DIST5L4
FILE INFORMATION
FILENAME(S): DIST5L4
FILE TYPE(S): PRG
FILE SIZE: 6.2K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
550589482fa506b33c9eccf5aa103fe7ddacfff8a697a02980303388a3a6d9e9
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST5L4 | PRG | Radd Maxx | 29 | 5 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 40 64 67 30 34 26 64 28 31 2C | A@q{}@dg04&d(1,|
00000010: 55 2F 6D 65 61 73 29 26 63 28 32 2C 7B 7D 29 26 |U/meas)&c(2,{})&|
00000020: 63 28 33 2C 7B 7D 29 26 63 28 34 2C 54 6F 74 2E |c(3,{})&c(4,Tot.|
00000030: 29 26 64 28 35 2C 52 61 74 65 29 26 64 28 31 30 |)&d(5,Rate)&d(10|
00000040: 2C 54 69 6D 65 29 26 64 28 31 35 2C 44 69 73 74 |,Time)&d(15,Dist|
00000050: 2E 29 40 72 52 45 41 44 40 70 52 65 61 64 20 74 |.)@rREAD@pRead t|
00000060: 68 65 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D |he whole problem|
00000070: 2E 20 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 |. Think: What ar|
00000080: 65 20 74 68 65 20 66 61 63 74 73 3F 20 57 68 61 |e the facts? Wha|
00000090: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
000000A0: 3F 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 |? (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 68 | to continue.)@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 40 68 57 68 61 74 20 69 73 20 |ts? {}@hWhat is |
000000E0: 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 7B 7D 40 |being asked? {}@|
000000F0: 69 28 30 29 40 72 50 4C 41 4E 20 40 70 4C 65 74 |i(0)@rPLAN @pLet|
00000100: 20 44 7B 7D 3D 7B 7D 20 61 6E 64 20 44 7B 7D 3D | D{}={} and D{}=|
00000110: 7B 7D 2E 20 57 72 69 74 65 20 61 6E 20 65 71 75 |{}. Write an equ|
00000120: 61 74 69 6F 6E 20 74 6F 20 72 65 6C 61 74 65 20 |ation to relate |
00000130: 44 7B 7D 20 61 6E 64 20 44 7B 7D 20 74 6F 20 74 |D{} and D{} to t|
00000140: 68 65 20 54 6F 74 61 6C 20 64 69 73 74 2E 40 68 |he Total dist.@h|
00000150: 7B 7D 40 68 7B 7D 40 69 28 32 30 2C 63 30 2C 20 |{}@h{}@i(20,c0, |
00000160: 29 40 70 4F 6E 65 20 61 6E 73 77 65 72 20 69 73 |)@pOne answer is|
00000170: 20 7B 7D 2E 20 43 68 61 6E 67 65 20 79 6F 75 72 | {}. Change your|
00000180: 20 61 6E 73 77 65 72 20 69 66 20 69 74 20 69 73 | answer if it is|
00000190: 20 6E 6F 74 20 65 71 75 69 76 61 6C 65 6E 74 2E | not equivalent.|
000001A0: 20 28 50 72 65 73 73 20 72 65 74 75 72 6E 29 40 | (Press return)@|
000001B0: 68 7B 7D 40 68 7B 7D 40 69 28 32 30 2C 63 30 2C |h{}@h{}@i(20,c0,|
000001C0: 20 29 40 72 44 41 54 41 20 45 4E 54 52 59 40 70 | )@rDATA ENTRY@p|
000001D0: 46 69 6C 6C 20 69 6E 20 74 68 65 20 75 6E 69 74 |Fill in the unit|
000001E0: 73 20 62 79 20 77 68 69 63 68 20 72 61 74 65 2C |s by which rate,|
000001F0: 20 74 69 6D 65 20 61 6E 64 20 64 69 73 74 61 6E | time and distan|
00000200: 63 65 20 61 72 65 20 6D 65 61 73 75 72 65 64 2E |ce are measured.|
00000210: 40 68 52 61 74 65 20 69 73 20 63 6F 6D 6D 6F 6E |@hRate is common|
00000220: 6C 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 6D |ly measured in m|
00000230: 69 6C 65 73 20 70 65 72 20 68 6F 75 72 28 6D 69 |iles per hour(mi|
00000240: 2F 68 72 29 2C 20 66 65 65 74 20 70 65 72 20 73 |/hr), feet per s|
00000250: 65 63 6F 6E 64 28 66 74 2F 73 65 63 29 2C 20 6D |econd(ft/sec), m|
00000260: 65 74 65 72 73 20 70 65 72 20 6D 69 6E 75 74 65 |eters per minute|
00000270: 28 6D 2F 6D 69 6E 29 2C 20 65 74 63 2E 40 68 54 |(m/min), etc.@hT|
00000280: 68 65 20 72 61 74 65 20 6F 66 20 73 70 65 65 64 |he rate of speed|
00000290: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
000002A0: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
000002B0: 60 7B 7D 27 2E 40 69 28 36 2C 63 7B 7D 2C 7B 7D |`{}'.@i(6,c{},{}|
000002C0: 29 40 68 54 69 6D 65 20 69 73 20 63 6F 6D 6D 6F |)@hTime is commo|
000002D0: 6E 6C 79 20 6D 65 61 73 75 72 65 64 20 69 73 20 |nly measured is |
000002E0: 73 65 63 6F 6E 64 73 28 73 65 63 29 2C 20 6D 69 |seconds(sec), mi|
000002F0: 6E 75 74 65 73 28 6D 69 6E 29 2C 20 68 6F 75 72 |nutes(min), hour|
00000300: 73 28 68 72 29 2C 20 64 61 79 73 28 64 61 29 2C |s(hr), days(da),|
00000310: 20 65 74 63 2E 40 68 54 69 6D 65 20 69 6E 20 74 | etc.@hTime in t|
00000320: 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 20 6D |his problem is m|
00000330: 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 69 28 |easured in {}@i(|
00000340: 31 31 2C 63 7B 7D 2C 7B 7D 29 40 68 44 69 73 74 |11,c{},{})@hDist|
00000350: 61 6E 63 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C 79 |ance is commonly|
00000360: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 66 65 65 | measured in fee|
00000370: 74 28 66 74 29 2C 20 79 61 72 64 73 28 79 64 29 |t(ft), yards(yd)|
00000380: 2C 20 6D 69 6C 65 73 28 6D 69 29 2C 20 6D 65 74 |, miles(mi), met|
00000390: 65 72 73 28 6D 29 2C 20 6B 69 6C 6F 6D 65 74 65 |ers(m), kilomete|
000003A0: 72 73 28 6B 6D 29 2C 20 65 74 63 2E 40 68 44 69 |rs(km), etc.@hDi|
000003B0: 73 74 61 6E 63 65 20 69 6E 20 74 68 69 73 20 70 |stance in this p|
000003C0: 72 6F 62 6C 65 6D 20 69 73 20 6D 65 61 73 75 72 |roblem is measur|
000003D0: 65 64 20 69 6E 20 7B 7D 40 69 28 31 36 2C 63 7B |ed in {}@i(16,c{|
000003E0: 7D 2C 7B 7D 29 40 70 45 6E 74 65 72 20 74 68 65 |},{})@pEnter the|
000003F0: 20 66 61 63 74 73 20 66 72 6F 6D 20 74 68 65 20 | facts from the |
00000400: 70 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 |problem into the|
00000410: 20 67 72 69 64 2E 40 68 7B 7D 40 68 7B 7D 40 69 | grid.@h{}@h{}@i|
00000420: 28 31 39 2C 69 2C 7B 7D 29 40 68 7B 7D 40 68 7B |(19,i,{})@h{}@h{|
00000430: 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 7B 7D |}@i({},i,{})@h{}|
00000440: 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 |@h{}@i({},i,{})@|
00000450: 68 7B 7D 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B |h{}@h{}@i({},i,{|
00000460: 7D 29 40 70 52 65 70 72 65 73 65 6E 74 20 7B 7D |})@pRepresent {}|
00000470: 2E 40 68 53 69 6E 63 65 20 74 68 65 20 71 75 65 |.@hSince the que|
00000480: 73 74 69 6F 6E 20 7B 7D 2C 20 75 73 65 20 61 20 |stion {}, use a |
00000490: 76 61 72 69 61 62 6C 65 20 74 6F 20 72 65 70 72 |variable to repr|
000004A0: 65 73 65 6E 74 20 7B 7D 2E 40 68 55 73 65 20 61 |esent {}.@hUse a|
000004B0: 20 76 61 72 69 61 62 6C 65 2C 20 73 75 63 68 20 | variable, such |
000004C0: 61 73 20 60 7B 7D 27 20 74 6F 20 72 65 70 72 65 |as `{}' to repre|
000004D0: 73 65 6E 74 20 7B 7D 2E 20 40 69 28 7B 7D 2C 69 |sent {}. @i({},i|
000004E0: 2C 26 76 29 40 68 52 65 70 72 65 73 65 6E 74 20 |,&v)@hRepresent |
000004F0: 7B 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 20 22 |{} in terms of "|
00000500: 26 76 22 20 28 7B 7D 2E 40 68 7B 7D 40 69 28 7B |&v" ({}.@h{}@i({|
00000510: 7D 2C 69 2C 7B 7D 29 40 72 50 41 52 54 53 40 70 |},i,{})@rPARTS@p|
00000520: 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 73 |Write an express|
00000530: 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |ion to represent|
00000540: 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 74 72 | the distance tr|
00000550: 61 76 65 6C 6C 65 64 20 61 74 20 65 61 63 68 20 |avelled at each |
00000560: 72 61 74 65 2E 40 68 52 61 74 65 2A 54 69 6D 65 |rate.@hRate*Time|
00000570: 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 74 | = Distance@hRat|
00000580: 65 20 7B 7D 20 5C 6E 7B 7D 40 69 28 31 37 2C 69 |e {} \n{}@i(17,i|
00000590: 2C 7B 7D 29 29 40 68 52 61 74 65 2A 54 69 6D 65 |,{}))@hRate*Time|
000005A0: 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 74 | = Distance@hRat|
000005B0: 65 20 7B 7D 20 5C 6E 7B 7D 40 69 28 31 38 2C 69 |e {} \n{}@i(18,i|
000005C0: 2C 7B 7D 29 40 72 57 48 4F 4C 45 26 64 28 32 30 |,{})@rWHOLE&d(20|
000005D0: 2C 20 29 40 70 53 75 62 73 74 69 74 75 74 65 20 |, )@pSubstitute |
000005E0: 79 6F 75 72 20 65 78 70 72 65 73 73 69 6F 6E 73 |your expressions|
000005F0: 20 66 6F 72 20 7B 7D 2C 20 7B 7D 20 61 6E 64 20 | for {}, {} and |
00000600: 54 6F 74 61 6C 20 69 6E 20 74 68 65 20 65 71 75 |Total in the equ|
00000610: 61 74 69 6F 6E 2E 20 5C 6E 45 71 75 61 74 69 6F |ation. \nEquatio|
00000620: 6E 20 3A 20 44 7B 7D 2B 44 7B 7D 20 3D 20 7B 7D |n : D{}+D{} = {}|
00000630: 40 68 44 7B 7D 20 3D 20 7B 7D 2C 20 44 7B 7D 20 |@hD{} = {}, D{} |
00000640: 3D 20 7B 7D 20 61 6E 64 20 54 6F 74 61 6C 20 3D |= {} and Total =|
00000650: 20 7B 7D 2E 40 68 7B 7D 20 5C 6E 7B 7D 40 69 28 | {}.@h{} \n{}@i(|
00000660: 32 30 2C 69 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 |20,i,{})@s@rCOMP|
00000670: 55 54 45 40 70 53 6F 6C 76 65 20 74 68 65 20 65 |UTE@pSolve the e|
00000680: 71 75 61 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 |quation for "&v"|
00000690: 2E 20 55 73 65 20 70 61 70 65 72 20 61 6E 64 20 |. Use paper and |
000006A0: 70 65 6E 63 69 6C 20 61 6E 64 20 65 6E 74 65 72 |pencil and enter|
000006B0: 20 74 68 65 20 66 69 6E 61 6C 20 65 71 75 61 74 | the final equat|
000006C0: 69 6F 6E 2C 20 6F 72 20 75 73 65 20 74 68 65 20 |ion, or use the |
000006D0: 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 | Calculator.@hIs|
000006E0: 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E |olate "&v" on on|
000006F0: 65 20 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 |e side of the eq|
00000700: 75 61 74 69 6F 6E 2E 40 68 54 68 65 20 43 61 6C |uation.@hThe Cal|
00000710: 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 65 |culator solves e|
00000720: 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F 75 |quations for you|
00000730: 20 61 6E 64 20 64 69 73 70 6C 61 79 73 20 74 68 | and displays th|
00000740: 65 20 73 74 65 70 73 20 69 6E 20 74 68 65 20 73 |e steps in the s|
00000750: 6F 6C 75 74 69 6F 6E 2E 40 69 28 32 30 2C 69 2C |olution.@i(20,i,|
00000760: 26 76 3D 7B 7D 29 40 70 45 6E 74 65 72 20 79 6F |&v={})@pEnter yo|
00000770: 75 72 20 61 6E 73 77 65 72 73 20 74 6F 20 74 68 |ur answers to th|
00000780: 65 20 70 72 6F 62 6C 65 6D 20 69 6E 20 74 68 65 |e problem in the|
00000790: 20 67 72 69 64 2E 20 52 65 6D 65 6D 62 65 72 20 | grid. Remember |
000007A0: 74 68 65 20 71 75 65 73 74 69 6F 6E 2E 20 26 71 |the question. &q|
000007B0: 7B 7D 26 71 40 68 54 68 65 20 7B 7D 20 69 73 20 |{}&q@hThe {} is |
000007C0: 65 71 75 61 6C 20 74 6F 20 74 68 65 20 76 61 6C |equal to the val|
000007D0: 75 65 20 6F 66 20 7B 7D 2E 40 68 26 76 20 3D 20 |ue of {}.@h&v = |
000007E0: 7B 7D 2C 20 73 6F 20 7B 7D 2E 40 69 28 7B 7D 2C |{}, so {}.@i({},|
000007F0: 69 2C 7B 7D 29 20 40 73 40 72 43 48 45 43 4B 40 |i,{}) @s@rCHECK@|
00000800: 70 52 65 72 65 61 64 20 74 68 65 20 70 72 6F 62 |pReread the prob|
00000810: 6C 65 6D 2E 20 43 68 65 63 6B 20 79 6F 75 72 20 |lem. Check your |
00000820: 61 6E 73 77 65 72 73 2E 20 45 76 61 6C 75 61 74 |answers. Evaluat|
00000830: 65 20 74 68 65 20 72 65 6D 61 69 6E 69 6E 67 20 |e the remaining |
00000840: 65 78 70 72 65 73 73 69 6F 6E 73 20 69 6E 20 74 |expressions in t|
00000850: 68 65 20 67 72 69 64 2E 40 68 53 75 62 73 74 69 |he grid.@hSubsti|
00000860: 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 6E |tute for "&v" in|
00000870: 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E 20 | the expression |
00000880: 66 6F 72 20 7B 7D 2E 20 54 68 65 6E 20 63 61 6C |for {}. Then cal|
00000890: 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 75 6C |culate the resul|
000008A0: 74 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |t.@h{}@i({},i,{}|
000008B0: 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 6F |)@hSubstitute fo|
000008C0: 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 78 |r "&v" in the ex|
000008D0: 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 7B 7D 2E |pression for {}.|
000008E0: 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 20 | Then calculate |
000008F0: 74 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D 40 |the result.@h{}@|
00000900: 69 28 7B 7D 2C 69 2C 7B 7D 29 40 68 53 75 62 73 |i({},i,{})@hSubs|
00000910: 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 |titute for "&v" |
00000920: 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F |in the expressio|
00000930: 6E 20 66 6F 72 20 7B 7D 2E 20 54 68 65 6E 20 63 |n for {}. Then c|
00000940: 61 6C 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 |alculate the res|
00000950: 75 6C 74 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C |ult.@h{}@i({},i,|
00000960: 7B 7D 29 26 64 28 30 2C 43 68 65 63 6B 20 79 6F |{})&d(0,Check yo|
00000970: 75 72 20 77 6F 72 6B 2E 20 54 68 65 20 73 75 6D |ur work. The sum|
00000980: 20 6F 66 20 74 68 65 20 7B 7D 20 64 69 73 74 61 | of the {} dista|
00000990: 6E 63 65 73 20 73 68 6F 75 6C 64 20 65 71 75 61 |nces should equa|
000009A0: 6C 20 7B 7D 2E 20 4F 6E 20 74 6F 20 61 20 6E 65 |l {}. On to a ne|
000009B0: 77 20 70 72 6F 62 6C 65 6D 2E 29 40 66 42 65 72 |w problem.)@fBer|
000009C0: 6E 61 72 64 20 61 6E 64 20 45 6C 69 73 65 20 77 |nard and Elise w|
000009D0: 69 6C 6C 20 64 72 69 76 65 20 31 31 33 30 20 6D |ill drive 1130 m|
000009E0: 69 6C 65 73 20 66 72 6F 6D 20 4E 65 77 20 59 6F |iles from New Yo|
000009F0: 72 6B 20 74 6F 20 4D 69 61 6D 69 2E 20 42 65 72 |rk to Miami. Ber|
00000A00: 6E 61 72 64 20 64 72 69 76 65 73 20 34 35 20 6D |nard drives 45 m|
00000A10: 69 2F 68 72 20 61 6E 64 20 45 6C 69 73 65 20 64 |i/hr and Elise d|
00000A20: 72 69 76 65 73 20 35 35 20 6D 69 2F 68 72 2E 20 |rives 55 mi/hr. |
00000A30: 48 6F 77 20 6C 6F 6E 67 20 73 68 6F 75 6C 64 20 |How long should |
00000A40: 42 65 72 6E 61 72 64 20 64 72 69 76 65 20 69 66 |Bernard drive if|
00000A50: 20 74 68 65 79 20 77 61 6E 74 20 74 6F 20 6D 61 | they want to ma|
00000A60: 6B 65 20 74 68 65 20 74 72 69 70 20 69 6E 20 32 |ke the trip in 2|
00000A70: 32 20 68 6F 75 72 73 3F 00 42 65 72 6E 61 72 64 |2 hours?.Bernard|
00000A80: 00 45 6C 69 73 65 00 54 68 65 79 20 77 69 6C 6C |.Elise.They will|
00000A90: 20 64 72 69 76 65 20 61 20 74 6F 74 61 6C 20 6F | drive a total o|
00000AA0: 66 20 31 31 33 30 20 6D 69 2E 20 61 74 20 64 69 |f 1130 mi. at di|
00000AB0: 66 66 65 72 65 6E 74 20 72 61 74 65 73 20 66 6F |fferent rates fo|
00000AC0: 72 20 61 20 74 6F 74 61 6C 20 6F 66 20 32 32 20 |r a total of 22 |
00000AD0: 68 6F 75 72 73 2E 00 26 68 48 6F 77 20 6C 6F 6E |hours..&hHow lon|
00000AE0: 67 20 73 68 6F 75 6C 64 20 42 65 72 6E 61 72 64 |g should Bernard|
00000AF0: 20 64 72 69 76 65 3F 26 68 00 62 00 42 65 72 6E | drive?&h.b.Bern|
00000B00: 61 72 64 27 73 20 64 69 73 74 61 6E 63 65 00 65 |ard's distance.e|
00000B10: 00 45 6C 69 73 65 27 73 20 64 69 73 74 61 6E 63 |.Elise's distanc|
00000B20: 65 00 62 00 65 00 54 68 65 20 73 75 6D 20 6F 66 |e.b.e.The sum of|
00000B30: 20 42 65 72 6E 61 72 64 20 61 6E 64 20 45 6C 69 | Bernard and Eli|
00000B40: 73 65 27 73 20 64 69 73 74 61 6E 63 65 73 20 69 |se's distances i|
00000B50: 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 54 |s equal to the T|
00000B60: 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 60 |otal distance..`|
00000B70: 44 62 2B 44 65 3D 54 6F 74 61 6C 27 20 73 68 6F |Db+De=Total' sho|
00000B80: 77 73 20 74 68 61 74 20 74 68 65 20 73 75 6D 20 |ws that the sum |
00000B90: 6F 66 20 74 68 65 69 72 20 64 69 73 74 61 6E 63 |of their distanc|
00000BA0: 65 73 20 69 73 20 65 71 75 61 6C 20 74 6F 20 74 |es is equal to t|
00000BB0: 68 65 20 54 6F 74 61 6C 20 64 69 73 74 61 6E 63 |he Total distanc|
00000BC0: 65 2E 00 44 62 2B 44 65 3D 54 6F 74 61 6C 00 54 |e..Db+De=Total.T|
00000BD0: 68 65 20 73 75 6D 20 6F 66 20 42 65 72 6E 61 72 |he sum of Bernar|
00000BE0: 64 20 61 6E 64 20 45 6C 69 73 65 27 73 20 64 69 |d and Elise's di|
00000BF0: 73 74 61 6E 63 65 73 20 69 73 20 65 71 75 61 6C |stances is equal|
00000C00: 20 74 6F 20 74 68 65 20 54 6F 74 61 6C 20 64 69 | to the Total di|
00000C10: 73 74 61 6E 63 65 2E 00 60 44 62 2B 44 65 3D 54 |stance..`Db+De=T|
00000C20: 6F 74 61 6C 27 20 73 68 6F 77 73 20 74 68 61 74 |otal' shows that|
00000C30: 20 74 68 65 20 73 75 6D 20 6F 66 20 74 68 65 69 | the sum of thei|
00000C40: 72 20 64 69 73 74 61 6E 63 65 73 20 69 73 20 65 |r distances is e|
00000C50: 71 75 61 6C 20 74 6F 20 74 68 65 20 54 6F 74 61 |qual to the Tota|
00000C60: 6C 20 64 69 73 74 61 6E 63 65 2E 00 6D 69 2F 68 |l distance..mi/h|
00000C70: 72 00 34 00 6D 69 2F 68 72 00 68 6F 75 72 73 20 |r.4.mi/hr.hours |
00000C80: 28 60 68 72 27 29 2E 00 32 00 68 72 00 6D 69 6C |(`hr')..2.hr.mil|
00000C90: 65 73 20 28 60 6D 69 27 29 2E 00 32 00 6D 69 00 |es (`mi')..2.mi.|
00000CA0: 26 68 42 65 72 6E 61 72 64 20 61 6E 64 20 45 6C |&hBernard and El|
00000CB0: 69 73 65 20 77 69 6C 6C 20 64 72 69 76 65 20 31 |ise will drive 1|
00000CC0: 31 33 30 20 6D 69 6C 65 73 20 66 72 6F 6D 20 4E |130 miles from N|
00000CD0: 65 77 20 59 6F 72 6B 20 74 6F 20 4D 69 61 6D 69 |ew York to Miami|
00000CE0: 26 68 00 54 68 65 20 74 6F 74 61 6C 20 74 72 69 |&h.The total tri|
00000CF0: 70 20 69 73 20 60 31 31 33 30 27 20 6D 69 6C 65 |p is `1130' mile|
00000D00: 73 2E 00 31 31 33 30 00 26 68 54 68 65 79 20 77 |s..1130.&hThey w|
00000D10: 61 6E 74 20 74 6F 20 6D 61 6B 65 20 74 68 65 20 |ant to make the |
00000D20: 74 72 69 70 20 69 6E 20 32 32 20 68 6F 75 72 73 |trip in 22 hours|
00000D30: 26 68 2E 00 54 68 65 20 74 6F 74 61 6C 20 74 69 |&h..The total ti|
00000D40: 6D 65 20 69 73 20 60 32 32 27 20 68 6F 75 72 73 |me is `22' hours|
00000D50: 2E 00 31 34 00 32 32 00 26 68 42 65 72 6E 61 72 |..14.22.&hBernar|
00000D60: 64 20 64 72 69 76 65 73 20 34 35 20 6D 69 2F 68 |d drives 45 mi/h|
00000D70: 72 26 68 2E 00 42 65 72 6E 61 72 64 27 73 20 72 |r&h..Bernard's r|
00000D80: 61 74 65 20 69 73 20 60 34 35 27 20 6D 69 2F 68 |ate is `45' mi/h|
00000D90: 72 2E 00 37 00 34 35 00 26 68 45 6C 69 73 65 20 |r..7.45.&hElise |
00000DA0: 64 72 69 76 65 73 20 35 35 20 6D 69 2F 68 72 26 |drives 55 mi/hr&|
00000DB0: 68 2E 00 45 6C 69 73 65 27 73 20 72 61 74 65 20 |h..Elise's rate |
00000DC0: 69 73 20 60 35 35 27 20 6D 69 2F 68 72 2E 00 38 |is `55' mi/hr..8|
00000DD0: 00 35 35 00 74 68 65 69 72 20 64 72 69 76 69 6E |.55.their drivin|
00000DE0: 67 20 74 69 6D 65 73 00 69 73 3A 20 26 68 48 6F |g times.is: &hHo|
00000DF0: 77 20 6C 6F 6E 67 20 73 68 6F 75 6C 64 20 42 65 |w long should Be|
00000E00: 72 6E 61 72 64 20 64 72 69 76 65 26 68 00 42 65 |rnard drive&h.Be|
00000E10: 72 6E 61 72 64 27 73 20 74 69 6D 65 00 62 00 42 |rnard's time.b.B|
00000E20: 65 72 6E 61 72 64 27 73 20 74 69 6D 65 00 31 32 |ernard's time.12|
00000E30: 00 74 68 65 20 74 69 6D 65 20 45 6C 69 73 65 20 |.the time Elise |
00000E40: 77 69 6C 6C 20 64 72 69 76 65 00 74 68 65 20 74 |will drive.the t|
00000E50: 69 6D 65 20 42 65 72 6E 61 72 64 20 77 69 6C 6C |ime Bernard will|
00000E60: 20 64 72 69 76 65 29 00 54 68 65 20 74 6F 74 61 | drive).The tota|
00000E70: 6C 20 74 69 6D 65 20 69 73 20 32 32 20 68 6F 75 |l time is 22 hou|
00000E80: 72 73 20 61 6E 64 20 42 65 72 6E 61 72 64 20 77 |rs and Bernard w|
00000E90: 69 6C 6C 20 64 72 69 76 65 20 66 6F 72 20 22 26 |ill drive for "&|
00000EA0: 76 22 20 68 6F 75 72 73 2C 20 77 68 69 63 68 20 |v" hours, which |
00000EB0: 6C 65 61 76 65 73 20 60 32 32 2D 26 76 27 20 68 |leaves `22-&v' h|
00000EC0: 6F 75 72 73 20 66 6F 72 20 45 6C 69 73 65 2E 00 |ours for Elise..|
00000ED0: 31 33 00 32 32 2D 26 76 00 5C 66 30 36 2A 20 20 |13.22-&v.\f06* |
00000EE0: 54 69 6D 65 20 20 20 5C 66 31 36 3D 20 20 44 69 |Time \f16= Di|
00000EF0: 73 74 61 6E 63 65 00 20 60 34 35 20 5C 66 30 36 |stance. `45 \f06|
00000F00: 2A 20 20 20 26 76 27 20 20 20 5C 66 31 36 3D 20 |* &v' \f16= |
00000F10: 20 42 65 72 6E 61 72 64 27 73 20 44 69 73 74 2E | Bernard's Dist.|
00000F20: 00 34 35 26 76 00 5C 66 30 36 2A 20 20 54 69 6D |.45&v.\f06* Tim|
00000F30: 65 20 20 20 20 5C 66 31 36 3D 20 20 44 69 73 74 |e \f16= Dist|
00000F40: 61 6E 63 65 00 20 60 35 35 20 5C 66 30 36 2A 20 |ance. `55 \f06* |
00000F50: 28 32 32 2D 26 76 29 27 20 5C 66 31 36 3D 20 20 |(22-&v)' \f16= |
00000F60: 45 6C 69 73 65 27 73 20 44 69 73 74 2E 00 35 35 |Elise's Dist..55|
00000F70: 28 32 32 2D 26 76 29 00 44 62 00 44 65 00 62 00 |(22-&v).Db.De.b.|
00000F80: 65 00 54 6F 74 61 6C 00 62 00 34 35 26 76 00 65 |e.Total.b.45&v.e|
00000F90: 00 35 35 28 32 32 2D 26 76 29 00 31 31 33 30 00 |.55(22-&v).1130.|
00000FA0: 42 65 72 6E 61 72 64 27 73 20 64 69 73 74 2E 20 |Bernard's dist. |
00000FB0: 2B 20 45 6C 69 73 65 27 73 20 64 69 73 74 2E 20 |+ Elise's dist. |
00000FC0: 3D 20 54 6F 74 61 6C 00 20 20 20 60 34 35 26 76 |= Total. `45&v|
00000FD0: 20 20 20 20 5C 66 31 37 2B 20 20 35 35 28 32 32 | \f17+ 55(22|
00000FE0: 2D 26 76 29 20 20 5C 66 33 33 3D 31 31 33 30 27 |-&v) \f33=1130'|
00000FF0: 00 34 35 26 76 2B 35 35 28 32 32 2D 26 76 29 3D |.45&v+55(22-&v)=|
00001000: 31 31 33 30 00 38 00 48 6F 77 20 6C 6F 6E 67 20 |1130.8.How long |
00001010: 73 68 6F 75 6C 64 20 42 65 72 6E 61 72 64 20 64 |should Bernard d|
00001020: 72 69 76 65 00 42 65 72 6E 61 72 64 27 73 20 74 |rive.Bernard's t|
00001030: 69 6D 65 00 22 26 76 22 00 38 00 42 65 72 6E 61 |ime."&v".8.Berna|
00001040: 72 64 20 73 68 6F 75 6C 64 20 64 72 69 76 65 20 |rd should drive |
00001050: 66 6F 72 20 60 38 27 20 68 6F 75 72 73 00 31 32 |for `8' hours.12|
00001060: 00 38 00 45 6C 69 73 65 27 73 20 74 69 6D 65 00 |.8.Elise's time.|
00001070: 26 76 3D 38 2C 20 73 6F 20 32 32 2D 26 76 20 3D |&v=8, so 22-&v =|
00001080: 20 60 31 34 27 20 68 6F 75 72 73 2E 00 31 33 00 | `14' hours..13.|
00001090: 31 34 00 42 65 72 6E 61 72 64 27 73 20 64 69 73 |14.Bernard's dis|
000010A0: 74 61 6E 63 65 00 26 76 3D 38 2C 20 73 6F 20 34 |tance.&v=8, so 4|
000010B0: 35 26 76 20 3D 20 34 35 2A 38 20 3D 20 60 33 36 |5&v = 45*8 = `36|
000010C0: 30 27 20 6D 69 6C 65 73 2E 00 31 37 00 33 36 30 |0' miles..17.360|
000010D0: 00 45 6C 69 73 65 27 73 20 64 69 73 74 61 6E 63 |.Elise's distanc|
000010E0: 65 00 26 76 3D 38 2C 20 73 6F 20 35 35 28 32 32 |e.&v=8, so 55(22|
000010F0: 2D 26 76 29 20 3D 20 35 35 2A 31 34 20 3D 20 60 |-&v) = 55*14 = `|
00001100: 37 37 30 27 20 6D 69 6C 65 73 2E 00 31 38 00 37 |770' miles..18.7|
00001110: 37 30 00 74 68 65 69 72 00 31 31 33 30 00 40 66 |70.their.1130.@f|
00001120: 42 6F 62 62 79 20 64 72 6F 76 65 20 66 6F 72 20 |Bobby drove for |
00001130: 33 20 68 6F 75 72 73 20 77 68 65 6E 20 68 69 73 |3 hours when his|
00001140: 20 63 61 72 20 62 72 6F 6B 65 20 64 6F 77 6E 2E | car broke down.|
00001150: 20 48 65 20 74 68 65 6E 20 77 61 6C 6B 65 64 20 | He then walked |
00001160: 66 6F 72 20 31 2F 32 20 68 6F 75 72 20 74 6F 20 |for 1/2 hour to |
00001170: 61 20 67 61 72 61 67 65 2E 20 49 66 20 68 65 20 |a garage. If he |
00001180: 64 72 6F 76 65 20 38 20 74 69 6D 65 73 20 61 73 |drove 8 times as|
00001190: 20 66 61 73 74 20 61 73 20 68 65 20 77 61 6C 6B | fast as he walk|
000011A0: 65 64 2C 20 61 6E 64 20 68 65 20 77 65 6E 74 20 |ed, and he went |
000011B0: 61 20 74 6F 74 61 6C 20 6F 66 20 31 32 32 2E 35 |a total of 122.5|
000011C0: 20 6D 69 6C 65 73 2C 20 68 6F 77 20 66 61 73 74 | miles, how fast|
000011D0: 20 64 69 64 20 68 65 20 77 61 6C 6B 3F 00 44 72 | did he walk?.Dr|
000011E0: 69 76 65 00 57 61 6C 6B 00 48 65 20 77 61 6C 6B |ive.Walk.He walk|
000011F0: 65 64 20 61 6E 64 20 64 72 6F 76 65 20 61 74 20 |ed and drove at |
00001200: 64 69 66 66 65 72 65 6E 74 20 72 61 74 65 73 20 |different rates |
00001210: 66 6F 72 20 61 20 74 6F 74 61 6C 20 6F 66 20 31 |for a total of 1|
00001220: 32 32 2E 35 20 6D 69 6C 65 73 2E 00 26 68 48 6F |22.5 miles..&hHo|
00001230: 77 20 66 61 73 74 20 64 69 64 20 68 65 20 77 61 |w fast did he wa|
00001240: 6C 6B 26 68 3F 00 64 00 64 69 73 74 61 6E 63 65 |lk&h?.d.distance|
00001250: 20 68 65 20 77 61 6C 6B 65 64 00 64 00 64 69 73 | he walked.d.dis|
00001260: 74 61 6E 63 65 20 68 65 20 64 72 6F 76 65 00 64 |tance he drove.d|
00001270: 00 77 00 54 68 65 20 73 75 6D 20 6F 66 20 74 68 |.w.The sum of th|
00001280: 65 20 64 72 69 76 69 6E 67 20 61 6E 64 20 77 61 |e driving and wa|
00001290: 6C 6B 69 6E 67 20 64 69 73 74 61 6E 63 65 73 20 |lking distances |
000012A0: 69 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 |is equal to the |
000012B0: 54 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 |Total distance..|
000012C0: 60 44 64 2B 44 77 3D 54 6F 74 61 6C 27 20 73 68 |`Dd+Dw=Total' sh|
000012D0: 6F 77 73 20 74 68 61 74 20 74 68 65 20 73 75 6D |ows that the sum|
000012E0: 20 6F 66 20 74 68 65 20 64 69 73 74 61 6E 63 65 | of the distance|
000012F0: 73 20 69 73 20 65 71 75 61 6C 20 74 6F 20 74 68 |s is equal to th|
00001300: 65 20 54 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 |e Total distance|
00001310: 2E 00 60 44 64 2B 44 77 3D 54 6F 74 61 6C 27 00 |..`Dd+Dw=Total'.|
00001320: 54 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 64 |The sum of the d|
00001330: 72 69 76 69 6E 67 20 61 6E 64 20 77 61 6C 6B 69 |riving and walki|
00001340: 6E 67 20 64 69 73 74 61 6E 63 65 73 20 69 73 20 |ng distances is |
00001350: 65 71 75 61 6C 20 74 6F 20 74 68 65 20 54 6F 74 |equal to the Tot|
00001360: 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 60 44 64 |al distance..`Dd|
00001370: 2B 44 77 3D 54 6F 74 61 6C 27 20 73 68 6F 77 73 |+Dw=Total' shows|
00001380: 20 74 68 61 74 20 74 68 65 20 73 75 6D 20 6F 66 | that the sum of|
00001390: 20 74 68 65 20 64 69 73 74 61 6E 63 65 73 20 69 | the distances i|
000013A0: 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 54 |s equal to the T|
000013B0: 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 00 6D |otal distance..m|
000013C0: 69 2F 68 72 00 34 00 6D 69 2F 68 72 00 68 6F 75 |i/hr.4.mi/hr.hou|
000013D0: 72 73 20 60 68 72 27 2E 00 32 00 68 72 00 6D 69 |rs `hr'..2.hr.mi|
000013E0: 6C 65 73 20 60 6D 69 27 2E 00 32 00 6D 69 00 26 |les `mi'..2.mi.&|
000013F0: 68 48 65 20 77 65 6E 74 20 61 20 74 6F 74 61 6C |hHe went a total|
00001400: 20 6F 66 20 31 32 32 2E 35 20 6D 69 6C 65 73 26 | of 122.5 miles&|
00001410: 68 2E 00 54 68 65 20 74 6F 74 61 6C 20 64 69 73 |h..The total dis|
00001420: 74 61 6E 63 65 20 69 73 20 60 31 32 32 2E 35 27 |tance is `122.5'|
00001430: 20 6D 69 6C 65 73 00 31 32 32 2E 35 00 26 68 42 | miles.122.5.&hB|
00001440: 6F 62 62 79 20 64 72 6F 76 65 20 66 6F 72 20 33 |obby drove for 3|
00001450: 20 68 6F 75 72 73 26 68 2E 00 48 65 20 64 72 6F | hours&h..He dro|
00001460: 76 65 20 66 6F 72 20 60 33 27 20 68 6F 75 72 73 |ve for `3' hours|
00001470: 00 31 32 00 33 00 26 68 48 65 20 74 68 65 6E 20 |.12.3.&hHe then |
00001480: 77 61 6C 6B 65 64 20 66 6F 72 20 31 2F 32 20 68 |walked for 1/2 h|
00001490: 6F 75 72 26 68 2E 00 48 65 20 77 61 6C 6B 65 64 |our&h..He walked|
000014A0: 20 66 6F 72 20 60 2E 35 27 20 6F 72 20 60 31 2F | for `.5' or `1/|
000014B0: 32 27 20 68 6F 75 72 00 31 33 00 31 2F 32 00 54 |2' hour.13.1/2.T|
000014C0: 68 65 20 74 6F 74 61 6C 20 74 69 6D 65 20 69 73 |he total time is|
000014D0: 20 74 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 | the sum of the |
000014E0: 64 72 69 76 69 6E 67 20 61 6E 64 20 77 61 6C 6B |driving and walk|
000014F0: 69 6E 67 20 74 69 6D 65 73 2E 00 54 68 65 20 74 |ing times..The t|
00001500: 6F 74 61 6C 20 74 69 6D 65 20 69 73 20 60 33 2E |otal time is `3.|
00001510: 35 27 20 68 6F 75 72 73 2E 00 31 34 00 33 2E 35 |5' hours..14.3.5|
00001520: 00 68 69 73 20 77 61 6C 6B 69 6E 67 20 73 70 65 |.his walking spe|
00001530: 65 64 00 69 73 3A 20 22 26 68 48 6F 77 20 66 61 |ed.is: "&hHow fa|
00001540: 73 74 20 64 69 64 20 68 65 20 77 61 6C 6B 3F 26 |st did he walk?&|
00001550: 68 22 00 68 69 73 20 77 61 6C 6B 69 6E 67 20 73 |h".his walking s|
00001560: 70 65 65 64 00 77 00 68 69 73 20 77 61 6C 6B 69 |peed.w.his walki|
00001570: 6E 67 20 73 70 65 65 64 00 38 00 68 69 73 20 64 |ng speed.8.his d|
00001580: 72 69 76 69 6E 67 20 73 70 65 65 64 00 68 69 73 |riving speed.his|
00001590: 20 77 61 6C 6B 69 6E 67 20 73 70 65 65 64 29 00 | walking speed).|
000015A0: 48 65 20 64 72 69 76 65 73 20 38 20 74 69 6D 65 |He drives 8 time|
000015B0: 73 20 61 73 20 66 61 73 74 20 61 73 20 68 65 20 |s as fast as he |
000015C0: 77 61 6C 6B 73 20 61 6E 64 20 68 65 20 77 61 6C |walks and he wal|
000015D0: 6B 73 20 22 26 76 22 20 6D 69 2F 68 72 2E 20 53 |ks "&v" mi/hr. S|
000015E0: 6F 20 68 65 20 64 72 69 76 65 73 20 60 38 26 76 |o he drives `8&v|
000015F0: 27 20 6D 69 2F 68 72 2E 00 37 00 38 26 76 00 5C |' mi/hr..7.8&v.\|
00001600: 66 30 36 2A 20 20 54 69 6D 65 20 20 5C 66 31 34 |f06* Time \f14|
00001610: 3D 20 20 44 69 73 74 61 6E 63 65 00 20 60 38 26 |= Distance. `8&|
00001620: 76 20 20 5C 66 30 36 2A 20 20 33 27 20 20 5C 66 |v \f06* 3' \f|
00001630: 31 34 3D 20 20 44 72 69 76 69 6E 67 20 44 69 73 |14= Driving Dis|
00001640: 74 61 6E 63 65 00 32 34 26 76 00 5C 66 30 36 2A |tance.24&v.\f06*|
00001650: 20 20 54 69 6D 65 20 20 5C 66 31 34 3D 20 20 44 | Time \f14= D|
00001660: 69 73 74 61 6E 63 65 00 20 60 26 76 20 20 5C 66 |istance. `&v \f|
00001670: 30 36 2A 20 20 2E 35 27 20 20 5C 66 31 34 3D 20 |06* .5' \f14= |
00001680: 20 57 61 6C 6B 69 6E 67 20 44 69 73 74 61 6E 63 | Walking Distanc|
00001690: 65 00 2E 35 26 76 00 44 64 00 44 77 00 64 00 77 |e..5&v.Dd.Dw.d.w|
000016A0: 00 54 6F 74 61 6C 00 64 00 32 34 26 76 00 77 00 |.Total.d.24&v.w.|
000016B0: 2E 35 26 76 00 31 32 32 2E 35 00 44 72 69 76 69 |.5&v.122.5.Drivi|
000016C0: 6E 67 20 64 69 73 74 2E 20 5C 66 31 35 2B 20 57 |ng dist. \f15+ W|
000016D0: 61 6C 6B 69 6E 67 20 64 69 73 74 2E 20 20 5C 66 |alking dist. \f|
000016E0: 33 30 3D 20 54 6F 74 61 6C 00 20 20 60 32 34 26 |30= Total. `24&|
000016F0: 76 20 20 20 5C 66 31 35 2B 20 20 20 2E 35 26 76 |v \f15+ .5&v|
00001700: 20 20 20 20 5C 66 33 30 3D 20 31 32 32 2E 35 27 | \f30= 122.5'|
00001710: 00 32 34 26 76 2B 2E 35 26 76 3D 31 32 32 2E 35 |.24&v+.5&v=122.5|
00001720: 00 35 00 48 6F 77 20 66 61 73 74 20 64 69 64 20 |.5.How fast did |
00001730: 68 65 20 77 61 6C 6B 3F 00 48 69 73 20 77 61 6C |he walk?.His wal|
00001740: 6B 69 6E 67 20 72 61 74 65 00 22 26 76 22 00 35 |king rate."&v".5|
00001750: 00 68 65 20 77 61 6C 6B 65 64 20 60 35 27 20 6D |.he walked `5' m|
00001760: 69 2F 68 72 00 38 00 35 00 68 69 73 20 64 72 69 |i/hr.8.5.his dri|
00001770: 76 69 6E 67 20 72 61 74 65 00 26 76 3D 35 20 61 |ving rate.&v=5 a|
00001780: 6E 64 20 38 26 76 20 72 65 70 72 65 73 65 6E 74 |nd 8&v represent|
00001790: 73 20 68 69 73 20 64 72 69 76 69 6E 67 20 72 61 |s his driving ra|
000017A0: 74 65 2C 20 73 6F 20 38 2A 35 20 6F 72 20 60 34 |te, so 8*5 or `4|
000017B0: 30 27 20 6D 69 2F 68 72 20 69 73 20 68 69 73 20 |0' mi/hr is his |
000017C0: 64 72 69 76 69 6E 67 20 72 61 74 65 2E 00 37 00 |driving rate..7.|
000017D0: 34 30 00 68 69 73 20 64 72 69 76 69 6E 67 20 64 |40.his driving d|
000017E0: 69 73 74 61 6E 63 65 00 26 76 3D 35 20 61 6E 64 |istance.&v=5 and|
000017F0: 20 32 34 26 76 20 72 65 70 72 65 73 65 6E 74 73 | 24&v represents|
00001800: 20 68 69 73 20 64 72 69 76 69 6E 67 20 64 69 73 | his driving dis|
00001810: 74 61 6E 63 65 2C 20 73 6F 20 32 34 2A 35 2C 20 |tance, so 24*5, |
00001820: 6F 72 20 60 31 32 30 27 20 6D 69 6C 65 73 20 69 |or `120' miles i|
00001830: 73 20 68 69 73 20 64 72 69 76 69 6E 67 20 64 69 |s his driving di|
00001840: 73 74 61 6E 63 65 2E 00 31 37 00 31 32 30 00 68 |stance..17.120.h|
00001850: 69 73 20 77 61 6C 6B 69 6E 67 20 64 69 73 74 61 |is walking dista|
00001860: 6E 63 65 00 26 76 3D 35 20 61 6E 64 20 2E 35 26 |nce.&v=5 and .5&|
00001870: 76 20 72 65 70 72 65 73 65 6E 74 73 20 68 69 73 |v represents his|
00001880: 20 77 61 6C 6B 69 6E 67 20 64 69 73 74 61 6E 63 | walking distanc|
00001890: 65 2C 20 73 6F 20 2E 35 2A 35 2C 20 6F 72 20 60 |e, so .5*5, or `|
000018A0: 32 2E 35 27 20 6D 69 6C 65 73 20 69 73 20 68 69 |2.5' miles is hi|
000018B0: 73 20 77 61 6C 6B 69 6E 67 20 64 69 73 74 61 6E |s walking distan|
000018C0: 63 65 2E 00 31 38 00 32 2E 35 00 74 77 6F 00 31 |ce..18.2.5.two.1|
000018D0: 32 32 2E 35 00 7C 00 |22.5.|. |
A@Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})&
C(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIST
.)@RREAD@PREAD THE WHOLE PROBLEM. THINK:
WHAT ARE THE FACTS? WHAT IS BEING ASKED
? (PRESS ANY KEY TO CONTINUE.)@HWHAT ARE
THE FACTS? {}@HWHAT IS BEING ASKED? {}@
I(0)@RPLAN @PLET D{}={} AND D{}={}. WRIT
E AN EQUATION TO RELATE D{} AND D{} TO T
HE TOTAL DIST.@H{}@H{}@I(20,C0, )@PONE A
NSWER IS {}. CHANGE YOUR ANSWER IF IT IS
NOT EQUIVALENT. (PRESS RETURN)@H{}@H{}@
I(20,C0, )@RDATA ENTRY@PFILL IN THE UNIT
S BY WHICH RATE, TIME AND DISTANCE ARE M
EASURED.@HRATE IS COMMONLY MEASURED IN M
ILES PER HOUR(MI/HR), FEET PER SECOND(FT
/SEC), METERS PER MINUTE(M/MIN), ETC.@HT
HE RATE OF SPEED IN THIS PROBLEM IS MEAS
URED IN `{}'.@I(6,C{},{})@HTIME IS COMMO
NLY MEASURED IS SECONDS(SEC), MINUTES(MI
N), HOURS(HR), DAYS(DA), ETC.@HTIME IN T
HIS PROBLEM IS MEASURED IN {}@I(11,C{},{
})@HDISTANCE IS COMMONLY MEASURED IN FEE
T(FT), YARDS(YD), MILES(MI), METERS(M),
KILOMETERS(KM), ETC.@HDISTANCE IN THIS P
ROBLEM IS MEASURED IN {}@I(16,C{},{})@PE
NTER THE FACTS FROM THE PROBLEM INTO THE
GRID.@H{}@H{}@I(19,I,{})@H{}@H{}@I({},I
,{})@H{}@H{}@I({},I,{})@H{}@H{}@I({},I,{
})@PREPRESENT {}.@HSINCE THE QUESTION {}
, USE A VARIABLE TO REPRESENT {}.@HUSE A
VARIABLE, SUCH AS `{}' TO REPRESENT {}.
@I({},I,&V)@HREPRESENT {} IN TERMS OF "
&V" ({}.@H{}@I({},I,{})@RPARTS@PWRITE AN
EXPRESSION TO REPRESENT THE DISTANCE TR
AVELLED AT EACH RATE.@HRATE*TIME = DISTA
NCE@HRATE {} \N{}@I(17,I,{}))@HRATE*TIME
= DISTANCE@HRATE {} \N{}@I(18,I,{})@RWH
OLE&D(20, )@PSUBSTITUTE YOUR EXPRESSIONS
FOR {}, {} AND TOTAL IN THE EQUATION. \
NEQUATION : D{}+D{} = {}@HD{} = {}, D{}
= {} AND TOTAL = {}.@H{} \N{}@I(20,I,{})
@S@RCOMPUTE@PSOLVE THE EQUATION FOR "&V"
. USE PAPER AND PENCIL AND ENTER THE FIN
AL EQUATION, OR USE THE CALCULATOR.@HIS
OLATE "&V" ON ONE SIDE OF THE EQUATION.@
HTHE CALCULATOR SOLVES EQUATIONS FOR YOU
AND DISPLAYS THE STEPS IN THE SOLUTION.
@I(20,I,&V={})@PENTER YOUR ANSWERS TO TH
E PROBLEM IN THE GRID. REMEMBER THE QUES
TION. &Q{}&Q@HTHE {} IS EQUAL TO THE VAL
UE OF {}.@H&V = {}, SO {}.@I({},I,{}) @S
@RCHECK@PREREAD THE PROBLEM. CHECK YOUR
ANSWERS. EVALUATE THE REMAINING EXPRESSI
ONS IN THE GRID.@HSUBSTITUTE FOR "&V" IN
THE EXPRESSION FOR {}. THEN CALCULATE T
HE RESULT.@H{}@I({},I,{})@HSUBSTITUTE FO
R "&V" IN THE EXPRESSION FOR {}. THEN CA
LCULATE THE RESULT.@H{}@I({},I,{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION FOR {}
. THEN CALCULATE THE RESULT.@H{}@I({},I,
{})&D(0,CHECK YOUR WORK. THE SUM OF THE
{} DISTANCES SHOULD EQUAL {}. ON TO A NE
W PROBLEM.)@FBERNARD AND ELISE WILL DRIV
E 1130 MILES FROM NEW YORK TO MIAMI. BER
NARD DRIVES 45 MI/HR AND ELISE DRIVES 55
MI/HR. HOW LONG SHOULD BERNARD DRIVE IF
THEY WANT TO MAKE THE TRIP IN 22 HOURS?
.BERNARD.ELISE.THEY WILL DRIVE A TOTAL O
F 1130 MI. AT DIFFERENT RATES FOR A TOTA
L OF 22 HOURS..&HHOW LONG SHOULD BERNARD
DRIVE?&H.B.BERNARD'S DISTANCE.E.ELISE'S
DISTANCE.B.E.THE SUM OF BERNARD AND ELI
SE'S DISTANCES IS EQUAL TO THE TOTAL DIS
TANCE..`DB+DE=TOTAL' SHOWS THAT THE SUM
OF THEIR DISTANCES IS EQUAL TO THE TOTAL
DISTANCE..DB+DE=TOTAL.THE SUM OF BERNAR
D AND ELISE'S DISTANCES IS EQUAL TO THE
TOTAL DISTANCE..`DB+DE=TOTAL' SHOWS THAT
THE SUM OF THEIR DISTANCES IS EQUAL TO
THE TOTAL DISTANCE..MI/HR.4.MI/HR.HOURS
(`HR')..2.HR.MILES (`MI')..2.MI.&HBERNAR
D AND ELISE WILL DRIVE 1130 MILES FROM N
EW YORK TO MIAMI&H.THE TOTAL TRIP IS `11
30' MILES..1130.&HTHEY WANT TO MAKE THE
TRIP IN 22 HOURS&H..THE TOTAL TIME IS `2
2' HOURS..14.22.&HBERNARD DRIVES 45 MI/H
R&H..BERNARD'S RATE IS `45' MI/HR..7.45.
&HELISE DRIVES 55 MI/HR&H..ELISE'S RATE
IS `55' MI/HR..8.55.THEIR DRIVING TIMES.
IS: &HHOW LONG SHOULD BERNARD DRIVE&H.BE
RNARD'S TIME.B.BERNARD'S TIME.12.THE TIM
E ELISE WILL DRIVE.THE TIME BERNARD WILL
DRIVE).THE TOTAL TIME IS 22 HOURS AND B
ERNARD WILL DRIVE FOR "&V" HOURS, WHICH
LEAVES `22-&V' HOURS FOR ELISE..13.22-&V
.\F06* TIME \F16= DISTANCE. `45 \F06
* &V' \F16= BERNARD'S DIST..45&V.\F
06* TIME \F16= DISTANCE. `55 \F06*
(22-&V)' \F16= ELISE'S DIST..55(22-&V).
DB.DE.B.E.TOTAL.B.45&V.E.55(22-&V).1130.
BERNARD'S DIST. + ELISE'S DIST. = TOTAL.
`45&V \F17+ 55(22-&V) \F33=1130'
.45&V+55(22-&V)=1130.8.HOW LONG SHOULD B
ERNARD DRIVE.BERNARD'S TIME."&V".8.BERNA
RD SHOULD DRIVE FOR `8' HOURS.12.8.ELISE
'S TIME.&V=8, SO 22-&V = `14' HOURS..13.
14.BERNARD'S DISTANCE.&V=8, SO 45&V = 45
*8 = `360' MILES..17.360.ELISE'S DISTANC
E.&V=8, SO 55(22-&V) = 55*14 = `770' MIL
ES..18.770.THEIR.1130.@FBOBBY DROVE FOR
3 HOURS WHEN HIS CAR BROKE DOWN. HE THEN
WALKED FOR 1/2 HOUR TO A GARAGE. IF HE
DROVE 8 TIMES AS FAST AS HE WALKED, AND
HE WENT A TOTAL OF 122.5 MILES, HOW FAST
DID HE WALK?.DRIVE.WALK.HE WALKED AND D
ROVE AT DIFFERENT RATES FOR A TOTAL OF 1
22.5 MILES..&HHOW FAST DID HE WALK&H?.D.
DISTANCE HE WALKED.D.DISTANCE HE DROVE.D
.W.THE SUM OF THE DRIVING AND WALKING DI
STANCES IS EQUAL TO THE TOTAL DISTANCE..
`DD+DW=TOTAL' SHOWS THAT THE SUM OF THE
DISTANCES IS EQUAL TO THE TOTAL DISTANCE
..`DD+DW=TOTAL'.THE SUM OF THE DRIVING A
ND WALKING DISTANCES IS EQUAL TO THE TOT
AL DISTANCE..`DD+DW=TOTAL' SHOWS THAT TH
E SUM OF THE DISTANCES IS EQUAL TO THE T
OTAL DISTANCE..MI/HR.4.MI/HR.HOURS `HR'.
.2.HR.MILES `MI'..2.MI.&HHE WENT A TOTAL
OF 122.5 MILES&H..THE TOTAL DISTANCE IS
`122.5' MILES.122.5.&HBOBBY DROVE FOR 3
HOURS&H..HE DROVE FOR `3' HOURS.12.3.&H
HE THEN WALKED FOR 1/2 HOUR&H..HE WALKED
FOR `.5' OR `1/2' HOUR.13.1/2.THE TOTAL
TIME IS THE SUM OF THE DRIVING AND WALK
ING TIMES..THE TOTAL TIME IS `3.5' HOURS
..14.3.5.HIS WALKING SPEED.IS: "&HHOW FA
ST DID HE WALK?&H".HIS WALKING SPEED.W.H
IS WALKING SPEED.8.HIS DRIVING SPEED.HIS
WALKING SPEED).HE DRIVES 8 TIMES AS FAS
T AS HE WALKS AND HE WALKS "&V" MI/HR. S
O HE DRIVES `8&V' MI/HR..7.8&V.\F06* TI
ME \F14= DISTANCE. `8&V \F06* 3' \F
14= DRIVING DISTANCE.24&V.\F06* TIME
\F14= DISTANCE. `&V \F06* .5' \F14=
WALKING DISTANCE..5&V.DD.DW.D.W.TOTAL.D
.24&V.W..5&V.122.5.DRIVING DIST. \F15+ W
ALKING DIST. \F30= TOTAL. `24&V \F15
+ .5&V \F30= 122.5'.24&V+.5&V=122.5
.5.HOW FAST DID HE WALK?.HIS WALKING RAT
E."&V".5.HE WALKED `5' MI/HR.8.5.HIS DRI
VING RATE.&V=5 AND 8&V REPRESENTS HIS DR
IVING RATE, SO 8*5 OR `40' MI/HR IS HIS
DRIVING RATE..7.40.HIS DRIVING DISTANCE.
&V=5 AND 24&V REPRESENTS HIS DRIVING DIS
TANCE, SO 24*5, OR `120' MILES IS HIS DR
IVING DISTANCE..17.120.HIS WALKING DISTA
NCE.&V=5 AND .5&V REPRESENTS HIS WALKING
DISTANCE, SO .5*5, OR `2.5' MILES IS HI
S WALKING DISTANCE..18.2.5.TWO.122.5.|.
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL