)+25|
00001050: 26 76 3D 36 30 30 00 36 00 48 6F 77 20 6C 6F 6E |&v=600.6.How lon|
00001060: 67 20 64 69 64 20 73 68 65 20 64 72 69 76 65 20 |g did she drive |
00001070: 61 74 20 32 35 20 6D 69 2F 68 72 3F 00 74 69 6D |at 25 mi/hr?.tim|
00001080: 65 20 66 6F 72 20 74 68 65 20 73 6C 6F 77 20 72 |e for the slow r|
00001090: 69 64 65 00 22 26 76 22 00 36 00 73 68 65 20 64 |ide."&v".6.she d|
000010A0: 72 6F 76 65 20 73 6C 6F 77 6C 79 20 66 6F 72 20 |rove slowly for |
000010B0: 60 36 27 20 68 6F 75 72 73 00 31 33 00 36 00 74 |`6' hours.13.6.t|
000010C0: 68 65 20 46 61 73 74 20 74 69 6D 65 00 31 35 2D |he Fast time.15-|
000010D0: 26 76 20 69 73 20 74 68 65 20 66 61 73 74 20 74 |&v is the fast t|
000010E0: 69 6D 65 2E 20 41 6E 64 20 26 76 3D 36 2C 20 73 |ime. And &v=6, s|
000010F0: 6F 20 31 35 2D 36 20 6F 72 20 60 39 27 20 69 73 |o 15-6 or `9' is|
00001100: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 68 | the number of h|
00001110: 6F 75 72 73 20 73 68 65 20 64 72 6F 76 65 20 61 |ours she drove a|
00001120: 74 20 35 30 20 6D 69 2F 68 72 2E 00 31 32 00 39 |t 50 mi/hr..12.9|
00001130: 00 74 68 65 20 46 61 73 74 20 64 69 73 74 61 6E |.the Fast distan|
00001140: 63 65 00 35 30 28 31 35 2D 26 76 29 20 69 73 20 |ce.50(15-&v) is |
00001150: 74 68 65 20 46 61 73 74 20 64 69 73 74 61 6E 63 |the Fast distanc|
00001160: 65 2E 20 26 76 3D 36 2C 20 73 6F 20 35 30 28 31 |e. &v=6, so 50(1|
00001170: 35 2D 36 29 20 6F 72 20 60 34 35 30 27 20 69 73 |5-6) or `450' is|
00001180: 20 74 68 65 20 66 61 73 74 20 64 69 73 74 61 6E | the fast distan|
00001190: 63 65 2E 00 31 37 00 34 35 30 00 74 68 65 20 53 |ce..17.450.the S|
000011A0: 6C 6F 77 20 64 69 73 74 61 6E 63 65 00 32 35 26 |low distance.25&|
000011B0: 76 20 69 73 20 74 68 65 20 53 6C 6F 77 20 64 69 |v is the Slow di|
000011C0: 73 74 61 6E 63 65 2E 20 26 76 3D 36 2C 20 73 6F |stance. &v=6, so|
000011D0: 20 32 35 26 76 20 6F 72 20 60 31 35 30 27 20 69 | 25&v or `150' i|
000011E0: 73 20 74 68 65 20 66 61 73 74 20 64 69 73 74 61 |s the fast dista|
000011F0: 6E 63 65 2E 00 31 38 00 31 35 30 00 46 61 73 74 |nce..18.150.Fast|
00001200: 20 61 6E 64 20 53 6C 6F 77 00 36 30 30 00 40 66 | and Slow.600.@f|
00001210: 4A 61 6B 65 20 74 72 61 76 65 6C 73 20 61 20 74 |Jake travels a t|
00001220: 6F 74 61 6C 20 6F 66 20 33 33 20 6D 69 2E 20 74 |otal of 33 mi. t|
00001230: 6F 20 77 6F 72 6B 20 65 61 63 68 20 64 61 79 2E |o work each day.|
00001240: 20 48 65 20 77 61 6C 6B 73 20 74 6F 20 74 68 65 | He walks to the|
00001250: 20 74 72 61 69 6E 20 73 74 61 74 69 6F 6E 20 61 | train station a|
00001260: 74 20 33 20 6D 69 2F 68 72 20 61 6E 64 20 74 68 |t 3 mi/hr and th|
00001270: 65 6E 20 74 61 6B 65 73 20 61 20 74 72 61 69 6E |en takes a train|
00001280: 20 67 6F 69 6E 67 20 34 35 20 6D 69 2F 68 72 2E | going 45 mi/hr.|
00001290: 20 49 66 20 74 68 65 20 65 6E 74 69 72 65 20 74 | If the entire t|
000012A0: 72 69 70 20 74 61 6B 65 73 20 37 32 20 6D 69 6E |rip takes 72 min|
000012B0: 2E 2C 20 68 6F 77 20 66 61 72 20 64 6F 65 73 20 |., how far does |
000012C0: 68 65 20 77 61 6C 6B 3F 00 57 61 6C 6B 00 52 69 |he walk?.Walk.Ri|
000012D0: 64 65 00 4A 61 6B 65 20 74 72 61 76 65 6C 73 20 |de.Jake travels |
000012E0: 33 33 20 6D 69 6C 65 73 20 61 74 20 74 77 6F 20 |33 miles at two |
000012F0: 64 69 66 66 65 72 65 6E 74 20 72 61 74 65 73 2E |different rates.|
00001300: 20 48 69 73 20 74 6F 74 61 6C 20 74 69 6D 65 20 | His total time |
00001310: 69 73 20 37 32 20 6D 69 6E 75 74 65 73 2E 00 26 |is 72 minutes..&|
00001320: 68 48 6F 77 20 66 61 72 20 64 6F 65 73 20 68 65 |hHow far does he|
00001330: 20 77 61 6C 6B 3F 26 68 00 77 00 77 61 6C 6B 69 | walk?&h.w.walki|
00001340: 6E 67 20 64 69 73 74 2E 00 72 00 72 69 64 69 6E |ng dist..r.ridin|
00001350: 67 20 64 69 73 74 00 77 00 72 00 54 68 65 20 73 |g dist.w.r.The s|
00001360: 75 6D 20 6F 66 20 74 68 65 20 77 61 6C 6B 69 6E |um of the walkin|
00001370: 67 20 61 6E 64 20 72 69 64 69 6E 67 20 64 69 73 |g and riding dis|
00001380: 74 61 6E 63 65 73 20 69 73 20 74 68 65 20 54 6F |tances is the To|
00001390: 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 60 44 |tal distance..`D|
000013A0: 77 2B 44 72 20 3D 20 54 6F 74 61 6C 27 20 73 68 |w+Dr = Total' sh|
000013B0: 6F 77 73 20 74 68 61 74 20 74 68 65 20 73 75 6D |ows that the sum|
000013C0: 20 6F 66 20 74 68 65 20 77 61 6C 6B 69 6E 67 20 | of the walking |
000013D0: 61 6E 64 20 72 69 64 69 6E 67 20 64 69 73 74 61 |and riding dista|
000013E0: 6E 63 65 73 20 69 73 20 65 71 75 61 6C 20 74 6F |nces is equal to|
000013F0: 20 74 68 65 20 54 6F 74 61 6C 20 64 69 73 74 61 | the Total dista|
00001400: 6E 63 65 2E 00 44 77 2B 44 72 20 3D 20 54 6F 74 |nce..Dw+Dr = Tot|
00001410: 61 6C 00 54 68 65 20 73 75 6D 20 6F 66 20 74 68 |al.The sum of th|
00001420: 65 20 77 61 6C 6B 69 6E 67 20 61 6E 64 20 72 69 |e walking and ri|
00001430: 64 69 6E 67 20 64 69 73 74 61 6E 63 65 73 20 69 |ding distances i|
00001440: 73 20 74 68 65 20 54 6F 74 61 6C 20 64 69 73 74 |s the Total dist|
00001450: 61 6E 63 65 2E 00 60 44 77 2B 44 72 20 3D 20 54 |ance..`Dw+Dr = T|
00001460: 6F 74 61 6C 27 20 73 68 6F 77 73 20 74 68 61 74 |otal' shows that|
00001470: 20 74 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 | the sum of the |
00001480: 77 61 6C 6B 69 6E 67 20 61 6E 64 20 72 69 64 69 |walking and ridi|
00001490: 6E 67 20 64 69 73 74 61 6E 63 65 73 20 69 73 20 |ng distances is |
000014A0: 65 71 75 61 6C 20 74 6F 20 74 68 65 20 54 6F 74 |equal to the Tot|
000014B0: 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 6D 69 2F |al distance..mi/|
000014C0: 68 72 00 34 00 6D 69 2F 68 72 00 68 6F 75 72 73 |hr.4.mi/hr.hours|
000014D0: 20 28 60 68 72 27 29 2E 00 32 00 68 72 00 6D 69 | (`hr')..2.hr.mi|
000014E0: 6C 65 73 20 28 60 6D 69 27 29 2E 00 32 00 6D 69 |les (`mi')..2.mi|
000014F0: 00 26 68 4A 61 6B 65 20 74 72 61 76 65 6C 73 20 |.&hJake travels |
00001500: 61 20 74 6F 74 61 6C 20 6F 66 20 33 33 20 6D 69 |a total of 33 mi|
00001510: 6C 65 73 2E 26 68 00 54 68 65 20 74 6F 74 61 6C |les.&h.The total|
00001520: 20 6E 75 6D 62 65 72 20 6F 66 20 6D 69 6C 65 73 | number of miles|
00001530: 20 69 73 20 60 33 33 27 2E 00 33 33 00 26 68 54 | is `33'..33.&hT|
00001540: 68 65 20 65 6E 74 69 72 65 20 74 72 69 70 20 74 |he entire trip t|
00001550: 61 6B 65 73 20 37 32 20 6D 69 6E 2E 26 68 20 28 |akes 72 min.&h (|
00001560: 52 65 6D 65 6D 62 65 72 20 74 69 6D 65 20 69 6E |Remember time in|
00001570: 20 74 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 | this problem is|
00001580: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 68 6F 75 | measured in hou|
00001590: 72 73 2E 29 00 54 68 65 20 74 6F 74 61 6C 20 61 |rs.).The total a|
000015A0: 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 20 69 73 |mount of time is|
000015B0: 20 37 32 20 6D 69 6E 75 74 65 73 2C 20 6F 72 20 | 72 minutes, or |
000015C0: 60 31 2E 32 27 20 68 6F 75 72 73 2E 00 31 34 00 |`1.2' hours..14.|
000015D0: 31 2E 32 00 26 68 48 65 20 77 61 6C 6B 73 20 74 |1.2.&hHe walks t|
000015E0: 6F 20 74 68 65 20 74 72 61 69 6E 20 61 74 20 33 |o the train at 3|
000015F0: 20 6D 69 2F 68 72 26 68 2E 00 48 69 73 20 77 61 | mi/hr&h..His wa|
00001600: 6C 6B 69 6E 67 20 72 61 74 65 20 69 73 20 60 33 |lking rate is `3|
00001610: 27 20 6D 69 2F 68 72 2E 00 37 00 33 00 54 68 65 |' mi/hr..7.3.The|
00001620: 20 74 72 61 69 6E 20 74 72 61 76 65 6C 73 20 61 | train travels a|
00001630: 74 20 26 68 34 35 20 6D 69 2F 68 72 26 68 2E 00 |t &h45 mi/hr&h..|
00001640: 48 69 73 20 72 69 64 69 6E 67 20 72 61 74 65 20 |His riding rate |
00001650: 69 73 20 60 34 35 27 20 6D 69 2F 68 72 2E 00 38 |is `45' mi/hr..8|
00001660: 00 34 35 00 74 68 65 20 61 6D 6F 75 6E 74 73 20 |.45.the amounts |
00001670: 6F 66 20 74 69 6D 65 20 68 65 20 73 70 65 6E 74 |of time he spent|
00001680: 20 77 61 6C 6B 69 6E 67 20 61 6E 64 20 72 69 64 | walking and rid|
00001690: 69 6E 67 00 62 65 69 6E 67 20 61 73 6B 65 64 20 |ing.being asked |
000016A0: 72 65 66 65 72 73 20 74 6F 20 77 61 6C 6B 69 6E |refers to walkin|
000016B0: 67 00 74 68 65 20 77 61 6C 6B 69 6E 67 20 74 69 |g.the walking ti|
000016C0: 6D 65 00 77 00 74 68 65 20 74 69 6D 65 20 73 70 |me.w.the time sp|
000016D0: 65 6E 74 20 77 61 6C 6B 69 6E 67 00 31 32 00 74 |ent walking.12.t|
000016E0: 68 65 20 74 69 6D 65 20 73 70 65 6E 74 20 6F 6E |he time spent on|
000016F0: 20 74 68 65 20 74 72 61 69 6E 00 74 68 65 20 74 | the train.the t|
00001700: 69 6D 65 20 73 70 65 6E 74 20 77 61 6C 6B 69 6E |ime spent walkin|
00001710: 67 29 00 54 68 65 20 74 6F 74 61 6C 20 74 72 69 |g).The total tri|
00001720: 70 20 74 6F 6F 6B 20 31 2E 32 20 68 72 73 2E 20 |p took 1.2 hrs. |
00001730: 46 6F 72 20 26 76 20 68 72 73 2C 20 68 65 20 77 |For &v hrs, he w|
00001740: 61 73 20 77 61 6C 6B 69 6E 67 2E 20 46 6F 72 20 |as walking. For |
00001750: 74 68 65 20 72 65 6D 61 69 6E 69 6E 67 20 74 69 |the remaining ti|
00001760: 6D 65 2C 20 60 31 2E 32 2D 26 76 27 20 68 72 73 |me, `1.2-&v' hrs|
00001770: 2C 20 68 65 20 77 61 73 20 6F 6E 20 74 68 65 20 |, he was on the |
00001780: 74 72 61 69 6E 2E 00 31 33 00 31 2E 32 2D 26 76 |train..13.1.2-&v|
00001790: 00 5C 66 30 35 2A 20 20 5C 66 30 37 54 69 6D 65 |.\f05* \f07Time|
000017A0: 20 20 5C 66 31 32 3D 20 20 44 69 73 74 61 6E 63 | \f12= Distanc|
000017B0: 65 00 60 33 20 20 5C 66 30 35 2A 20 20 5C 66 30 |e.`3 \f05* \f0|
000017C0: 39 26 76 27 20 20 5C 66 31 32 3D 20 57 61 6C 6B |9&v' \f12= Walk|
000017D0: 69 6E 67 20 44 69 73 74 2E 00 33 26 76 00 5C 66 |ing Dist..3&v.\f|
000017E0: 30 35 2A 20 20 5C 66 31 30 54 69 6D 65 20 20 5C |05* \f10Time \|
000017F0: 66 31 35 3D 20 44 69 73 74 61 6E 63 65 00 60 34 |f15= Distance.`4|
00001800: 35 20 20 5C 66 30 35 2A 20 20 5C 66 30 37 28 31 |5 \f05* \f07(1|
00001810: 2E 32 2D 26 76 29 27 20 5C 66 31 35 3D 20 52 69 |.2-&v)' \f15= Ri|
00001820: 64 69 6E 67 20 44 69 73 74 00 34 35 28 31 2E 32 |ding Dist.45(1.2|
00001830: 2D 26 76 29 00 44 77 00 44 72 00 77 00 72 00 54 |-&v).Dw.Dr.w.r.T|
00001840: 6F 74 61 6C 00 77 00 33 26 76 00 72 00 34 35 28 |otal.w.3&v.r.45(|
00001850: 31 2E 32 2D 26 76 29 00 33 33 00 57 61 6C 6B 69 |1.2-&v).33.Walki|
00001860: 6E 67 20 64 69 73 74 2E 20 5C 66 31 35 2B 20 52 |ng dist. \f15+ R|
00001870: 69 64 69 6E 67 20 64 69 73 74 2E 20 5C 66 33 30 |iding dist. \f30|
00001880: 3D 20 33 33 00 20 20 20 20 60 33 26 76 20 20 5C |= 33. `3&v \|
00001890: 66 31 35 2B 20 34 35 28 31 2E 32 2D 26 76 29 20 |f15+ 45(1.2-&v) |
000018A0: 20 5C 66 33 30 3D 20 33 33 27 00 33 26 76 2B 34 | \f30= 33'.3&v+4|
000018B0: 35 28 31 2E 32 2D 26 76 29 3D 33 33 00 31 2F 32 |5(1.2-&v)=33.1/2|
000018C0: 00 48 6F 77 20 66 61 72 20 64 6F 65 73 20 68 65 |.How far does he|
000018D0: 20 77 61 6C 6B 3F 00 77 61 6C 6B 69 6E 67 20 64 | walk?.walking d|
000018E0: 69 73 74 61 6E 63 65 00 33 26 76 00 2E 35 00 68 |istance.3&v..5.h|
000018F0: 65 20 77 61 6C 6B 65 64 20 2E 35 2A 33 2C 20 6F |e walked .5*3, o|
00001900: 72 20 60 31 2E 35 27 20 6D 69 6C 65 73 00 31 37 |r `1.5' miles.17|
00001910: 00 31 2E 35 00 74 68 65 20 77 61 6C 6B 69 6E 67 |.1.5.the walking|
00001920: 20 74 69 6D 65 00 22 26 76 22 20 72 65 70 72 65 | time."&v" repre|
00001930: 73 65 6E 74 73 20 74 68 65 20 74 69 6D 65 20 68 |sents the time h|
00001940: 65 20 73 70 65 6E 74 20 77 61 6C 6B 69 6E 67 20 |e spent walking |
00001950: 61 6E 64 20 26 76 20 3D 20 2E 35 2C 20 73 6F 20 |and &v = .5, so |
00001960: 68 65 20 77 61 6C 6B 65 64 20 66 6F 72 20 60 2E |he walked for `.|
00001970: 35 27 20 6F 72 20 60 31 2F 32 27 20 68 6F 75 72 |5' or `1/2' hour|
00001980: 2E 00 31 32 00 31 2F 32 00 74 68 65 20 72 69 64 |..12.1/2.the rid|
00001990: 69 6E 67 20 74 69 6D 65 00 22 31 2E 32 2D 26 76 |ing time."1.2-&v|
000019A0: 22 20 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 |" represents the|
000019B0: 20 74 69 6D 65 20 68 65 20 73 70 65 6E 74 20 72 | time he spent r|
000019C0: 69 64 69 6E 67 20 6F 6E 20 74 68 65 20 74 72 61 |iding on the tra|
000019D0: 69 6E 20 61 6E 64 20 26 76 3D 2E 35 2C 20 73 6F |in and &v=.5, so|
000019E0: 20 68 65 20 72 6F 64 65 20 66 6F 72 20 31 2E 32 | he rode for 1.2|
000019F0: 2D 2E 35 2C 20 6F 72 20 60 2E 37 27 68 6F 75 72 |-.5, or `.7'hour|
00001A00: 73 2E 00 31 33 00 2E 37 00 74 68 65 20 72 69 64 |s..13..7.the rid|
00001A10: 69 6E 67 20 64 69 73 74 61 6E 63 65 00 34 35 28 |ing distance.45(|
00001A20: 31 2E 32 2D 26 76 29 20 72 65 70 72 65 73 65 6E |1.2-&v) represen|
00001A30: 74 73 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 |ts the distance |
00001A40: 68 65 20 72 6F 64 65 20 6F 6E 20 74 68 65 20 74 |he rode on the t|
00001A50: 72 61 69 6E 2E 20 53 69 6E 63 65 20 26 76 3D 2E |rain. Since &v=.|
00001A60: 35 2C 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 |5, the distance |
00001A70: 65 71 75 61 6C 73 20 2E 37 2A 34 35 2C 20 6F 72 |equals .7*45, or|
00001A80: 20 60 33 31 2E 35 27 20 6D 69 6C 65 73 2E 00 31 | `31.5' miles..1|
00001A90: 38 00 33 31 2E 35 00 77 61 6C 6B 69 6E 67 20 61 |8.31.5.walking a|
00001AA0: 6E 64 20 72 69 64 69 6E 67 00 33 33 20 6D 69 6C |nd riding.33 mil|
00001AB0: 65 73 00 7C 20 |es.| |
A@Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})&
C(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIST
.)@RREAD@PREAD THE WHOLE PROBLEM. THINK:
WHAT ARE THE FACTS? WHAT IS BEING ASKED
? (PRESS ANY KEY TO CONTINUE.)@HWHAT ARE
THE FACTS? {}@HWHAT IS BEING ASKED? {}@
I(0)@RPLAN @PLET D{}={} AND D{}={}. WRIT
E AN EQUATION TO RELATE D{} AND D{} TO T
HE TOTAL DIST.@H{}@H{}@I(20,C0, )@PONE A
NSWER IS {}. CHANGE YOUR ANSWER IF IT IS
NOT EQUIVALENT. (PRESS RETURN)@H{}@H{}@
I(20,C0, )@RDATA ENTRY@PFILL IN THE UNIT
S BY WHICH RATE, TIME AND DISTANCE ARE M
EASURED.@HRATE IS COMMONLY MEASURED IN M
ILES PER HOUR(MI/HR), FEET PER SECOND(FT
/SEC), METERS PER MINUTE(M/MIN), ETC.@HT
HE RATE OF SPEED IN THIS PROBLEM IS MEAS
URED IN `{}'.@I(6,C{},{})@HTIME IS COMMO
NLY MEASURED IS SECONDS(SEC), MINUTES(MI
N), HOURS(HR), DAYS(DA), ETC.@HTIME IN T
HIS PROBLEM IS MEASURED IN {}@I(11,C{},{
})@HDISTANCE IS COMMONLY MEASURED IN FEE
T(FT), YARDS(YD), MILES(MI), METERS(M),
KILOMETERS(KM), ETC.@HDISTANCE IN THIS P
ROBLEM IS MEASURED IN {}@I(16,C{},{})@PE
NTER THE FACTS FROM THE PROBLEM INTO THE
GRID.@H{}@H{}@I(19,I,{})@H{}@H{}@I({},I
,{})@H{}@H{}@I({},I,{})@H{}@H{}@I({},I,{
})@PREPRESENT {}.@HSINCE THE QUESTION {}
, USE A VARIABLE TO REPRESENT {}.@HUSE A
VARIABLE, SUCH AS `{}' TO REPRESENT {}.
@I({},I,&V)@HREPRESENT {} IN TERMS OF "
&V" ({}.@H{}@I({},I,{})@RPARTS@PWRITE AN
EXPRESSION TO REPRESENT THE DISTANCE TR
AVELLED AT EACH RATE.@HRATE*TIME = DISTA
NCE@HRATE {} \N{}@I(17,I,{}))@HRATE*TIME
= DISTANCE@HRATE {} \N{}@I(18,I,{})@RWH
OLE&D(20, )@PSUBSTITUTE YOUR EXPRESSIONS
FOR {}, {} AND TOTAL IN THE EQUATION. \
NEQUATION : D{}+D{} = {}@HD{} = {}, D{}
= {} AND TOTAL = {}.@H{} \N{}@I(20,I,{})
@S@RCOMPUTE@PSOLVE THE EQUATION FOR "&V"
. USE PAPER AND PENCIL AND ENTER THE FIN
AL EQUATION, OR USE THE CALCULATOR.@HIS
OLATE "&V" ON ONE SIDE OF THE EQUATION.@
HTHE CALCULATOR SOLVES EQUATIONS FOR YOU
AND DISPLAYS THE STEPS IN THE SOLUTION.
@I(20,I,&V={})@PENTER YOUR ANSWERS TO TH
E PROBLEM IN THE GRID. REMEMBER THE QUES
TION. &Q{}&Q@HTHE {} IS EQUAL TO THE VAL
UE OF {}.@H&V = {}, SO {}.@I({},I,{}) @S
@RCHECK@PREREAD THE PROBLEM. CHECK YOUR
ANSWERS. EVALUATE THE REMAINING EXPRESSI
ONS IN THE GRID.@HSUBSTITUTE FOR "&V" IN
THE EXPRESSION FOR {}. THEN CALCULATE T
HE RESULT.@H{}@I({},I,{})@HSUBSTITUTE FO
R "&V" IN THE EXPRESSION FOR {}. THEN CA
LCULATE THE RESULT.@H{}@I({},I,{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION FOR {}
. THEN CALCULATE THE RESULT.@H{}@I({},I,
{})&D(0,CHECK YOUR WORK. THE SUM OF THE
{} DISTANCES SHOULD EQUAL {}. ON TO A NE
W PROBLEM.)@FAMY DROVE 600 MILES IN 15 H
OURS. SHE STARTED DRIVING AT 50 MI/HR AN
D THEN BAD WEATHER FORCED HER TO SLOW DO
WN TO 25 MI/HR. FOR HOW MANY HOURS DID S
HE DRIVE AT 25 MI/HR?.FAST.SLOW.AMY DROV
E 600 MILES AT TWO RATES, 50 MI/HR AND 2
5 MI/HR..&HHOW MANY HOURS DID SHE DRIVE
AT 25 MI/HR?&H.F.AMY'S FAST DIST..S.HER
SLOW DIST.F.S.THE SUM OF HER FAST AND SL
OW DISTANCES IS EQUAL TO THE TOTAL DISTA
NCE..`DF + DS = TOTAL' SHOWS THAT THE SU
M OF HER SLOW AND FAST DISTANCES IS EQUA
L TO THE TOTAL DISTANCE..DF+DS=TOTAL.THE
SUM OF HER FAST AND SLOW DISTANCES IS E
QUAL TO THE TOTAL DISTANCE..`DF + DS = T
OTAL' SHOWS THAT THE SUM OF HER SLOW AND
FAST DISTANCES IS EQUAL TO THE TOTAL DI
STANCE..MI/HR.4.MI/HR.HOURS. (`HR').2.HR
.MILES. (`MI').2.MI.&HAMY DROVE 600 MILE
S&H..THE TOTAL DISTANCE DRIVEN IS `600'
MILES..600.AMY DROVE 600 MILES IN &H15 H
OURS&H..THE TOTAL TIME IS `15' HOURS..14
.15.&HSHE STARTED DRIVING AT 50 MI/HR&H.
THE FAST RATE IS `50' MI/HR..7.50.SHE HA
D TO SLOW DOWN TO &H25 MI/HR&H..THE SLOW
RATE IS `25' MI/HR..8.25.THE NUMBER OF
HOURS SHE TRAVELLED AT EACH OF THE RATES
.IS: "HOW LONG DID SHE TRAVEL AT 25 MI/H
R?".THE SLOW DRIVING TIME..S.THE NUMBER
OF HOURS AMY DROVE AT 25 MI/HR (THE SLOW
SPEED).13.THE TIME AMY DROVE AT 50 MI/H
R.THE TIME SHE DROVE AT 25 MI/HR).SHE DR
OVE FOR A TOTAL OF 15 HOURS. FOR "&V" HR
S SHE DROVE SLOWLY. FOR THE REMAINING TI
ME, `15-&V', SHE DROVE FAST..12.15-&V.\F
05* \F07TIME \F14= DISTANCE.`50 \F05*
\F07(15-&V)' \F14= FAST DISTANCE.50(15
-&V.\F05* \F07TIME \F12= DISTANCE.`25
\F05* \F07 &V' \F12= SLOW DISTANCE.25&
V.DF.DS.F.S.TOTAL.F.50(15-&V).S.25&V.600
.FAST DIST. \F12+ SLOW DIST. \F25= TOTA
L DIST..`50(15-&V) \F12+ 25&V \F25= 6
00'.50(15-&V)+25&V=600.6.HOW LONG DID SH
E DRIVE AT 25 MI/HR?.TIME FOR THE SLOW R
IDE."&V".6.SHE DROVE SLOWLY FOR `6' HOUR
S.13.6.THE FAST TIME.15-&V IS THE FAST T
IME. AND &V=6, SO 15-6 OR `9' IS THE NUM
BER OF HOURS SHE DROVE AT 50 MI/HR..12.9
.THE FAST DISTANCE.50(15-&V) IS THE FAST
DISTANCE. &V=6, SO 50(15-6) OR `450' IS
THE FAST DISTANCE..17.450.THE SLOW DIST
ANCE.25&V IS THE SLOW DISTANCE. &V=6, SO
25&V OR `150' IS THE FAST DISTANCE..18.
150.FAST AND SLOW.600.@FJAKE TRAVELS A T
OTAL OF 33 MI. TO WORK EACH DAY. HE WALK
S TO THE TRAIN STATION AT 3 MI/HR AND TH
EN TAKES A TRAIN GOING 45 MI/HR. IF THE
ENTIRE TRIP TAKES 72 MIN., HOW FAR DOES
HE WALK?.WALK.RIDE.JAKE TRAVELS 33 MILES
AT TWO DIFFERENT RATES. HIS TOTAL TIME
IS 72 MINUTES..&HHOW FAR DOES HE WALK?&H
.W.WALKING DIST..R.RIDING DIST.W.R.THE S
UM OF THE WALKING AND RIDING DISTANCES I
S THE TOTAL DISTANCE..`DW+DR = TOTAL' SH
OWS THAT THE SUM OF THE WALKING AND RIDI
NG DISTANCES IS EQUAL TO THE TOTAL DISTA
NCE..DW+DR = TOTAL.THE SUM OF THE WALKIN
G AND RIDING DISTANCES IS THE TOTAL DIST
ANCE..`DW+DR = TOTAL' SHOWS THAT THE SUM
OF THE WALKING AND RIDING DISTANCES IS
EQUAL TO THE TOTAL DISTANCE..MI/HR.4.MI/
HR.HOURS (`HR')..2.HR.MILES (`MI')..2.MI
.&HJAKE TRAVELS A TOTAL OF 33 MILES.&H.T
HE TOTAL NUMBER OF MILES IS `33'..33.&HT
HE ENTIRE TRIP TAKES 72 MIN.&H (REMEMBER
TIME IN THIS PROBLEM IS MEASURED IN HOU
RS.).THE TOTAL AMOUNT OF TIME IS 72 MINU
TES, OR `1.2' HOURS..14.1.2.&HHE WALKS T
O THE TRAIN AT 3 MI/HR&H..HIS WALKING RA
TE IS `3' MI/HR..7.3.THE TRAIN TRAVELS A
T &H45 MI/HR&H..HIS RIDING RATE IS `45'
MI/HR..8.45.THE AMOUNTS OF TIME HE SPENT
WALKING AND RIDING.BEING ASKED REFERS T
O WALKING.THE WALKING TIME.W.THE TIME SP
ENT WALKING.12.THE TIME SPENT ON THE TRA
IN.THE TIME SPENT WALKING).THE TOTAL TRI
P TOOK 1.2 HRS. FOR &V HRS, HE WAS WALKI
NG. FOR THE REMAINING TIME, `1.2-&V' HRS
, HE WAS ON THE TRAIN..13.1.2-&V.\F05*
\F07TIME \F12= DISTANCE.`3 \F05* \F0
9&V' \F12= WALKING DIST..3&V.\F05* \F1
0TIME \F15= DISTANCE.`45 \F05* \F07(1
.2-&V)' \F15= RIDING DIST.45(1.2-&V).DW.
DR.W.R.TOTAL.W.3&V.R.45(1.2-&V).33.WALKI
NG DIST. \F15+ RIDING DIST. \F30= 33.
`3&V \F15+ 45(1.2-&V) \F30= 33'.3&V+4
5(1.2-&V)=33.1/2.HOW FAR DOES HE WALK?.W
ALKING DISTANCE.3&V..5.HE WALKED .5*3, O
R `1.5' MILES.17.1.5.THE WALKING TIME."&
V" REPRESENTS THE TIME HE SPENT WALKING
AND &V = .5, SO HE WALKED FOR `.5' OR `1
/2' HOUR..12.1/2.THE RIDING TIME."1.2-&V
" REPRESENTS THE TIME HE SPENT RIDING ON
THE TRAIN AND &V=.5, SO HE RODE FOR 1.2
-.5, OR `.7'HOURS..13..7.THE RIDING DIST
ANCE.45(1.2-&V) REPRESENTS THE DISTANCE
HE RODE ON THE TRAIN. SINCE &V=.5, THE D
ISTANCE EQUALS .7*45, OR `31.5' MILES..1
8.31.5.WALKING AND RIDING.33 MILES.|
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL