_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

COIN2L2

FILE INFORMATION

FILENAME(S): COIN2L2

FILE TYPE(S): PRG

FILE SIZE: 5.8K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

46140a8acec24c78f61e74eb8e137099997b7962c2f1a5beb91a6c5d2f00f3c4

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 44S1 COIN2L2 PRG Radd Maxx 15 2 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 31 26 64 28 31  | A @q{}@dg01&d(1|
00000010: 2C 7B 7D 29 26 64 28 32  2C 7B 7D 29 26 64 28 33  |,{})&d(2,{})&d(3|
00000020: 2C 7B 7D 29 26 64 28 34  2C 54 6F 74 2E 29 26 64  |,{})&d(4,Tot.)&d|
00000030: 28 35 2C 56 61 6C 2F 75  6E 69 74 29 26 64 28 31  |(5,Val/unit)&d(1|
00000040: 30 2C 23 20 63 6F 69 6E  73 29 26 64 28 31 35 2C  |0,# coins)&d(15,|
00000050: 56 61 6C 75 65 29 40 72  52 45 41 44 26 64 28 30  |Value)@rREAD&d(0|
00000060: 2C 52 65 61 64 20 74 68  65 20 77 68 6F 6C 65 20  |,Read the whole |
00000070: 70 72 6F 62 6C 65 6D 2E  20 54 68 69 6E 6B 3A 20  |problem. Think: |
00000080: 57 68 61 74 20 61 72 65  20 74 68 65 20 66 61 63  |What are the fac|
00000090: 74 73 3F 20 57 68 61 74  20 69 73 20 62 65 69 6E  |ts? What is bein|
000000A0: 67 20 61 73 6B 65 64 3F  29 40 72 44 41 54 41 20  |g asked?)@rDATA |
000000B0: 45 4E 54 52 59 40 70 53  74 61 72 74 20 66 69 6C  |ENTRY@pStart fil|
000000C0: 6C 69 6E 67 20 69 6E 20  69 6E 66 6F 72 6D 61 74  |ling in informat|
000000D0: 69 6F 6E 20 6F 6E 20 74  68 65 20 63 68 61 72 74  |ion on the chart|
000000E0: 2E 20 54 68 65 20 63 75  72 73 6F 72 20 77 69 6C  |. The cursor wil|
000000F0: 6C 20 73 68 6F 77 20 79  6F 75 20 77 68 69 63 68  |l show you which|
00000100: 20 62 6F 78 20 74 6F 20  77 6F 72 6B 20 6F 6E 2E  | box to work on.|
00000110: 40 68 57 68 61 74 20 69  73 20 74 68 65 20 76 61  |@hWhat is the va|
00000120: 6C 75 65 20 70 65 72 20  75 6E 69 74 20 6F 66 20  |lue per unit of |
00000130: 61 20 7B 7D 3F 40 68 54  68 65 20 76 61 6C 75 65  |a {}?@hThe value|
00000140: 20 6F 66 20 61 20 7B 7D  20 69 6E 20 63 65 6E 74  | of a {} in cent|
00000150: 73 2C 20 69 73 20 27 7B  7D 27 2E 40 69 28 7B 7D  |s, is '{}'.@i({}|
00000160: 2C 7B 7D 2C 7B 7D 29 26  64 28 7B 7D 2C 7B 7D 20  |,{},{})&d({},{} |
00000170: 63 65 6E 74 73 29 40 68  57 68 61 74 20 69 73 20  |cents)@hWhat is |
00000180: 74 68 65 20 76 61 6C 75  65 20 70 65 72 20 75 6E  |the value per un|
00000190: 69 74 20 6F 66 20 61 20  7B 7D 3F 40 68 54 68 65  |it of a {}?@hThe|
000001A0: 20 76 61 6C 75 65 20 6F  66 20 61 20 7B 7D 20 69  | value of a {} i|
000001B0: 6E 20 63 65 6E 74 73 2C  20 69 73 20 27 7B 7D 27  |n cents, is '{}'|
000001C0: 2E 40 69 28 7B 7D 2C 7B  7D 2C 7B 7D 29 26 64 28  |.@i({},{},{})&d(|
000001D0: 7B 7D 2C 7B 7D 20 63 65  6E 74 73 29 40 68 57 68  |{},{} cents)@hWh|
000001E0: 61 74 20 69 73 20 74 68  65 20 76 61 6C 75 65 20  |at is the value |
000001F0: 70 65 72 20 75 6E 69 74  20 6F 66 20 61 20 7B 7D  |per unit of a {}|
00000200: 3F 40 68 54 68 65 20 76  61 6C 75 65 20 6F 66 20  |?@hThe value of |
00000210: 61 20 7B 7D 20 69 6E 20  63 65 6E 74 73 2C 20 69  |a {} in cents, i|
00000220: 73 20 27 7B 7D 27 2E 40  69 28 7B 7D 2C 7B 7D 2C  |s '{}'.@i({},{},|
00000230: 7B 7D 29 26 64 28 7B 7D  2C 7B 7D 20 63 65 6E 74  |{})&d({},{} cent|
00000240: 73 29 40 68 43 68 6F 6F  73 65 20 61 20 76 61 72  |s)@hChoose a var|
00000250: 69 61 62 6C 65 20 74 6F  20 72 65 70 72 65 73 65  |iable to represe|
00000260: 6E 74 20 74 68 65 20 6E  75 6D 62 65 72 20 6F 66  |nt the number of|
00000270: 20 7B 7D 2E 40 68 43 68  6F 6F 73 65 20 61 20 73  | {}.@hChoose a s|
00000280: 69 6E 67 6C 65 20 6C 65  74 74 65 72 2C 20 73 75  |ingle letter, su|
00000290: 63 68 20 61 73 20 27 7B  7D 27 2C 20 74 6F 20 72  |ch as '{}', to r|
000002A0: 65 70 72 65 73 65 6E 74  20 74 68 65 20 6E 75 6D  |epresent the num|
000002B0: 62 65 72 20 6F 66 20 7B  7D 2E 40 69 28 7B 7D 2C  |ber of {}.@i({},|
000002C0: 69 2C 26 76 29 40 68 52  65 70 72 65 73 65 6E 74  |i,&v)@hRepresent|
000002D0: 20 74 68 65 20 6E 75 6D  62 65 72 20 6F 66 20 7B  | the number of {|
000002E0: 7D 20 69 6E 20 74 65 72  6D 73 20 6F 66 20 22 26  |} in terms of "&|
000002F0: 76 22 20 28 74 68 65 20  6E 75 6D 62 65 72 20 6F  |v" (the number o|
00000300: 66 20 7B 7D 29 2E 40 68  53 69 6E 63 65 20 7B 7D  |f {}).@hSince {}|
00000310: 2E 40 69 28 7B 7D 2C 69  2C 7B 7D 29 40 68 52 65  |.@i({},i,{})@hRe|
00000320: 70 72 65 73 65 6E 74 20  74 68 65 20 6E 75 6D 62  |present the numb|
00000330: 65 72 20 6F 66 20 7B 7D  20 69 6E 20 74 65 72 6D  |er of {} in term|
00000340: 73 20 6F 66 20 22 26 76  22 20 28 74 68 65 20 6E  |s of "&v" (the n|
00000350: 75 6D 62 65 72 20 6F 66  20 7B 7D 29 2E 40 68 53  |umber of {}).@hS|
00000360: 69 6E 63 65 20 7B 7D 2E  40 69 28 7B 7D 2C 69 2C  |ince {}.@i({},i,|
00000370: 7B 7D 29 40 68 52 65 70  72 65 73 65 6E 74 20 74  |{})@hRepresent t|
00000380: 68 65 20 74 6F 74 61 6C  20 76 61 6C 75 65 20 69  |he total value i|
00000390: 6E 20 63 65 6E 74 73 2C  20 6F 66 20 61 6C 6C 20  |n cents, of all |
000003A0: 74 68 65 20 63 6F 69 6E  73 2E 40 68 7B 7D 2E 40  |the coins.@h{}.@|
000003B0: 69 28 31 39 2C 7B 7D 2C  7B 7D 29 40 72 50 41 52  |i(19,{},{})@rPAR|
000003C0: 54 53 40 70 46 69 6C 6C  20 69 6E 20 74 68 65 20  |TS@pFill in the |
000003D0: 69 6E 66 6F 72 6D 61 74  69 6F 6E 20 79 6F 75 20  |information you |
000003E0: 6E 65 65 64 20 74 6F 20  77 72 69 74 65 20 79 6F  |need to write yo|
000003F0: 75 72 20 65 71 75 61 74  69 6F 6E 2E 40 68 57 72  |ur equation.@hWr|
00000400: 69 74 65 20 61 6E 20 65  78 70 72 65 73 73 69 6F  |ite an expressio|
00000410: 6E 20 74 6F 20 72 65 70  72 65 73 65 6E 74 20 74  |n to represent t|
00000420: 68 65 20 76 61 6C 75 65  20 6F 66 20 74 68 65 20  |he value of the |
00000430: 7B 7D 2E 40 68 76 61 6C  2F 75 6E 69 74 20 5C 66  |{}.@hval/unit \f|
00000440: 30 39 2A 20 23 20 6F 66  20 7B 7D 20 5C 66 32 34  |09* # of {} \f24|
00000450: 3D 20 7B 7D 20 76 61 6C  2E 20 5C 6E 20 60 35 20  |= {} val. \n `5 |
00000460: 20 20 20 20 20 5C 66 30  39 2A 20 20 20 20 7B 7D  |     \f09*    {}|
00000470: 27 20 20 20 20 20 20 5C  66 32 34 3D 20 7B 7D 20  |'      \f24= {} |
00000480: 76 61 6C 2E 40 69 28 31  36 2C 69 2C 7B 7D 29 40  |val.@i(16,i,{})@|
00000490: 68 57 72 69 74 65 20 61  6E 20 65 78 70 72 65 73  |hWrite an expres|
000004A0: 73 69 6F 6E 20 74 6F 20  72 65 70 72 65 73 65 6E  |sion to represen|
000004B0: 74 20 74 68 65 20 76 61  6C 75 65 20 6F 66 20 74  |t the value of t|
000004C0: 68 65 20 7B 7D 2E 40 68  76 61 6C 2F 75 6E 69 74  |he {}.@hval/unit|
000004D0: 20 5C 66 30 39 2A 20 23  20 6F 66 20 7B 7D 20 5C  | \f09* # of {} \|
000004E0: 66 32 32 3D 20 7B 7D 20  76 61 6C 75 65 2E 20 5C  |f22= {} value. \|
000004F0: 6E 20 60 31 30 20 20 20  20 20 5C 66 30 39 2A 20  |n `10     \f09* |
00000500: 20 20 20 20 7B 7D 27 20  20 20 20 5C 66 32 32 3D  |    {}'    \f22=|
00000510: 20 7B 7D 20 76 61 6C 75  65 2E 40 69 28 31 37 2C  | {} value.@i(17,|
00000520: 69 2C 7B 7D 29 40 68 57  72 69 74 65 20 61 6E 20  |i,{})@hWrite an |
00000530: 65 78 70 72 65 73 73 69  6F 6E 20 74 6F 20 72 65  |expression to re|
00000540: 70 72 65 73 65 6E 74 20  74 68 65 20 76 61 6C 75  |present the valu|
00000550: 65 20 6F 66 20 74 68 65  20 7B 7D 2E 40 68 76 61  |e of the {}.@hva|
00000560: 6C 2F 75 6E 69 74 20 5C  66 31 30 2A 20 23 20 6F  |l/unit \f10* # o|
00000570: 66 20 7B 7D 5C 66 32 35  3D 7B 7D 20 76 61 6C 2E  |f {}\f25={} val.|
00000580: 20 5C 6E 20 20 60 32 35  20 20 20 20 5C 66 31 30  | \n  `25    \f10|
00000590: 2A 20 20 20 20 7B 7D 27  20 20 20 5C 66 32 35 3D  |*    {}'   \f25=|
000005A0: 7B 7D 20 76 61 6C 2E 40  69 28 31 38 2C 69 2C 7B  |{} val.@i(18,i,{|
000005B0: 7D 29 40 72 57 48 4F 4C  45 40 70 57 72 69 74 65  |})@rWHOLE@pWrite|
000005C0: 20 61 6E 20 65 71 75 61  74 69 6F 6E 20 74 6F 20  | an equation to |
000005D0: 73 68 6F 77 20 74 68 65  20 72 65 6C 61 74 69 6F  |show the relatio|
000005E0: 6E 20 6F 66 20 74 68 65  20 70 61 72 74 73 20 28  |n of the parts (|
000005F0: 7B 7D 29 20 74 6F 20 74  68 65 20 77 68 6F 6C 65  |{}) to the whole|
00000600: 20 28 54 6F 74 61 6C 29  2E 40 68 55 73 65 20 74  | (Total).@hUse t|
00000610: 68 65 20 62 6F 74 74 6F  6D 20 6C 69 6E 65 20 6F  |he bottom line o|
00000620: 66 20 74 68 65 20 63 68  61 72 74 20 74 6F 20 66  |f the chart to f|
00000630: 6F 72 6D 20 74 68 65 20  65 71 75 61 74 69 6F 6E  |orm the equation|
00000640: 2E 40 68 28 7B 7D 20 76  61 6C 75 65 29 20 2B 20  |.@h({} value) + |
00000650: 28 7B 7D 20 76 61 6C 75  65 29 20 2B 20 28 7B 7D  |({} value) + ({}|
00000660: 20 76 61 6C 75 65 29 20  3D 20 54 6F 74 61 6C 20  | value) = Total |
00000670: 76 61 6C 75 65 2C 20 73  6F 20 60 7B 7D 27 40 69  |value, so `{}'@i|
00000680: 28 7B 7D 2C 69 2C 7B 7D  29 40 73 40 72 43 4F 4D  |({},i,{})@s@rCOM|
00000690: 50 55 54 45 40 70 53 6F  6C 76 65 20 74 68 65 20  |PUTE@pSolve the |
000006A0: 65 71 75 61 74 69 6F 6E  20 66 6F 72 20 22 26 76  |equation for "&v|
000006B0: 22 2E 20 55 73 65 20 70  65 6E 63 69 6C 20 61 6E  |". Use pencil an|
000006C0: 64 20 70 61 70 65 72 2C  20 6F 72 20 75 73 65 20  |d paper, or use |
000006D0: 74 68 65 20 63 61 6C 63  75 6C 61 74 6F 72 2E 40  |the calculator.@|
000006E0: 68 52 65 6D 65 6D 62 65  72 20 74 6F 20 63 6F 6D  |hRemember to com|
000006F0: 62 69 6E 65 20 6C 69 6B  65 20 74 65 72 6D 73 20  |bine like terms |
00000700: 61 6E 64 20 64 69 73 74  72 69 62 75 74 65 20 69  |and distribute i|
00000710: 66 20 6E 65 63 65 73 73  61 72 79 2E 20 49 73 6F  |f necessary. Iso|
00000720: 6C 61 74 65 20 22 26 76  22 20 6F 6E 20 6F 6E 65  |late "&v" on one|
00000730: 20 73 69 64 65 20 6F 66  20 74 68 65 20 65 71 75  | side of the equ|
00000740: 61 74 69 6F 6E 2E 40 68  54 68 65 20 43 61 6C 63  |ation.@hThe Calc|
00000750: 75 6C 61 74 6F 72 20 73  6F 6C 76 65 73 20 65 71  |ulator solves eq|
00000760: 75 61 74 69 6F 6E 73 20  66 6F 72 20 79 6F 75 20  |uations for you |
00000770: 61 6E 64 20 64 69 73 70  6C 61 79 73 20 74 68 65  |and displays the|
00000780: 20 73 74 65 70 73 20 69  6E 20 74 68 65 20 73 6F  | steps in the so|
00000790: 6C 75 74 69 6F 6E 2E 40  69 28 7B 7D 2C 69 2C 7B  |lution.@i({},i,{|
000007A0: 7D 29 40 70 4E 6F 77 20  65 6E 74 65 72 20 79 6F  |})@pNow enter yo|
000007B0: 75 72 20 61 6E 73 77 65  72 73 2E 20 52 65 6D 65  |ur answers. Reme|
000007C0: 6D 62 65 72 20 77 68 61  74 20 69 73 20 62 65 69  |mber what is bei|
000007D0: 6E 67 20 61 73 6B 65 64  2E 20 26 71 7B 7D 26 71  |ng asked. &q{}&q|
000007E0: 40 68 54 68 65 20 6E 75  6D 62 65 72 20 6F 66 20  |@hThe number of |
000007F0: 7B 7D 20 69 73 20 74 68  65 20 76 61 6C 75 65 20  |{} is the value |
00000800: 6F 66 20 7B 7D 2E 40 68  54 68 65 20 6E 75 6D 62  |of {}.@hThe numb|
00000810: 65 72 20 6F 66 20 7B 7D  20 69 73 20 74 68 65 20  |er of {} is the |
00000820: 76 61 6C 75 65 20 6F 66  20 7B 7D 40 69 28 7B 7D  |value of {}@i({}|
00000830: 2C 69 2C 7B 7D 29 40 73  40 68 54 68 65 20 6E 75  |,i,{})@s@hThe nu|
00000840: 6D 62 65 72 20 6F 66 20  7B 7D 20 69 73 20 74 68  |mber of {} is th|
00000850: 65 20 76 61 6C 75 65 20  6F 66 20 22 7B 7D 22 2E  |e value of "{}".|
00000860: 40 68 54 68 65 20 6E 75  6D 62 65 72 20 6F 66 20  |@hThe number of |
00000870: 7B 7D 20 69 73 20 74 68  65 20 76 61 6C 75 65 20  |{} is the value |
00000880: 6F 66 20 22 7B 7D 22 2E  20 5C 6E 7B 7D 40 69 28  |of "{}". \n{}@i(|
00000890: 7B 7D 2C 69 2C 7B 7D 29  40 68 54 68 65 20 6E 75  |{},i,{})@hThe nu|
000008A0: 6D 62 65 72 20 6F 66 20  7B 7D 20 69 73 20 74 68  |mber of {} is th|
000008B0: 65 20 76 61 6C 75 65 20  22 7B 7D 22 2E 40 68 54  |e value "{}".@hT|
000008C0: 68 65 20 6E 75 6D 62 65  72 20 6F 66 20 7B 7D 20  |he number of {} |
000008D0: 69 73 20 74 68 65 20 76  61 6C 75 65 20 7B 7D 40  |is the value {}@|
000008E0: 69 28 7B 7D 2C 69 2C 7B  7D 29 40 72 43 48 45 43  |i({},i,{})@rCHEC|
000008F0: 4B 40 70 52 65 72 65 61  64 20 74 68 65 20 70 72  |K@pReread the pr|
00000900: 6F 62 6C 65 6D 2E 20 43  68 65 63 6B 20 79 6F 75  |oblem. Check you|
00000910: 72 20 61 6E 73 77 65 72  73 2E 20 45 76 61 6C 75  |r answers. Evalu|
00000920: 61 74 65 20 74 68 65 20  72 65 6D 61 69 6E 69 6E  |ate the remainin|
00000930: 67 20 65 78 70 72 65 73  73 69 6F 6E 73 20 69 6E  |g expressions in|
00000940: 20 74 68 65 20 63 68 61  72 74 2E 40 68 53 75 62  | the chart.@hSub|
00000950: 73 74 69 74 75 74 65 20  66 6F 72 20 22 26 76 22  |stitute for "&v"|
00000960: 20 69 6E 20 74 68 65 20  65 78 70 72 65 73 73 69  | in the expressi|
00000970: 6F 6E 2E 20 54 68 65 6E  20 63 61 6C 63 75 6C 61  |on. Then calcula|
00000980: 74 65 20 74 68 65 20 72  65 73 75 6C 74 2E 40 68  |te the result.@h|
00000990: 7B 7D 2E 40 69 28 7B 7D  2C 69 2C 7B 7D 29 40 68  |{}.@i({},i,{})@h|
000009A0: 53 75 62 73 74 69 74 75  74 65 20 66 6F 72 20 22  |Substitute for "|
000009B0: 26 76 22 20 69 6E 20 74  68 65 20 65 78 70 72 65  |&v" in the expre|
000009C0: 73 73 69 6F 6E 2E 20 54  68 65 6E 20 63 61 6C 63  |ssion. Then calc|
000009D0: 75 6C 61 74 65 20 74 68  65 20 72 65 73 75 6C 74  |ulate the result|
000009E0: 2E 40 68 7B 7D 2E 40 69  28 7B 7D 2C 69 2C 7B 7D  |.@h{}.@i({},i,{}|
000009F0: 29 40 68 53 75 62 73 74  69 74 75 74 65 20 66 6F  |)@hSubstitute fo|
00000A00: 72 20 22 26 76 22 20 69  6E 20 74 68 65 20 65 78  |r "&v" in the ex|
00000A10: 70 72 65 73 73 69 6F 6E  2E 20 54 68 65 6E 20 63  |pression. Then c|
00000A20: 61 6C 63 75 6C 61 74 65  20 74 68 65 20 72 65 73  |alculate the res|
00000A30: 75 6C 74 2E 40 68 7B 7D  2E 40 69 28 7B 7D 2C 69  |ult.@h{}.@i({},i|
00000A40: 2C 7B 7D 29 26 64 28 30  2C 43 68 65 63 6B 20 79  |,{})&d(0,Check y|
00000A50: 6F 75 72 20 77 6F 72 6B  2E 20 41 64 64 20 74 68  |our work. Add th|
00000A60: 65 20 76 61 6C 75 65 73  20 6F 66 20 61 6C 6C 20  |e values of all |
00000A70: 74 68 65 20 63 6F 69 6E  73 2E 20 44 6F 65 73 20  |the coins. Does |
00000A80: 74 68 65 20 73 75 6D 20  65 71 75 61 6C 20 74 68  |the sum equal th|
00000A90: 65 20 54 6F 74 61 6C 20  76 61 6C 75 65 3F 20 4E  |e Total value? N|
00000AA0: 6F 77 20 66 6F 72 20 61  20 6E 65 77 20 70 72 6F  |ow for a new pro|
00000AB0: 62 6C 65 6D 2E 29 40 66  4A 69 6D 20 68 61 73 20  |blem.)@fJim has |
00000AC0: 24 33 2E 32 30 20 69 6E  20 6E 69 63 6B 65 6C 73  |$3.20 in nickels|
00000AD0: 2C 20 64 69 6D 65 73 20  61 6E 64 20 71 75 61 72  |, dimes and quar|
00000AE0: 74 65 72 73 2E 20 49 66  20 74 68 65 72 65 20 69  |ters. If there i|
00000AF0: 73 20 61 6E 20 65 71 75  61 6C 20 6E 75 6D 62 65  |s an equal numbe|
00000B00: 72 20 6F 66 20 65 61 63  68 20 74 79 70 65 20 6F  |r of each type o|
00000B10: 66 20 63 6F 69 6E 2C 20  68 6F 77 20 6D 61 6E 79  |f coin, how many|
00000B20: 20 6F 66 20 65 61 63 68  20 74 79 70 65 20 6F 66  | of each type of|
00000B30: 20 63 6F 69 6E 20 64 6F  65 73 20 68 65 20 68 61  | coin does he ha|
00000B40: 76 65 3F 00 4E 69 63 6B  65 6C 73 00 44 69 6D 65  |ve?.Nickels.Dime|
00000B50: 73 00 51 75 61 72 74 65  72 73 00 6E 69 63 6B 65  |s.Quarters.nicke|
00000B60: 6C 00 6E 69 63 6B 65 6C  00 35 00 36 00 69 00 35  |l.nickel.5.6.i.5|
00000B70: 00 36 00 35 00 64 69 6D  65 00 64 69 6D 65 00 31  |.6.5.dime.dime.1|
00000B80: 30 00 37 00 69 00 31 30  00 37 00 31 30 00 71 75  |0.7.i.10.7.10.qu|
00000B90: 61 72 74 65 72 00 71 75  61 72 74 65 72 00 32 35  |arter.quarter.25|
00000BA0: 00 38 00 69 00 32 35 00  38 00 32 35 00 6E 69 63  |.8.i.25.8.25.nic|
00000BB0: 6B 65 6C 73 00 6E 00 6E  69 63 6B 65 6C 73 00 31  |kels.n.nickels.1|
00000BC0: 31 00 64 69 6D 65 73 00  6E 69 63 6B 65 6C 73 00  |1.dimes.nickels.|
00000BD0: 74 68 65 20 6E 75 6D 62  65 72 20 6F 66 20 64 69  |the number of di|
00000BE0: 6D 65 73 20 69 73 20 65  71 75 61 6C 20 74 6F 20  |mes is equal to |
00000BF0: 74 68 65 20 6E 75 6D 62  65 72 20 6F 66 20 6E 69  |the number of ni|
00000C00: 63 6B 65 6C 73 2C 20 74  68 65 20 6E 75 6D 62 65  |ckels, the numbe|
00000C10: 72 20 6F 66 20 64 69 6D  65 73 20 3D 20 60 26 76  |r of dimes = `&v|
00000C20: 27 00 31 32 00 26 76 00  71 75 61 72 74 65 72 73  |'.12.&v.quarters|
00000C30: 00 6E 69 63 6B 65 6C 73  00 74 68 65 20 6E 75 6D  |.nickels.the num|
00000C40: 62 65 72 20 6F 66 20 71  75 61 72 74 65 72 73 20  |ber of quarters |
00000C50: 69 73 20 61 6C 73 6F 20  65 71 75 61 6C 20 74 6F  |is also equal to|
00000C60: 20 74 68 65 20 6E 75 6D  62 65 72 20 6F 66 20 6E  | the number of n|
00000C70: 69 63 6B 65 6C 73 2C 20  74 68 65 20 6E 75 6D 62  |ickels, the numb|
00000C80: 65 72 20 6F 66 20 71 75  61 72 74 65 72 73 20 3D  |er of quarters =|
00000C90: 20 60 26 76 27 00 31 33  00 26 76 00 26 68 4A 69  | `&v'.13.&v.&hJi|
00000CA0: 6D 20 68 61 73 20 24 33  2E 32 30 26 68 2E 20 24  |m has $3.20&h. $|
00000CB0: 33 2E 32 30 20 3D 20 60  33 32 30 27 20 63 65 6E  |3.20 = `320' cen|
00000CC0: 74 73 00 69 00 33 32 30  00 6E 69 63 6B 65 6C 73  |ts.i.320.nickels|
00000CD0: 00 6E 69 63 6B 65 6C 73  00 6E 69 63 6B 65 6C 73  |.nickels.nickels|
00000CE0: 00 26 76 00 6E 69 63 6B  65 6C 73 00 35 2A 26 76  |.&v.nickels.5*&v|
00000CF0: 00 64 69 6D 65 73 00 64  69 6D 65 73 00 64 69 6D  |.dimes.dimes.dim|
00000D00: 65 73 00 26 76 00 64 69  6D 65 73 00 31 30 26 76  |es.&v.dimes.10&v|
00000D10: 00 71 75 61 72 74 65 72  73 00 71 75 61 72 74 65  |.quarters.quarte|
00000D20: 72 73 00 71 75 61 72 74  65 72 73 00 26 76 00 71  |rs.quarters.&v.q|
00000D30: 75 61 72 74 65 72 73 00  32 35 26 76 00 4E 69 63  |uarters.25&v.Nic|
00000D40: 6B 65 6C 73 20 61 6E 64  20 44 69 6D 65 73 00 6E  |kels and Dimes.n|
00000D50: 69 63 6B 65 6C 73 00 64  69 6D 65 73 00 71 75 61  |ickels.dimes.qua|
00000D60: 72 74 65 72 73 00 35 26  76 2B 31 30 26 76 2B 32  |rters.5&v+10&v+2|
00000D70: 35 26 76 20 3D 20 33 32  30 00 32 30 00 35 26 76  |5&v = 320.20.5&v|
00000D80: 2B 31 30 26 76 2B 32 35  26 76 3D 33 32 30 00 32  |+10&v+25&v=320.2|
00000D90: 30 00 26 76 3D 38 00 48  6F 77 20 6D 61 6E 79 20  |0.&v=8.How many |
00000DA0: 6F 66 20 65 61 63 68 20  74 79 70 65 20 6F 66 20  |of each type of |
00000DB0: 63 6F 69 6E 20 64 6F 65  73 20 68 65 20 68 61 76  |coin does he hav|
00000DC0: 65 3F 00 6E 69 63 6B 65  6C 73 00 26 76 00 6E 69  |e?.nickels.&v.ni|
00000DD0: 63 6B 65 6C 73 00 22 26  76 22 2E 20 26 76 20 3D  |ckels."&v". &v =|
00000DE0: 20 60 38 27 00 31 31 00  38 00 64 69 6D 65 73 00  | `8'.11.8.dimes.|
00000DF0: 26 76 00 64 69 6D 65 73  00 26 76 00 26 76 20 3D  |&v.dimes.&v.&v =|
00000E00: 20 60 38 27 00 31 32 00  38 00 71 75 61 72 74 65  | `8'.12.8.quarte|
00000E10: 72 73 00 26 76 00 71 75  61 72 74 65 72 73 00 22  |rs.&v.quarters."|
00000E20: 26 76 22 2E 20 26 76 20  3D 20 60 38 27 00 31 33  |&v". &v = `8'.13|
00000E30: 00 38 00 35 2A 26 76 20  3D 20 35 2A 38 20 3D 20  |.8.5*&v = 5*8 = |
00000E40: 60 34 30 27 00 31 36 00  34 30 00 31 30 20 2A 26  |`40'.16.40.10 *&|
00000E50: 76 20 3D 20 31 30 2A 38  20 3D 20 60 38 30 27 00  |v = 10*8 = `80'.|
00000E60: 31 37 00 38 30 00 32 35  2A 26 76 20 3D 20 32 35  |17.80.25*&v = 25|
00000E70: 2A 38 20 3D 20 60 32 30  30 27 00 31 38 00 32 30  |*8 = `200'.18.20|
00000E80: 30 00 40 66 52 69 63 6B  20 68 61 73 20 61 6E 20  |0.@fRick has an |
00000E90: 65 71 75 61 6C 20 6E 75  6D 62 65 72 20 6F 66 20  |equal number of |
00000EA0: 64 69 6D 65 73 20 61 6E  64 20 6E 69 63 6B 65 6C  |dimes and nickel|
00000EB0: 73 20 61 6E 64 20 68 65  20 68 61 73 20 6F 6E 65  |s and he has one|
00000EC0: 20 66 65 77 65 72 20 71  75 61 72 74 65 72 73 20  | fewer quarters |
00000ED0: 74 68 61 6E 20 64 69 6D  65 73 2E 20 49 66 20 74  |than dimes. If t|
00000EE0: 68 65 20 74 6F 74 61 6C  20 76 61 6C 75 65 20 6F  |he total value o|
00000EF0: 66 20 74 68 65 73 65 20  63 6F 69 6E 73 20 69 73  |f these coins is|
00000F00: 20 24 31 2E 37 35 2C 20  68 6F 77 20 6D 61 6E 79  | $1.75, how many|
00000F10: 20 6F 66 20 65 61 63 68  20 74 79 70 65 20 6F 66  | of each type of|
00000F20: 20 63 6F 69 6E 20 64 6F  65 73 20 68 65 20 68 61  | coin does he ha|
00000F30: 76 65 3F 00 4E 69 63 6B  65 6C 73 00 44 69 6D 65  |ve?.Nickels.Dime|
00000F40: 73 00 51 75 61 72 74 65  72 73 00 6E 69 63 6B 65  |s.Quarters.nicke|
00000F50: 6C 00 6E 69 63 6B 65 6C  00 35 00 36 00 69 00 35  |l.nickel.5.6.i.5|
00000F60: 00 36 00 35 00 64 69 6D  65 00 64 69 6D 65 00 31  |.6.5.dime.dime.1|
00000F70: 30 00 37 00 69 00 31 30  00 37 00 31 30 00 71 75  |0.7.i.10.7.10.qu|
00000F80: 61 72 74 65 72 00 71 75  61 72 74 65 72 00 32 35  |arter.quarter.25|
00000F90: 00 38 00 69 00 32 35 00  38 00 32 35 00 6E 69 63  |.8.i.25.8.25.nic|
00000FA0: 6B 65 6C 73 00 6E 00 6E  69 63 6B 65 6C 73 00 31  |kels.n.nickels.1|
00000FB0: 31 00 64 69 6D 65 73 00  6E 69 63 6B 65 6C 73 00  |1.dimes.nickels.|
00000FC0: 74 68 65 20 6E 75 6D 62  65 72 20 6F 66 20 64 69  |the number of di|
00000FD0: 6D 65 73 20 69 73 20 65  71 75 61 6C 20 74 6F 20  |mes is equal to |
00000FE0: 74 68 65 20 6E 75 6D 62  65 72 20 6F 66 20 6E 69  |the number of ni|
00000FF0: 63 6B 65 6C 73 2C 20 74  68 65 20 6E 75 6D 62 65  |ckels, the numbe|
00001000: 72 20 6F 66 20 64 69 6D  65 73 20 3D 20 60 26 76  |r of dimes = `&v|
00001010: 27 00 31 32 00 26 76 00  71 75 61 72 74 65 72 73  |'.12.&v.quarters|
00001020: 00 64 69 6D 65 73 00 26  68 68 65 20 68 61 73 20  |.dimes.&hhe has |
00001030: 6F 6E 65 20 66 65 77 65  72 20 71 75 61 72 74 65  |one fewer quarte|
00001040: 72 73 20 74 68 61 6E 20  64 69 6D 65 73 26 68 2C  |rs than dimes&h,|
00001050: 20 74 68 65 20 6E 75 6D  62 65 72 20 6F 66 20 71  | the number of q|
00001060: 75 61 72 74 65 72 73 20  3D 20 60 26 76 2D 31 27  |uarters = `&v-1'|
00001070: 00 31 33 00 26 76 2D 31  00 26 68 54 68 65 20 74  |.13.&v-1.&hThe t|
00001080: 6F 74 61 6C 20 76 61 6C  75 65 20 6F 66 20 74 68  |otal value of th|
00001090: 65 73 65 20 63 6F 69 6E  73 20 69 73 20 24 31 2E  |ese coins is $1.|
000010A0: 37 35 26 68 2E 20 24 31  2E 37 35 3D 20 60 31 37  |75&h. $1.75= `17|
000010B0: 35 27 20 63 65 6E 74 73  00 69 00 31 37 35 00 6E  |5' cents.i.175.n|
000010C0: 69 63 6B 65 6C 73 00 6E  69 63 6B 65 6C 73 00 6E  |ickels.nickels.n|
000010D0: 69 63 6B 65 6C 73 00 26  76 00 6E 69 63 6B 65 6C  |ickels.&v.nickel|
000010E0: 73 00 35 26 76 00 64 69  6D 65 73 00 64 69 6D 65  |s.5&v.dimes.dime|
000010F0: 73 00 64 69 6D 65 73 00  26 76 00 64 69 6D 65 73  |s.dimes.&v.dimes|
00001100: 00 31 30 26 76 00 71 75  61 72 74 65 72 73 00 71  |.10&v.quarters.q|
00001110: 75 61 72 74 65 72 73 00  71 75 61 72 74 65 72 73  |uarters.quarters|
00001120: 00 26 76 2D 31 00 71 75  61 72 74 65 72 73 00 32  |.&v-1.quarters.2|
00001130: 35 28 26 76 2D 31 29 00  6E 69 63 6B 65 6C 73 2C  |5(&v-1).nickels,|
00001140: 20 64 69 6D 65 73 20 61  6E 64 20 71 75 61 72 74  | dimes and quart|
00001150: 65 72 73 00 6E 69 63 6B  65 6C 73 00 64 69 6D 65  |ers.nickels.dime|
00001160: 73 00 71 75 61 72 74 65  72 73 00 35 26 76 2B 31  |s.quarters.5&v+1|
00001170: 30 26 76 2B 32 35 28 26  76 2D 31 29 20 3D 20 31  |0&v+25(&v-1) = 1|
00001180: 37 35 00 32 30 00 35 26  76 2B 31 30 26 76 2B 32  |75.20.5&v+10&v+2|
00001190: 35 28 26 76 2D 31 29 20  3D 20 31 37 35 00 32 30  |5(&v-1) = 175.20|
000011A0: 00 26 76 3D 35 00 48 6F  77 20 6D 61 6E 79 20 6F  |.&v=5.How many o|
000011B0: 66 20 65 61 63 68 20 74  79 70 65 20 6F 66 20 63  |f each type of c|
000011C0: 6F 69 6E 20 64 6F 65 73  20 68 65 20 68 61 76 65  |oin does he have|
000011D0: 3F 00 6E 69 63 6B 65 6C  73 00 26 76 00 6E 69 63  |?.nickels.&v.nic|
000011E0: 6B 65 6C 73 00 26 76 2E  20 26 76 20 3D 20 60 35  |kels.&v. &v = `5|
000011F0: 27 00 31 31 00 35 00 64  69 6D 65 73 00 26 76 00  |'.11.5.dimes.&v.|
00001200: 64 69 6D 65 73 00 26 76  00 26 76 20 3D 20 60 35  |dimes.&v.&v = `5|
00001210: 27 00 31 32 00 35 00 71  75 61 72 74 65 72 73 00  |'.12.5.quarters.|
00001220: 26 76 2D 31 00 71 75 61  72 74 65 72 73 00 26 76  |&v-1.quarters.&v|
00001230: 2D 31 2E 20 26 76 2D 31  20 3D 20 60 34 27 00 31  |-1. &v-1 = `4'.1|
00001240: 33 00 34 00 35 26 76 20  3D 20 35 20 2A 20 35 20  |3.4.5&v = 5 * 5 |
00001250: 3D 20 60 32 35 27 20 63  65 6E 74 73 00 31 36 00  |= `25' cents.16.|
00001260: 32 35 00 31 30 20 2A 20  26 76 20 3D 20 31 30 2A  |25.10 * &v = 10*|
00001270: 35 20 3D 20 60 35 30 27  20 63 65 6E 74 73 00 31  |5 = `50' cents.1|
00001280: 37 00 35 30 00 32 35 2A  28 26 76 2D 31 29 20 3D  |7.50.25*(&v-1) =|
00001290: 20 32 35 2A 28 35 2D 31  29 20 3D 20 32 35 2A 34  | 25*(5-1) = 25*4|
000012A0: 20 3D 20 60 31 30 30 27  20 63 65 6E 74 73 00 31  | = `100' cents.1|
000012B0: 38 00 31 30 30 00 40 66  53 6F 6D 65 20 6E 69 63  |8.100.@fSome nic|
000012C0: 6B 65 6C 73 2C 20 64 69  6D 65 73 20 61 6E 64 20  |kels, dimes and |
000012D0: 71 75 61 72 74 65 72 73  20 61 72 65 20 77 6F 72  |quarters are wor|
000012E0: 74 68 20 24 33 2E 36 30  2E 20 54 68 65 72 65 20  |th $3.60. There |
000012F0: 69 73 20 6F 6E 65 20 6D  6F 72 65 20 71 75 61 72  |is one more quar|
00001300: 74 65 72 20 74 68 61 6E  20 74 77 69 63 65 20 74  |ter than twice t|
00001310: 68 65 20 6E 75 6D 62 65  72 20 6F 66 20 64 69 6D  |he number of dim|
00001320: 65 73 20 61 6E 64 20 74  77 6F 20 6D 6F 72 65 20  |es and two more |
00001330: 6E 69 63 6B 65 6C 73 20  74 68 61 6E 20 64 69 6D  |nickels than dim|
00001340: 65 73 2E 20 48 6F 77 20  6D 61 6E 79 20 6F 66 20  |es. How many of |
00001350: 65 61 63 68 20 74 79 70  65 20 6F 66 20 63 6F 69  |each type of coi|
00001360: 6E 20 69 73 20 74 68 65  72 65 3F 00 4E 69 63 6B  |n is there?.Nick|
00001370: 65 6C 73 00 44 69 6D 65  73 00 51 75 61 72 74 65  |els.Dimes.Quarte|
00001380: 72 73 00 6E 69 63 6B 65  6C 00 6E 69 63 6B 65 6C  |rs.nickel.nickel|
00001390: 00 35 00 36 00 69 00 35  00 36 00 35 00 64 69 6D  |.5.6.i.5.6.5.dim|
000013A0: 65 00 64 69 6D 65 00 31  30 00 37 00 69 00 31 30  |e.dime.10.7.i.10|
000013B0: 00 37 00 31 30 00 71 75  61 72 74 65 72 00 71 75  |.7.10.quarter.qu|
000013C0: 61 72 74 65 72 00 32 35  00 38 00 69 00 32 35 00  |arter.25.8.i.25.|
000013D0: 38 00 32 35 00 64 69 6D  65 73 00 64 00 64 69 6D  |8.25.dimes.d.dim|
000013E0: 65 73 00 31 32 00 71 75  61 72 74 65 72 73 00 64  |es.12.quarters.d|
000013F0: 69 6D 65 73 00 26 68 74  68 65 72 65 20 69 73 20  |imes.&hthere is |
00001400: 6F 6E 65 20 6D 6F 72 65  20 71 75 61 72 74 65 72  |one more quarter|
00001410: 20 74 68 61 6E 20 74 77  69 63 65 20 74 68 65 20  | than twice the |
00001420: 6E 75 6D 62 65 72 20 6F  66 20 64 69 6D 65 73 26  |number of dimes&|
00001430: 68 2C 20 74 68 65 20 6E  75 6D 62 65 72 20 6F 66  |h, the number of|
00001440: 20 71 75 61 72 74 65 72  73 20 3D 20 60 32 26 76  | quarters = `2&v|
00001450: 2B 31 27 00 31 33 00 32  26 76 2B 31 00 6E 69 63  |+1'.13.2&v+1.nic|
00001460: 6B 65 6C 73 00 64 69 6D  65 73 00 74 68 65 72 65  |kels.dimes.there|
00001470: 20 61 72 65 20 26 68 74  77 6F 20 6D 6F 72 65 20  | are &htwo more |
00001480: 6E 69 63 6B 65 6C 73 20  74 68 61 6E 20 64 69 6D  |nickels than dim|
00001490: 65 73 26 68 2C 20 74 68  65 20 6E 75 6D 62 65 72  |es&h, the number|
000014A0: 20 6F 66 20 6E 69 63 6B  65 6C 73 20 3D 20 60 26  | of nickels = `&|
000014B0: 76 2B 32 27 00 31 31 00  26 76 2B 32 00 26 68 53  |v+2'.11.&v+2.&hS|
000014C0: 6F 6D 65 20 6E 69 63 6B  65 6C 73 2C 20 64 69 6D  |ome nickels, dim|
000014D0: 65 73 20 61 6E 64 20 71  75 61 72 74 65 72 73 20  |es and quarters |
000014E0: 61 72 65 20 77 6F 72 74  68 20 24 33 2E 36 30 26  |are worth $3.60&|
000014F0: 68 2C 20 73 6F 20 74 68  65 20 76 61 6C 75 65 20  |h, so the value |
00001500: 6F 66 20 61 6C 6C 20 74  68 65 20 63 6F 69 6E 73  |of all the coins|
00001510: 20 69 73 20 69 73 20 60  33 36 30 27 20 63 65 6E  | is is `360' cen|
00001520: 74 73 00 69 00 33 36 30  00 6E 69 63 6B 65 6C 73  |ts.i.360.nickels|
00001530: 00 6E 69 63 6B 65 6C 73  00 6E 69 63 6B 65 6C 73  |.nickels.nickels|
00001540: 00 28 26 76 2B 32 29 00  6E 69 63 6B 65 6C 73 00  |.(&v+2).nickels.|
00001550: 35 28 26 76 2B 32 29 00  64 69 6D 65 73 00 64 69  |5(&v+2).dimes.di|
00001560: 6D 65 73 00 64 69 6D 65  73 00 26 76 00 64 69 6D  |mes.dimes.&v.dim|
00001570: 65 73 00 31 30 26 76 00  71 75 61 72 74 65 72 73  |es.10&v.quarters|
00001580: 00 71 75 61 72 74 65 72  73 00 71 75 61 72 74 65  |.quarters.quarte|
00001590: 72 73 00 28 32 26 76 2B  31 29 00 71 75 61 72 74  |rs.(2&v+1).quart|
000015A0: 65 72 73 00 32 35 28 32  26 76 2B 31 29 00 6E 69  |ers.25(2&v+1).ni|
000015B0: 63 6B 65 6C 73 2C 20 64  69 6D 65 73 20 61 6E 64  |ckels, dimes and|
000015C0: 20 71 75 61 72 74 65 72  73 00 6E 69 63 6B 65 6C  | quarters.nickel|
000015D0: 73 00 64 69 6D 65 73 00  71 75 61 72 74 65 72 73  |s.dimes.quarters|
000015E0: 00 35 28 26 76 2B 32 29  2B 31 30 26 76 2B 32 35  |.5(&v+2)+10&v+25|
000015F0: 28 32 26 76 2B 31 29 20  3D 20 33 36 30 00 32 30  |(2&v+1) = 360.20|
00001600: 00 35 28 26 76 2B 32 29  2B 31 30 26 76 2B 32 35  |.5(&v+2)+10&v+25|
00001610: 28 32 26 76 2B 31 29 20  3D 20 33 36 30 00 32 30  |(2&v+1) = 360.20|
00001620: 00 26 76 3D 35 00 48 6F  77 20 6D 61 6E 79 20 6F  |.&v=5.How many o|
00001630: 66 20 65 61 63 68 20 74  79 70 65 20 6F 66 20 63  |f each type of c|
00001640: 6F 69 6E 20 69 73 20 74  68 65 72 65 3F 00 64 69  |oin is there?.di|
00001650: 6D 65 73 00 26 76 00 64  69 6D 65 73 00 26 76 2E  |mes.&v.dimes.&v.|
00001660: 20 26 76 20 3D 20 60 35  27 00 31 32 00 35 00 6E  | &v = `5'.12.5.n|
00001670: 69 63 6B 65 6C 73 00 26  76 2B 32 00 6E 69 63 6B  |ickels.&v+2.nick|
00001680: 65 6C 73 00 26 76 2B 32  00 26 76 2B 32 20 3D 20  |els.&v+2.&v+2 = |
00001690: 60 37 27 00 31 31 00 37  00 71 75 61 72 74 65 72  |`7'.11.7.quarter|
000016A0: 73 00 32 26 76 2B 31 00  71 75 61 72 74 65 72 73  |s.2&v+1.quarters|
000016B0: 00 32 26 76 2B 31 2E 20  32 26 76 2B 31 20 3D 20  |.2&v+1. 2&v+1 = |
000016C0: 60 31 31 27 00 31 33 00  31 31 00 35 28 26 76 2B  |`11'.13.11.5(&v+|
000016D0: 32 29 20 3D 20 35 20 2A  20 37 20 3D 20 60 33 35  |2) = 5 * 7 = `35|
000016E0: 27 20 63 65 6E 74 73 00  31 36 00 33 35 00 31 30  |' cents.16.35.10|
000016F0: 2A 26 76 20 3D 20 31 30  2A 35 20 3D 20 60 35 30  |*&v = 10*5 = `50|
00001700: 27 20 63 65 6E 74 73 00  31 37 00 35 30 00 32 35  |' cents.17.50.25|
00001710: 2A 28 32 26 76 2B 31 29  20 3D 20 32 35 2A 31 31  |*(2&v+1) = 25*11|
00001720: 20 3D 20 60 32 37 35 27  20 63 65 6E 74 73 00 31  | = `275' cents.1|
00001730: 38 00 32 37 35 00 7C 3F                           |8.275.|?        |
 A @Q{}@DG01&D(1,{})&D(2,{})&D(3,{})&D(4
,TOT.)&D(5,VAL/UNIT)&D(10,# COINS)&D(15,
VALUE)@RREAD&D(0,READ THE WHOLE PROBLEM.
 THINK: WHAT ARE THE FACTS? WHAT IS BEIN
G ASKED?)@RDATA ENTRY@PSTART FILLING IN 
INFORMATION ON THE CHART. THE CURSOR WIL
L SHOW YOU WHICH BOX TO WORK ON.@HWHAT I
S THE VALUE PER UNIT OF A {}?@HTHE VALUE
 OF A {} IN CENTS, IS '{}'.@I({},{},{})&
D({},{} CENTS)@HWHAT IS THE VALUE PER UN
IT OF A {}?@HTHE VALUE OF A {} IN CENTS,
 IS '{}'.@I({},{},{})&D({},{} CENTS)@HWH
AT IS THE VALUE PER UNIT OF A {}?@HTHE V
ALUE OF A {} IN CENTS, IS '{}'.@I({},{},
{})&D({},{} CENTS)@HCHOOSE A VARIABLE TO
 REPRESENT THE NUMBER OF {}.@HCHOOSE A S
INGLE LETTER, SUCH AS '{}', TO REPRESENT
 THE NUMBER OF {}.@I({},I,&V)@HREPRESENT
 THE NUMBER OF {} IN TERMS OF "&V" (THE 
NUMBER OF {}).@HSINCE {}.@I({},I,{})@HRE
PRESENT THE NUMBER OF {} IN TERMS OF "&V
" (THE NUMBER OF {}).@HSINCE {}.@I({},I,
{})@HREPRESENT THE TOTAL VALUE IN CENTS,
 OF ALL THE COINS.@H{}.@I(19,{},{})@RPAR
TS@PFILL IN THE INFORMATION YOU NEED TO 
WRITE YOUR EQUATION.@HWRITE AN EXPRESSIO
N TO REPRESENT THE VALUE OF THE {}.@HVAL
/UNIT \F09* # OF {} \F24= {} VAL. \N `5 
     \F09*    {}'      \F24= {} VAL.@I(1
6,I,{})@HWRITE AN EXPRESSION TO REPRESEN
T THE VALUE OF THE {}.@HVAL/UNIT \F09* #
 OF {} \F22= {} VALUE. \N `10     \F09* 
    {}'    \F22= {} VALUE.@I(17,I,{})@HW
RITE AN EXPRESSION TO REPRESENT THE VALU
E OF THE {}.@HVAL/UNIT \F10* # OF {}\F25
={} VAL. \N  `25    \F10*    {}'   \F25=
{} VAL.@I(18,I,{})@RWHOLE@PWRITE AN EQUA
TION TO SHOW THE RELATION OF THE PARTS (
{}) TO THE WHOLE (TOTAL).@HUSE THE BOTTO
M LINE OF THE CHART TO FORM THE EQUATION
.@H({} VALUE) + ({} VALUE) + ({} VALUE) 
= TOTAL VALUE, SO `{}'@I({},I,{})@S@RCOM
PUTE@PSOLVE THE EQUATION FOR "&V". USE P
ENCIL AND PAPER, OR USE THE CALCULATOR.@
HREMEMBER TO COMBINE LIKE TERMS AND DIST
RIBUTE IF NECESSARY. ISOLATE "&V" ON ONE
 SIDE OF THE EQUATION.@HTHE CALCULATOR S
OLVES EQUATIONS FOR YOU AND DISPLAYS THE
 STEPS IN THE SOLUTION.@I({},I,{})@PNOW 
ENTER YOUR ANSWERS. REMEMBER WHAT IS BEI
NG ASKED. &Q{}&Q@HTHE NUMBER OF {} IS TH
E VALUE OF {}.@HTHE NUMBER OF {} IS THE 
VALUE OF {}@I({},I,{})@S@HTHE NUMBER OF 
{} IS THE VALUE OF "{}".@HTHE NUMBER OF 
{} IS THE VALUE OF "{}". \N{}@I({},I,{})
@HTHE NUMBER OF {} IS THE VALUE "{}".@HT
HE NUMBER OF {} IS THE VALUE {}@I({},I,{
})@RCHECK@PREREAD THE PROBLEM. CHECK YOU
R ANSWERS. EVALUATE THE REMAINING EXPRES
SIONS IN THE CHART.@HSUBSTITUTE FOR "&V"
 IN THE EXPRESSION. THEN CALCULATE THE R
ESULT.@H{}.@I({},I,{})@HSUBSTITUTE FOR "
&V" IN THE EXPRESSION. THEN CALCULATE TH
E RESULT.@H{}.@I({},I,{})@HSUBSTITUTE FO
R "&V" IN THE EXPRESSION. THEN CALCULATE
 THE RESULT.@H{}.@I({},I,{})&D(0,CHECK Y
OUR WORK. ADD THE VALUES OF ALL THE COIN
S. DOES THE SUM EQUAL THE TOTAL VALUE? N
OW FOR A NEW PROBLEM.)@FJIM HAS $3.20 IN
 NICKELS, DIMES AND QUARTERS. IF THERE I
S AN EQUAL NUMBER OF EACH TYPE OF COIN, 
HOW MANY OF EACH TYPE OF COIN DOES HE HA
VE?.NICKELS.DIMES.QUARTERS.NICKEL.NICKEL
.5.6.I.5.6.5.DIME.DIME.10.7.I.10.7.10.QU
ARTER.QUARTER.25.8.I.25.8.25.NICKELS.N.N
ICKELS.11.DIMES.NICKELS.THE NUMBER OF DI
MES IS EQUAL TO THE NUMBER OF NICKELS, T
HE NUMBER OF DIMES = `&V'.12.&V.QUARTERS
.NICKELS.THE NUMBER OF QUARTERS IS ALSO 
EQUAL TO THE NUMBER OF NICKELS, THE NUMB
ER OF QUARTERS = `&V'.13.&V.&HJIM HAS $3
.20&H. $3.20 = `320' CENTS.I.320.NICKELS
.NICKELS.NICKELS.&V.NICKELS.5*&V.DIMES.D
IMES.DIMES.&V.DIMES.10&V.QUARTERS.QUARTE
RS.QUARTERS.&V.QUARTERS.25&V.NICKELS AND
 DIMES.NICKELS.DIMES.QUARTERS.5&V+10&V+2
5&V = 320.20.5&V+10&V+25&V=320.20.&V=8.H
OW MANY OF EACH TYPE OF COIN DOES HE HAV
E?.NICKELS.&V.NICKELS."&V". &V = `8'.11.
8.DIMES.&V.DIMES.&V.&V = `8'.12.8.QUARTE
RS.&V.QUARTERS."&V". &V = `8'.13.8.5*&V 
= 5*8 = `40'.16.40.10 *&V = 10*8 = `80'.
17.80.25*&V = 25*8 = `200'.18.200.@FRICK
 HAS AN EQUAL NUMBER OF DIMES AND NICKEL
S AND HE HAS ONE FEWER QUARTERS THAN DIM
ES. IF THE TOTAL VALUE OF THESE COINS IS
 $1.75, HOW MANY OF EACH TYPE OF COIN DO
ES HE HAVE?.NICKELS.DIMES.QUARTERS.NICKE
L.NICKEL.5.6.I.5.6.5.DIME.DIME.10.7.I.10
.7.10.QUARTER.QUARTER.25.8.I.25.8.25.NIC
KELS.N.NICKELS.11.DIMES.NICKELS.THE NUMB
ER OF DIMES IS EQUAL TO THE NUMBER OF NI
CKELS, THE NUMBER OF DIMES = `&V'.12.&V.
QUARTERS.DIMES.&HHE HAS ONE FEWER QUARTE
RS THAN DIMES&H, THE NUMBER OF QUARTERS 
= `&V-1'.13.&V-1.&HTHE TOTAL VALUE OF TH
ESE COINS IS $1.75&H. $1.75= `175' CENTS
.I.175.NICKELS.NICKELS.NICKELS.&V.NICKEL
S.5&V.DIMES.DIMES.DIMES.&V.DIMES.10&V.QU
ARTERS.QUARTERS.QUARTERS.&V-1.QUARTERS.2
5(&V-1).NICKELS, DIMES AND QUARTERS.NICK
ELS.DIMES.QUARTERS.5&V+10&V+25(&V-1) = 1
75.20.5&V+10&V+25(&V-1) = 175.20.&V=5.HO
W MANY OF EACH TYPE OF COIN DOES HE HAVE
?.NICKELS.&V.NICKELS.&V. &V = `5'.11.5.D
IMES.&V.DIMES.&V.&V = `5'.12.5.QUARTERS.
&V-1.QUARTERS.&V-1. &V-1 = `4'.13.4.5&V 
= 5 * 5 = `25' CENTS.16.25.10 * &V = 10*
5 = `50' CENTS.17.50.25*(&V-1) = 25*(5-1
) = 25*4 = `100' CENTS.18.100.@FSOME NIC
KELS, DIMES AND QUARTERS ARE WORTH $3.60
. THERE IS ONE MORE QUARTER THAN TWICE T
HE NUMBER OF DIMES AND TWO MORE NICKELS 
THAN DIMES. HOW MANY OF EACH TYPE OF COI
N IS THERE?.NICKELS.DIMES.QUARTERS.NICKE
L.NICKEL.5.6.I.5.6.5.DIME.DIME.10.7.I.10
.7.10.QUARTER.QUARTER.25.8.I.25.8.25.DIM
ES.D.DIMES.12.QUARTERS.DIMES.&HTHERE IS 
ONE MORE QUARTER THAN TWICE THE NUMBER O
F DIMES&H, THE NUMBER OF QUARTERS = `2&V
+1'.13.2&V+1.NICKELS.DIMES.THERE ARE &HT
WO MORE NICKELS THAN DIMES&H, THE NUMBER
 OF NICKELS = `&V+2'.11.&V+2.&HSOME NICK
ELS, DIMES AND QUARTERS ARE WORTH $3.60&
H, SO THE VALUE OF ALL THE COINS IS IS `
360' CENTS.I.360.NICKELS.NICKELS.NICKELS
.(&V+2).NICKELS.5(&V+2).DIMES.DIMES.DIME
S.&V.DIMES.10&V.QUARTERS.QUARTERS.QUARTE
RS.(2&V+1).QUARTERS.25(2&V+1).NICKELS, D
IMES AND QUARTERS.NICKELS.DIMES.QUARTERS
.5(&V+2)+10&V+25(2&V+1) = 360.20.5(&V+2)
+10&V+25(2&V+1) = 360.20.&V=5.HOW MANY O
F EACH TYPE OF COIN IS THERE?.DIMES.&V.D
IMES.&V. &V = `5'.12.5.NICKELS.&V+2.NICK
ELS.&V+2.&V+2 = `7'.11.7.QUARTERS.2&V+1.
QUARTERS.2&V+1. 2&V+1 = `11'.13.11.5(&V+
2) = 5 * 7 = `35' CENTS.16.35.10*&V = 10
*5 = `50' CENTS.17.50.25*(2&V+1) = 25*11
 = `275' CENTS.18.275.|?
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL