_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST2L4

FILE INFORMATION

FILENAME(S): DIST2L4

FILE TYPE(S): PRG

FILE SIZE: 5.7K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

5822255f5972ffc02294e711bea037b8ee2134422f70a3a6fe8455636f05ec62

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST2L4 PRG Radd Maxx 25 6 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 34 26 64 28 31  | A @q{}@dg04&d(1|
00000010: 2C 55 2F 6D 65 61 73 29  26 63 28 32 2C 7B 7D 29  |,U/meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29  26 64 28 34 2C 54 6F 74  |&c(3,{})&d(4,Tot|
00000030: 2E 29 26 64 28 35 2C 52  61 74 65 29 26 64 28 31  |.)&d(5,Rate)&d(1|
00000040: 30 2C 54 69 6D 65 29 26  64 28 31 35 2C 44 69 73  |0,Time)&d(15,Dis|
00000050: 74 2E 29 40 72 52 45 41  44 40 70 52 65 61 64 20  |t.)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C  65 20 70 72 6F 62 6C 65  |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B  3A 20 57 68 61 74 20 61  |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66  61 63 74 73 3F 20 57 68  |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65  69 6E 67 20 61 73 6B 65  |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73  73 20 61 6E 79 20 6B 65  |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E  74 69 6E 75 65 29 40 68  |y to continue)@h|
000000C0: 57 68 61 74 20 61 72 65  20 74 68 65 20 66 61 63  |What are the fac|
000000D0: 74 73 3F 20 7B 7D 40 68  57 68 61 74 20 69 73 20  |ts? {}@hWhat is |
000000E0: 62 65 69 6E 67 20 61 73  6B 65 64 3F 20 26 68 7B  |being asked? &h{|
000000F0: 7D 26 68 3F 40 69 28 30  29 40 72 50 4C 41 4E 20  |}&h?@i(0)@rPLAN |
00000100: 40 70 4C 65 74 20 44 7B  7D 20 3D 20 7B 7D 20 64  |@pLet D{} = {} d|
00000110: 69 73 74 2E 20 61 6E 64  20 44 7B 7D 20 3D 20 7B  |ist. and D{} = {|
00000120: 7D 20 64 69 73 74 2E 20  57 72 69 74 65 20 61 6E  |} dist. Write an|
00000130: 20 65 71 75 61 74 69 6F  6E 20 74 6F 20 72 65 6C  | equation to rel|
00000140: 61 74 65 20 44 7B 7D 2C  20 44 7B 7D 20 61 6E 64  |ate D{}, D{} and|
00000150: 20 54 6F 74 61 6C 20 64  69 73 74 2E 40 68 54 68  | Total dist.@hTh|
00000160: 65 79 20 7B 7D 20 74 6F  77 61 72 64 73 20 65 61  |ey {} towards ea|
00000170: 63 68 20 6F 74 68 65 72  20 75 6E 74 69 6C 20 74  |ch other until t|
00000180: 68 65 79 20 6D 65 65 74  2E 20 54 68 65 20 73 75  |hey meet. The su|
00000190: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
000001A0: 6E 63 65 73 20 69 73 20  74 68 65 20 54 6F 74 61  |nces is the Tota|
000001B0: 6C 20 64 69 73 74 61 6E  63 65 2E 40 68 7B 7D 20  |l distance.@h{} |
000001C0: 73 68 6F 77 73 20 74 68  61 74 20 7B 7D 40 69 28  |shows that {}@i(|
000001D0: 32 30 2C 63 30 2C 20 29  40 70 4F 6E 65 20 61 6E  |20,c0, )@pOne an|
000001E0: 73 77 65 72 20 69 73 20  7B 7D 2E 20 43 68 61 6E  |swer is {}. Chan|
000001F0: 67 65 20 79 6F 75 72 20  61 6E 73 77 65 72 20 69  |ge your answer i|
00000200: 66 20 69 74 20 69 73 20  6E 6F 74 20 65 71 75 69  |f it is not equi|
00000210: 76 61 6C 65 6E 74 2E 20  28 50 72 65 73 73 20 72  |valent. (Press r|
00000220: 65 74 75 72 6E 29 40 68  54 68 65 79 20 7B 7D 20  |eturn)@hThey {} |
00000230: 74 6F 77 61 72 64 73 20  65 61 63 68 20 6F 74 68  |towards each oth|
00000240: 65 72 20 75 6E 74 69 6C  20 74 68 65 79 20 6D 65  |er until they me|
00000250: 65 74 2E 20 54 68 65 20  73 75 6D 20 6F 66 20 74  |et. The sum of t|
00000260: 68 65 69 72 20 64 69 73  74 61 6E 63 65 73 20 69  |heir distances i|
00000270: 73 20 74 68 65 20 54 6F  74 61 6C 20 64 69 73 74  |s the Total dist|
00000280: 61 6E 63 65 2E 40 68 7B  7D 20 73 68 6F 77 73 20  |ance.@h{} shows |
00000290: 74 68 61 74 20 7B 7D 40  69 28 32 30 2C 63 30 2C  |that {}@i(20,c0,|
000002A0: 20 29 40 72 44 41 54 41  20 45 4E 54 52 59 40 70  | )@rDATA ENTRY@p|
000002B0: 46 69 6C 6C 20 69 6E 20  74 68 65 20 75 6E 69 74  |Fill in the unit|
000002C0: 73 20 62 79 20 77 68 69  63 68 20 72 61 74 65 2C  |s by which rate,|
000002D0: 20 74 69 6D 65 20 61 6E  64 20 64 69 73 74 61 6E  | time and distan|
000002E0: 63 65 20 61 72 65 20 6D  65 61 73 75 72 65 64 2E  |ce are measured.|
000002F0: 20 28 55 73 65 20 61 62  62 72 65 76 69 61 74 65  | (Use abbreviate|
00000300: 64 20 66 6F 72 6D 29 2E  40 68 52 61 74 65 20 6F  |d form).@hRate o|
00000310: 66 20 73 70 65 65 64 20  69 73 20 63 6F 6D 6D 6F  |f speed is commo|
00000320: 6E 6C 79 20 6D 65 61 73  75 72 65 64 20 69 6E 20  |nly measured in |
00000330: 6D 69 6C 65 73 20 70 65  72 20 68 6F 75 72 20 28  |miles per hour (|
00000340: 6D 69 2F 68 72 29 2C 20  6D 65 74 65 72 73 20 70  |mi/hr), meters p|
00000350: 65 72 20 6D 69 6E 75 74  65 20 28 6D 2F 6D 69 6E  |er minute (m/min|
00000360: 29 2C 20 65 74 63 2E 40  68 54 68 65 20 72 61 74  |), etc.@hThe rat|
00000370: 65 20 6F 66 20 73 70 65  65 64 20 69 6E 20 74 68  |e of speed in th|
00000380: 69 73 20 70 72 6F 62 6C  65 6D 20 69 73 20 6D 65  |is problem is me|
00000390: 61 73 75 72 65 64 20 69  6E 20 7B 7D 2E 40 69 28  |asured in {}.@i(|
000003A0: 36 2C 63 7B 7D 2C 7B 7D  29 40 68 54 69 6D 65 20  |6,c{},{})@hTime |
000003B0: 69 73 20 63 6F 6D 6D 6F  6E 6C 79 20 6D 65 61 73  |is commonly meas|
000003C0: 75 72 65 64 20 69 6E 20  73 65 63 6F 6E 64 73 28  |ured in seconds(|
000003D0: 73 65 63 29 2C 20 6D 69  6E 75 74 65 73 28 6D 69  |sec), minutes(mi|
000003E0: 6E 29 2C 20 68 6F 75 72  73 28 68 72 29 2C 20 64  |n), hours(hr), d|
000003F0: 61 79 73 28 64 61 29 2C  20 65 74 63 2E 40 68 54  |ays(da), etc.@hT|
00000400: 69 6D 65 20 69 6E 20 74  68 69 73 20 70 72 6F 62  |ime in this prob|
00000410: 6C 65 6D 20 69 73 20 6D  65 61 73 75 72 65 64 20  |lem is measured |
00000420: 69 6E 20 7B 7D 2E 40 69  28 31 31 2C 63 7B 7D 2C  |in {}.@i(11,c{},|
00000430: 7B 7D 29 40 68 44 69 73  74 61 6E 63 65 20 69 73  |{})@hDistance is|
00000440: 20 63 6F 6D 6D 6F 6E 6C  79 20 6D 65 61 73 75 72  | commonly measur|
00000450: 65 64 20 69 6E 20 66 65  65 74 28 66 74 29 2C 20  |ed in feet(ft), |
00000460: 79 61 72 64 73 28 79 64  29 2C 20 6D 65 74 65 72  |yards(yd), meter|
00000470: 73 28 6D 29 2C 20 6D 69  6C 65 73 28 6D 69 29 2C  |s(m), miles(mi),|
00000480: 20 6B 69 6C 6F 6D 65 74  65 72 73 28 6B 6D 29 2C  | kilometers(km),|
00000490: 20 65 74 63 2E 40 68 44  69 73 74 61 6E 63 65 20  | etc.@hDistance |
000004A0: 69 6E 20 74 68 69 73 20  70 72 6F 62 6C 65 6D 20  |in this problem |
000004B0: 69 73 20 6D 65 61 73 75  72 65 64 20 69 6E 20 7B  |is measured in {|
000004C0: 7D 2E 40 69 28 31 36 2C  63 7B 7D 2C 7B 7D 29 40  |}.@i(16,c{},{})@|
000004D0: 70 45 6E 74 65 72 20 74  68 65 20 66 61 63 74 73  |pEnter the facts|
000004E0: 20 66 72 6F 6D 20 74 68  65 20 70 72 6F 62 6C 65  | from the proble|
000004F0: 6D 20 69 6E 74 6F 20 74  68 65 20 67 72 69 64 2E  |m into the grid.|
00000500: 40 68 7B 7D 40 68 54 68  65 20 74 69 6D 65 20 66  |@h{}@hThe time f|
00000510: 6F 72 20 7B 7D 40 69 28  31 32 2C 7B 7D 2C 7B 7D  |or {}@i(12,{},{}|
00000520: 29 40 68 54 68 65 20 74  69 6D 65 20 66 6F 72 20  |)@hThe time for |
00000530: 7B 7D 20 69 73 20 74 68  65 20 73 61 6D 65 20 61  |{} is the same a|
00000540: 73 20 74 68 65 20 74 69  6D 65 20 66 6F 72 20 7B  |s the time for {|
00000550: 7D 2E 40 68 54 68 65 20  74 69 6D 65 20 66 6F 72  |}.@hThe time for|
00000560: 20 7B 7D 20 69 73 20 61  6C 73 6F 20 7B 7D 2E 40  | {} is also {}.@|
00000570: 69 28 31 33 2C 7B 7D 2C  7B 7D 29 40 68 7B 7D 40  |i(13,{},{})@h{}@|
00000580: 68 54 68 65 20 74 6F 74  61 6C 20 64 69 73 74 61  |hThe total dista|
00000590: 6E 63 65 20 69 73 20 7B  7D 40 69 28 31 39 2C 69  |nce is {}@i(19,i|
000005A0: 2C 7B 7D 29 40 70 43 68  6F 6F 73 65 20 61 20 76  |,{})@pChoose a v|
000005B0: 61 72 69 61 62 6C 65 20  74 6F 20 72 65 70 72 65  |ariable to repre|
000005C0: 73 65 6E 74 20 74 68 65  20 72 61 74 65 20 6F 66  |sent the rate of|
000005D0: 20 73 70 65 65 64 20 66  6F 72 20 65 61 63 68 20  | speed for each |
000005E0: 7B 7D 2E 40 68 55 73 65  20 61 20 76 61 72 69 61  |{}.@hUse a varia|
000005F0: 62 6C 65 20 74 6F 20 72  65 70 72 65 73 65 6E 74  |ble to represent|
00000600: 20 74 68 65 20 73 6C 6F  77 65 72 20 73 70 65 65  | the slower spee|
00000610: 64 2E 20 49 6E 20 74 68  69 73 20 63 61 73 65 2C  |d. In this case,|
00000620: 20 7B 7D 40 68 55 73 65  20 61 20 6C 65 74 74 65  | {}@hUse a lette|
00000630: 72 20 73 75 63 68 20 61  73 20 27 7B 7D 27 20 74  |r such as '{}' t|
00000640: 6F 20 72 65 70 72 65 73  65 6E 74 20 7B 7D 20 72  |o represent {} r|
00000650: 61 74 65 20 6F 66 20 73  70 65 65 64 2E 40 69 28  |ate of speed.@i(|
00000660: 7B 7D 2C 69 2C 26 76 29  40 68 52 65 70 72 65 73  |{},i,&v)@hRepres|
00000670: 65 6E 74 20 7B 7D 20 72  61 74 65 20 69 6E 20 74  |ent {} rate in t|
00000680: 65 72 6D 73 20 6F 66 20  22 26 76 22 20 28 7B 7D  |erms of "&v" ({}|
00000690: 29 20 72 61 74 65 2E 20  7B 7D 40 68 60 7B 7D 27  |) rate. {}@h`{}'|
000006A0: 20 73 68 6F 77 73 20 74  68 61 74 20 7B 7D 20 7B  | shows that {} {|
000006B0: 7D 20 65 61 63 68 20 7B  7D 2E 40 69 28 7B 7D 2C  |} each {}.@i({},|
000006C0: 69 2C 26 76 7B 7D 29 40  72 50 41 52 54 53 40 70  |i,&v{})@rPARTS@p|
000006D0: 57 72 69 74 65 20 61 6E  20 65 78 70 72 65 73 73  |Write an express|
000006E0: 69 6F 6E 20 74 6F 20 72  65 70 72 65 73 65 6E 74  |ion to represent|
000006F0: 20 74 68 65 20 64 69 73  74 61 6E 63 65 20 74 72  | the distance tr|
00000700: 61 76 65 6C 6C 65 64 20  62 79 20 65 61 63 68 20  |avelled by each |
00000710: 7B 7D 2E 40 68 52 61 74  65 20 2A 20 54 69 6D 65  |{}.@hRate * Time|
00000720: 20 3D 20 44 69 73 74 61  6E 63 65 40 68 52 61 74  | = Distance@hRat|
00000730: 65 20 20 5C 66 30 38 2A  20 54 69 6D 65 20 5C 66  |e  \f08* Time \f|
00000740: 31 35 3D 20 44 69 73 74  61 6E 63 65 20 5C 6E 7B  |15= Distance \n{|
00000750: 7D 40 69 28 31 37 2C 69  2C 7B 7D 29 40 68 52 61  |}@i(17,i,{})@hRa|
00000760: 74 65 20 2A 20 54 69 6D  65 20 3D 20 44 69 73 74  |te * Time = Dist|
00000770: 61 6E 63 65 40 68 52 61  74 65 20 20 5C 66 30 36  |ance@hRate  \f06|
00000780: 2A 20 54 69 6D 65 20 20  5C 66 31 33 3D 20 44 69  |* Time  \f13= Di|
00000790: 73 74 61 6E 63 65 20 5C  6E 7B 7D 40 69 28 31 38  |stance \n{}@i(18|
000007A0: 2C 69 2C 7B 7D 29 26 64  28 32 30 2C 20 29 40 72  |,i,{})&d(20, )@r|
000007B0: 57 48 4F 4C 45 40 70 53  75 62 73 74 69 74 75 74  |WHOLE@pSubstitut|
000007C0: 65 20 79 6F 75 72 20 65  78 70 72 65 73 73 69 6F  |e your expressio|
000007D0: 6E 73 20 66 6F 72 20 44  7B 7D 20 61 6E 64 20 44  |ns for D{} and D|
000007E0: 7B 7D 20 69 6E 20 74 68  65 20 65 71 75 61 74 69  |{} in the equati|
000007F0: 6F 6E 20 3A 20 44 7B 7D  2B 44 7B 7D 3D 20 54 6F  |on : D{}+D{}= To|
00000800: 74 61 6C 2E 40 68 7B 7D  20 64 69 73 74 61 6E 63  |tal.@h{} distanc|
00000810: 65 20 3D 20 7B 7D 2C 20  7B 7D 20 64 69 73 74 61  |e = {}, {} dista|
00000820: 6E 63 65 20 3D 20 7B 7D  20 61 6E 64 20 54 6F 74  |nce = {} and Tot|
00000830: 61 6C 20 3D 20 7B 7D 2E  40 68 7B 7D 20 64 69 73  |al = {}.@h{} dis|
00000840: 74 2E 2B 7B 7D 20 64 69  73 74 2E 20 3D 20 54 6F  |t.+{} dist. = To|
00000850: 74 61 6C 20 64 69 73 74  2E 20 5C 6E 7B 7D 40 69  |tal dist. \n{}@i|
00000860: 28 32 30 2C 69 2C 7B 7D  29 40 73 40 72 43 4F 4D  |(20,i,{})@s@rCOM|
00000870: 50 55 54 45 40 70 53 6F  6C 76 65 20 74 68 65 20  |PUTE@pSolve the |
00000880: 65 71 75 61 74 69 6F 6E  20 66 6F 72 20 22 26 76  |equation for "&v|
00000890: 22 2E 20 55 73 65 20 70  61 70 65 72 20 61 6E 64  |". Use paper and|
000008A0: 20 70 65 6E 63 69 6C 20  61 6E 64 20 65 6E 74 65  | pencil and ente|
000008B0: 72 20 74 68 65 20 66 69  6E 61 6C 20 65 71 75 61  |r the final equa|
000008C0: 74 69 6F 6E 2C 20 6F 72  20 75 73 65 20 74 68 65  |tion, or use the|
000008D0: 20 43 61 6C 63 75 6C 61  74 6F 72 2E 40 68 49 73  | Calculator.@hIs|
000008E0: 6F 6C 61 74 65 20 22 26  76 22 20 6F 6E 20 6F 6E  |olate "&v" on on|
000008F0: 65 20 73 69 64 65 20 6F  66 20 74 68 65 20 65 71  |e side of the eq|
00000900: 75 61 74 69 6F 6E 2E 40  68 54 68 65 20 43 61 6C  |uation.@hThe Cal|
00000910: 63 75 6C 61 74 6F 72 20  73 6F 6C 76 65 73 20 65  |culator solves e|
00000920: 71 75 61 74 69 6F 6E 73  20 66 6F 72 20 79 6F 75  |quations for you|
00000930: 20 61 6E 64 20 64 69 73  70 6C 61 79 73 20 74 68  | and displays th|
00000940: 65 20 73 74 65 70 73 20  69 6E 20 74 68 65 20 73  |e steps in the s|
00000950: 6F 6C 75 74 69 6F 6E 2E  40 69 28 32 30 2C 69 2C  |olution.@i(20,i,|
00000960: 26 76 3D 7B 7D 29 40 70  45 6E 74 65 72 20 79 6F  |&v={})@pEnter yo|
00000970: 75 72 20 61 6E 73 77 65  72 73 20 74 6F 20 74 68  |ur answers to th|
00000980: 65 20 70 72 6F 62 6C 65  6D 20 69 6E 20 74 68 65  |e problem in the|
00000990: 20 63 68 61 72 74 2E 20  52 65 6D 65 6D 62 65 72  | chart. Remember|
000009A0: 20 74 68 65 20 71 75 65  73 74 69 6F 6E 2E 20 7B  | the question. {|
000009B0: 7D 26 77 28 32 30 29 40  68 54 68 65 20 72 61 74  |}&w(20)@hThe rat|
000009C0: 65 20 6F 66 20 73 70 65  65 64 20 66 6F 72 20 7B  |e of speed for {|
000009D0: 7D 20 69 73 20 74 68 65  20 76 61 6C 75 65 20 6F  |} is the value o|
000009E0: 66 20 22 26 76 22 2E 40  68 54 68 65 20 72 61 74  |f "&v".@hThe rat|
000009F0: 65 20 6F 66 20 73 70 65  65 64 20 66 6F 72 20 7B  |e of speed for {|
00000A00: 7D 20 69 73 20 74 68 65  20 76 61 6C 75 65 20 6F  |} is the value o|
00000A10: 66 20 22 26 76 22 2E 20  26 76 20 3D 20 7B 7D 2C  |f "&v". &v = {},|
00000A20: 20 73 6F 20 65 6E 74 65  72 20 60 7B 7D 27 2E 40  | so enter `{}'.@|
00000A30: 69 28 7B 7D 2C 69 2C 7B  7D 29 40 73 26 77 28 32  |i({},i,{})@s&w(2|
00000A40: 30 29 40 68 54 68 65 20  72 61 74 65 20 6F 66 20  |0)@hThe rate of |
00000A50: 73 70 65 65 64 20 66 6F  72 20 7B 7D 20 69 73 20  |speed for {} is |
00000A60: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 7B 7D 2E  |the value of {}.|
00000A70: 40 68 54 68 65 20 72 61  74 65 20 6F 66 20 73 70  |@hThe rate of sp|
00000A80: 65 65 64 20 66 6F 72 20  7B 7D 20 69 73 20 74 68  |eed for {} is th|
00000A90: 65 20 76 61 6C 75 65 20  6F 66 20 7B 7D 2E 20 7B  |e value of {}. {|
00000AA0: 7D 2C 20 73 6F 20 65 6E  74 65 72 20 60 7B 7D 27  |}, so enter `{}'|
00000AB0: 2E 40 69 28 7B 7D 2C 69  2C 7B 7D 29 40 73 40 72  |.@i({},i,{})@s@r|
00000AC0: 43 48 45 43 4B 40 70 52  65 72 65 61 64 20 74 68  |CHECK@pReread th|
00000AD0: 65 20 71 75 65 73 74 69  6F 6E 2E 20 43 68 65 63  |e question. Chec|
00000AE0: 6B 20 79 6F 75 72 20 61  6E 73 77 65 72 73 2E 20  |k your answers. |
00000AF0: 45 76 61 6C 75 61 74 65  20 74 68 65 20 72 65 6D  |Evaluate the rem|
00000B00: 61 69 6E 69 6E 67 20 65  78 70 72 65 73 73 69 6F  |aining expressio|
00000B10: 6E 73 20 69 6E 20 74 68  65 20 63 68 61 72 74 2E  |ns in the chart.|
00000B20: 40 68 53 75 62 73 74 69  74 75 74 65 20 66 6F 72  |@hSubstitute for|
00000B30: 20 22 26 76 22 20 69 6E  20 74 68 65 20 65 78 70  | "&v" in the exp|
00000B40: 72 65 73 73 69 6F 6E 20  66 6F 72 20 7B 7D 20 64  |ression for {} d|
00000B50: 69 73 74 61 6E 63 65 2E  20 54 68 65 6E 20 63 61  |istance. Then ca|
00000B60: 6C 63 75 6C 61 74 65 20  74 68 65 20 72 65 73 75  |lculate the resu|
00000B70: 6C 74 2E 40 68 7B 7D 40  69 28 31 37 2C 69 2C 7B  |lt.@h{}@i(17,i,{|
00000B80: 7D 29 40 68 53 75 62 73  74 69 74 75 74 65 20 66  |})@hSubstitute f|
00000B90: 6F 72 20 22 26 76 22 20  69 6E 20 74 68 65 20 65  |or "&v" in the e|
00000BA0: 78 70 72 65 73 73 69 6F  6E 20 66 6F 72 20 7B 7D  |xpression for {}|
00000BB0: 20 64 69 73 74 61 6E 63  65 2E 20 54 68 65 6E 20  | distance. Then |
00000BC0: 63 61 6C 63 75 6C 61 74  65 20 74 68 65 20 72 65  |calculate the re|
00000BD0: 73 75 6C 74 2E 40 68 7B  7D 40 69 28 31 38 2C 69  |sult.@h{}@i(18,i|
00000BE0: 2C 7B 7D 29 26 64 28 30  2C 43 68 65 63 6B 20 79  |,{})&d(0,Check y|
00000BF0: 6F 75 72 20 77 6F 72 6B  2E 20 54 68 65 20 73 75  |our work. The su|
00000C00: 6D 20 6F 66 20 7B 7D 20  64 69 73 74 61 6E 63 65  |m of {} distance|
00000C10: 73 20 73 68 6F 75 6C 64  20 62 65 20 7B 7D 2E 20  |s should be {}. |
00000C20: 47 65 74 20 72 65 61 64  79 20 66 6F 72 20 61 20  |Get ready for a |
00000C30: 6E 65 77 20 70 72 6F 62  6C 65 6D 2E 29 40 66 45  |new problem.)@fE|
00000C40: 61 73 74 62 6F 75 6E 64  20 70 6C 61 6E 65 73 20  |astbound planes |
00000C50: 74 6F 20 52 6F 6D 65 20  75 73 75 61 6C 6C 79 20  |to Rome usually |
00000C60: 67 6F 20 36 30 20 6D 69  2F 68 72 20 66 61 73 74  |go 60 mi/hr fast|
00000C70: 65 72 20 74 68 61 6E 20  77 65 73 74 62 6F 75 6E  |er than westboun|
00000C80: 64 20 70 6C 61 6E 65 73  20 74 6F 20 4E 65 77 20  |d planes to New |
00000C90: 59 6F 72 6B 2E 20 49 66  20 74 68 65 20 74 72 69  |York. If the tri|
00000CA0: 70 20 69 73 20 34 35 30  30 20 6D 69 2E 20 61 6E  |p is 4500 mi. an|
00000CB0: 64 20 74 68 65 20 65 61  73 74 62 6F 75 6E 64 20  |d the eastbound |
00000CC0: 61 6E 64 20 77 65 73 74  62 6F 75 6E 64 20 70 6C  |and westbound pl|
00000CD0: 61 6E 65 73 20 70 61 73  73 20 61 66 74 65 72 20  |anes pass after |
00000CE0: 35 20 68 72 73 2C 20 68  6F 77 20 66 61 73 74 20  |5 hrs, how fast |
00000CF0: 64 6F 20 74 68 65 79 20  65 61 63 68 20 66 6C 79  |do they each fly|
00000D00: 3F 00 45 61 73 74 00 57  65 73 74 00 54 77 6F 20  |?.East.West.Two |
00000D10: 70 6C 61 6E 65 73 20 6C  65 61 76 69 6E 67 20 61  |planes leaving a|
00000D20: 74 20 74 68 65 20 73 61  6D 65 20 74 69 6D 65 20  |t the same time |
00000D30: 66 6C 79 20 74 6F 77 61  72 64 73 20 65 61 63 68  |fly towards each|
00000D40: 20 6F 74 68 65 72 20 61  74 20 64 69 66 66 65 72  | other at differ|
00000D50: 65 6E 74 20 72 61 74 65  73 2E 00 48 6F 77 20 66  |ent rates..How f|
00000D60: 61 73 74 20 64 6F 20 74  68 65 79 20 65 61 63 68  |ast do they each|
00000D70: 20 66 6C 79 00 65 00 45  61 73 74 27 73 00 77 00  | fly.e.East's.w.|
00000D80: 57 65 73 74 27 73 00 65  00 77 00 66 6C 79 00 60  |West's.e.w.fly.`|
00000D90: 44 65 2B 44 77 20 3D 20  54 6F 74 61 6C 27 00 74  |De+Dw = Total'.t|
00000DA0: 68 65 20 73 75 6D 20 6F  66 20 74 68 65 69 72 20  |he sum of their |
00000DB0: 64 69 73 74 61 6E 63 65  73 20 69 73 20 65 71 75  |distances is equ|
00000DC0: 61 6C 20 74 6F 20 74 68  65 20 54 6F 74 61 6C 20  |al to the Total |
00000DD0: 64 69 73 74 61 6E 63 65  2E 00 44 65 2B 44 77 20  |distance..De+Dw |
00000DE0: 3D 20 54 6F 74 61 6C 00  66 6C 79 00 60 44 65 2B  |= Total.fly.`De+|
00000DF0: 44 77 20 3D 20 54 6F 74  61 6C 27 00 74 68 65 20  |Dw = Total'.the |
00000E00: 73 75 6D 20 6F 66 20 74  68 65 69 72 20 64 69 73  |sum of their dis|
00000E10: 74 61 6E 63 65 73 20 69  73 20 65 71 75 61 6C 20  |tances is equal |
00000E20: 74 6F 20 74 68 65 20 54  6F 74 61 6C 20 64 69 73  |to the Total dis|
00000E30: 74 61 6E 63 65 2E 00 60  6D 69 2F 68 72 27 00 34  |tance..`mi/hr'.4|
00000E40: 00 6D 69 2F 68 72 00 68  6F 75 72 73 20 28 60 68  |.mi/hr.hours (`h|
00000E50: 72 27 29 00 32 00 68 72  00 6D 69 6C 65 73 20 28  |r').2.hr.miles (|
00000E60: 60 6D 69 27 29 00 32 00  6D 69 00 42 6F 74 68 20  |`mi').2.mi.Both |
00000E70: 70 6C 61 6E 65 73 20 77  69 6C 6C 20 66 6C 79 20  |planes will fly |
00000E80: 66 6F 72 20 26 68 35 20  68 72 73 26 68 20 62 65  |for &h5 hrs&h be|
00000E90: 66 6F 72 65 20 74 68 65  79 20 70 61 73 73 20 65  |fore they pass e|
00000EA0: 61 63 68 20 6F 74 68 65  72 2E 00 74 68 65 20 65  |ach other..the e|
00000EB0: 61 73 74 62 6F 75 6E 64  20 70 6C 61 6E 65 20 69  |astbound plane i|
00000EC0: 73 20 60 35 27 20 68 6F  75 72 73 2E 00 69 00 35  |s `5' hours..i.5|
00000ED0: 00 74 68 65 20 77 65 73  74 62 6F 75 6E 64 20 70  |.the westbound p|
00000EE0: 6C 61 6E 65 00 74 68 65  20 65 61 73 74 62 6F 75  |lane.the eastbou|
00000EF0: 6E 64 20 70 6C 61 6E 65  00 77 65 73 74 00 60 35  |nd plane.west.`5|
00000F00: 27 20 68 6F 75 72 73 00  69 00 35 00 26 68 54 68  |' hours.i.5.&hTh|
00000F10: 65 20 74 72 69 70 20 69  73 20 34 35 30 30 20 6D  |e trip is 4500 m|
00000F20: 69 26 68 2E 00 60 34 35  30 30 27 20 6D 69 6C 65  |i&h..`4500' mile|
00000F30: 73 2E 00 34 35 30 30 00  70 6C 61 6E 65 00 74 68  |s..4500.plane.th|
00000F40: 65 20 77 65 73 74 62 6F  75 6E 64 20 70 6C 61 6E  |e westbound plan|
00000F50: 65 20 69 73 20 73 6C 6F  77 65 72 2E 00 77 00 57  |e is slower..w.W|
00000F60: 65 73 74 27 73 00 38 00  45 61 73 74 27 73 00 57  |est's.8.East's.W|
00000F70: 65 73 74 27 73 00 45 61  73 74 62 6F 75 6E 64 20  |est's.Eastbound |
00000F80: 70 6C 61 6E 65 73 20 67  6F 20 26 68 36 30 20 6D  |planes go &h60 m|
00000F90: 69 2F 68 72 20 66 61 73  74 65 72 26 68 20 74 68  |i/hr faster&h th|
00000FA0: 61 6E 20 77 65 73 74 62  6F 75 6E 64 20 70 6C 61  |an westbound pla|
00000FB0: 6E 65 73 2E 00 26 76 2B  36 30 00 45 61 73 74 20  |nes..&v+60.East |
00000FC0: 66 6C 69 65 73 20 36 30  20 6D 69 6C 65 73 00 66  |flies 60 miles.f|
00000FD0: 75 72 74 68 65 72 20 74  68 61 6E 20 57 65 73 74  |urther than West|
00000FE0: 00 68 6F 75 72 00 37 00  2B 36 30 00 70 6C 61 6E  |.hour.7.+60.plan|
00000FF0: 65 00 60 28 26 76 2B 36  30 29 20 5C 66 30 38 2A  |e.`(&v+60) \f08*|
00001000: 20 35 27 20 5C 66 31 35  3D 20 45 61 73 74 27 73  | 5' \f15= East's|
00001010: 20 64 69 73 74 2E 00 35  28 26 76 2B 36 30 29 00  | dist..5(&v+60).|
00001020: 60 26 76 20 5C 66 30 36  2A 20 20 20 35 27 20 20  |`&v \f06*   5'  |
00001030: 5C 66 31 33 3D 20 57 65  73 74 27 73 20 64 69 73  |\f13= West's dis|
00001040: 74 2E 00 35 26 76 00 65  00 77 00 65 00 77 00 45  |t..5&v.e.w.e.w.E|
00001050: 61 73 74 27 73 00 35 28  26 76 2B 36 30 29 00 57  |ast's.5(&v+60).W|
00001060: 65 73 74 27 73 00 35 26  76 00 34 35 30 30 00 45  |est's.5&v.4500.E|
00001070: 61 73 74 27 73 00 57 65  73 74 27 73 00 60 35 28  |ast's.West's.`5(|
00001080: 26 76 2B 36 30 29 20 2B  20 35 26 76 20 3D 20 34  |&v+60) + 5&v = 4|
00001090: 35 30 30 27 00 35 28 26  76 2B 36 30 29 2B 35 26  |500'.5(&v+60)+5&|
000010A0: 76 3D 34 35 30 30 00 34  32 30 00 26 71 48 6F 77  |v=4500.420.&qHow|
000010B0: 20 66 61 73 74 20 64 6F  20 74 68 65 79 20 65 61  | fast do they ea|
000010C0: 63 68 20 66 6C 79 3F 26  71 00 74 68 65 20 77 65  |ch fly?&q.the we|
000010D0: 73 74 62 6F 75 6E 64 20  70 6C 61 6E 65 00 57 65  |stbound plane.We|
000010E0: 73 74 00 34 32 30 00 34  32 30 00 38 00 34 32 30  |st.420.420.8.420|
000010F0: 00 74 68 65 20 65 61 73  74 62 6F 75 6E 64 20 70  |.the eastbound p|
00001100: 6C 61 6E 65 00 26 76 2B  36 30 00 45 61 73 74 00  |lane.&v+60.East.|
00001110: 26 76 2B 36 30 00 26 76  2B 36 30 20 3D 20 34 32  |&v+60.&v+60 = 42|
00001120: 30 2B 36 30 20 3D 20 60  34 38 30 27 00 34 38 30  |0+60 = `480'.480|
00001130: 00 37 00 34 38 30 00 45  61 73 74 27 73 00 26 76  |.7.480.East's.&v|
00001140: 20 3D 20 34 32 30 2C 20  73 6F 20 35 28 26 76 2B  | = 420, so 5(&v+|
00001150: 36 30 29 20 3D 20 35 28  34 38 30 29 20 3D 20 60  |60) = 5(480) = `|
00001160: 32 34 30 30 27 2E 00 32  34 30 30 00 57 65 73 74  |2400'..2400.West|
00001170: 27 73 00 26 76 20 3D 20  34 32 30 2C 20 73 6F 20  |'s.&v = 420, so |
00001180: 35 26 76 20 3D 20 35 2A  34 32 30 20 3D 20 60 32  |5&v = 5*420 = `2|
00001190: 31 30 30 27 2E 00 32 31  30 30 00 74 68 65 69 72  |100'..2100.their|
000011A0: 00 34 35 30 30 00 40 66  43 68 61 72 6C 69 65 20  |.4500.@fCharlie |
000011B0: 64 72 69 76 65 73 20 74  77 69 63 65 20 61 73 20  |drives twice as |
000011C0: 66 61 73 74 20 61 73 20  45 64 69 74 68 2E 20 49  |fast as Edith. I|
000011D0: 66 20 74 68 65 79 20 6C  65 61 76 65 20 74 68 65  |f they leave the|
000011E0: 69 72 20 68 6F 75 73 65  73 20 28 31 34 34 20 6D  |ir houses (144 m|
000011F0: 69 6C 65 73 20 61 70 61  72 74 29 20 61 74 20 74  |iles apart) at t|
00001200: 68 65 20 73 61 6D 65 20  74 69 6D 65 20 61 6E 64  |he same time and|
00001210: 20 64 72 69 76 65 20 74  6F 77 61 72 64 73 20 65  | drive towards e|
00001220: 61 63 68 20 6F 74 68 65  72 2C 20 74 68 65 79 20  |ach other, they |
00001230: 6D 65 65 74 20 61 66 74  65 72 20 32 20 68 6F 75  |meet after 2 hou|
00001240: 72 73 2E 20 48 6F 77 20  66 61 73 74 20 64 6F 65  |rs. How fast doe|
00001250: 73 20 65 61 63 68 20 64  72 69 76 65 3F 00 43 68  |s each drive?.Ch|
00001260: 61 72 6C 69 65 00 45 64  69 74 68 00 54 68 65 79  |arlie.Edith.They|
00001270: 20 64 72 69 76 65 20 74  6F 77 61 72 64 73 20 65  | drive towards e|
00001280: 61 63 68 20 6F 74 68 65  72 20 61 74 20 64 69 66  |ach other at dif|
00001290: 66 65 72 65 6E 74 20 72  61 74 65 73 20 66 6F 72  |ferent rates for|
000012A0: 20 32 20 68 6F 75 72 73  20 75 6E 74 69 6C 20 74  | 2 hours until t|
000012B0: 68 65 79 20 6D 65 65 74  2E 00 48 6F 77 20 66 61  |hey meet..How fa|
000012C0: 73 74 20 64 6F 65 73 20  65 61 63 68 20 64 72 69  |st does each dri|
000012D0: 76 65 00 63 00 43 68 61  72 6C 69 65 27 73 00 65  |ve.c.Charlie's.e|
000012E0: 00 45 64 69 74 68 27 73  00 63 00 65 00 64 72 69  |.Edith's.c.e.dri|
000012F0: 76 65 00 60 44 63 2B 44  65 20 3D 20 54 6F 74 61  |ve.`Dc+De = Tota|
00001300: 6C 27 00 74 68 65 20 73  75 6D 20 6F 66 20 74 68  |l'.the sum of th|
00001310: 65 69 72 20 64 69 73 74  61 6E 63 65 73 20 69 73  |eir distances is|
00001320: 20 65 71 75 61 6C 20 74  6F 20 74 68 65 20 74 6F  | equal to the to|
00001330: 74 61 6C 20 64 69 73 74  61 6E 63 65 2E 00 60 44  |tal distance..`D|
00001340: 63 2B 44 65 20 3D 20 54  6F 74 61 6C 27 00 64 72  |c+De = Total'.dr|
00001350: 69 76 65 00 60 44 63 2B  44 65 20 3D 20 54 6F 74  |ive.`Dc+De = Tot|
00001360: 61 6C 27 00 74 68 65 20  73 75 6D 20 6F 66 20 74  |al'.the sum of t|
00001370: 68 65 69 72 20 64 69 73  74 61 6E 63 65 73 20 69  |heir distances i|
00001380: 73 20 65 71 75 61 6C 20  74 6F 20 74 68 65 20 74  |s equal to the t|
00001390: 6F 74 61 6C 20 64 69 73  74 61 6E 63 65 2E 00 6D  |otal distance..m|
000013A0: 69 6C 65 73 20 70 65 72  20 68 6F 75 72 20 28 60  |iles per hour (`|
000013B0: 6D 69 2F 68 72 27 29 00  34 00 6D 69 2F 68 72 00  |mi/hr').4.mi/hr.|
000013C0: 68 6F 75 72 73 20 28 60  68 72 27 29 00 32 00 68  |hours (`hr').2.h|
000013D0: 72 00 6D 69 6C 65 73 20  28 60 6D 69 27 29 00 32  |r.miles (`mi').2|
000013E0: 00 6D 69 00 42 6F 74 68  20 6F 66 20 74 68 65 6D  |.mi.Both of them|
000013F0: 20 64 72 69 76 65 20 66  6F 72 20 26 68 32 20 68  | drive for &h2 h|
00001400: 6F 75 72 73 26 68 2E 00  43 68 61 72 6C 69 65 20  |ours&h..Charlie |
00001410: 69 73 20 60 32 27 20 68  6F 75 72 73 2E 00 69 00  |is `2' hours..i.|
00001420: 32 00 45 64 69 74 68 00  43 68 61 72 6C 69 65 00  |2.Edith.Charlie.|
00001430: 45 64 69 74 68 00 60 32  27 20 68 6F 75 72 73 00  |Edith.`2' hours.|
00001440: 69 00 32 00 54 68 65 20  74 6F 74 61 6C 20 64 69  |i.2.The total di|
00001450: 73 74 61 6E 63 65 20 62  65 74 77 65 65 6E 20 74  |stance between t|
00001460: 68 65 69 72 20 68 6F 75  73 65 73 20 69 73 20 26  |heir houses is &|
00001470: 68 31 34 34 20 6D 69 6C  65 73 26 68 2E 00 60 31  |h144 miles&h..`1|
00001480: 34 34 27 20 6D 69 6C 65  73 2E 00 31 34 34 00 70  |44' miles..144.p|
00001490: 65 72 73 6F 6E 00 45 64  69 74 68 20 64 72 69 76  |erson.Edith driv|
000014A0: 65 73 20 73 6C 6F 77 65  72 20 74 68 61 6E 20 43  |es slower than C|
000014B0: 68 61 72 6C 69 65 2E 00  65 00 45 64 69 74 68 27  |harlie..e.Edith'|
000014C0: 73 00 38 00 43 68 61 72  6C 69 65 27 73 00 45 64  |s.8.Charlie's.Ed|
000014D0: 69 74 68 27 73 00 26 71  43 68 61 72 6C 69 65 20  |ith's.&qCharlie |
000014E0: 64 72 69 76 65 73 20 74  77 69 63 65 20 61 73 20  |drives twice as |
000014F0: 66 61 73 74 20 61 73 20  45 64 69 74 68 26 71 00  |fast as Edith&q.|
00001500: 32 26 76 00 43 68 61 72  6C 69 65 20 64 72 69 76  |2&v.Charlie driv|
00001510: 65 73 00 74 77 69 63 65  20 61 73 20 66 61 73 74  |es.twice as fast|
00001520: 20 61 73 20 45 64 69 74  68 00 68 6F 75 72 00 37  | as Edith.hour.7|
00001530: 00 2A 32 00 70 65 72 73  6F 6E 00 20 60 32 26 76  |.*2.person. `2&v|
00001540: 20 5C 66 30 36 2A 20 32  27 20 20 5C 66 31 33 3D  | \f06* 2'  \f13=|
00001550: 20 43 27 73 20 64 69 73  74 2E 00 32 2A 32 26 76  | C's dist..2*2&v|
00001560: 00 20 60 26 76 20 5C 66  30 36 2A 20 20 20 32 27  |. `&v \f06*   2'|
00001570: 20 5C 66 31 33 3D 20 45  27 73 20 64 69 73 74 2E  | \f13= E's dist.|
00001580: 00 32 2A 26 76 00 63 00  65 00 63 00 74 00 43 68  |.2*&v.c.e.c.t.Ch|
00001590: 61 72 6C 69 65 27 73 00  34 26 76 00 45 64 69 74  |arlie's.4&v.Edit|
000015A0: 68 27 73 00 32 26 76 00  31 34 34 20 6D 69 6C 65  |h's.2&v.144 mile|
000015B0: 73 00 43 68 61 72 6C 69  65 27 73 00 45 64 69 74  |s.Charlie's.Edit|
000015C0: 68 27 73 00 60 34 26 76  20 2B 20 32 26 76 20 3D  |h's.`4&v + 2&v =|
000015D0: 20 31 34 34 27 00 34 26  76 2B 32 26 76 3D 31 34  | 144'.4&v+2&v=14|
000015E0: 34 00 32 34 00 26 71 48  6F 77 20 66 61 73 74 20  |4.24.&qHow fast |
000015F0: 64 6F 65 73 20 65 61 63  68 20 64 72 69 76 65 3F  |does each drive?|
00001600: 26 71 00 45 64 69 74 68  00 45 64 69 74 68 00 32  |&q.Edith.Edith.2|
00001610: 34 00 32 34 00 38 00 32  34 00 43 68 61 72 6C 69  |4.24.8.24.Charli|
00001620: 65 00 32 26 76 00 43 68  61 72 6C 69 65 00 32 26  |e.2&v.Charlie.2&|
00001630: 76 00 32 26 76 20 3D 20  32 2A 32 34 00 34 38 00  |v.2&v = 2*24.48.|
00001640: 37 00 34 38 00 43 68 61  72 6C 69 65 27 73 00 34  |7.48.Charlie's.4|
00001650: 26 76 20 72 65 70 72 65  73 65 6E 74 73 20 43 68  |&v represents Ch|
00001660: 61 72 6C 69 65 27 73 20  64 69 73 74 61 6E 63 65  |arlie's distance|
00001670: 20 61 6E 64 20 34 2A 32  34 20 3D 20 60 39 36 27  | and 4*24 = `96'|
00001680: 20 6D 69 6C 65 73 2E 00  39 36 00 45 64 69 74 68  | miles..96.Edith|
00001690: 27 73 00 32 26 76 20 72  65 70 72 65 73 65 6E 74  |'s.2&v represent|
000016A0: 73 20 45 64 69 74 68 27  73 20 64 69 73 74 61 6E  |s Edith's distan|
000016B0: 63 65 20 61 6E 64 20 32  2A 32 34 20 3D 20 60 34  |ce and 2*24 = `4|
000016C0: 38 27 20 6D 69 6C 65 73  2E 00 34 38 00 74 68 65  |8' miles..48.the|
000016D0: 69 72 00 31 34 34 20 6D  69 6C 65 73 00 7C 32     |ir.144 miles.|2 |
 A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&D(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIS
T.)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE)@HWHAT ARE
 THE FACTS? {}@HWHAT IS BEING ASKED? &H{
}&H?@I(0)@RPLAN @PLET D{} = {} DIST. AND
 D{} = {} DIST. WRITE AN EQUATION TO REL
ATE D{}, D{} AND TOTAL DIST.@HTHEY {} TO
WARDS EACH OTHER UNTIL THEY MEET. THE SU
M OF THEIR DISTANCES IS THE TOTAL DISTAN
CE.@H{} SHOWS THAT {}@I(20,C0, )@PONE AN
SWER IS {}. CHANGE YOUR ANSWER IF IT IS 
NOT EQUIVALENT. (PRESS RETURN)@HTHEY {} 
TOWARDS EACH OTHER UNTIL THEY MEET. THE 
SUM OF THEIR DISTANCES IS THE TOTAL DIST
ANCE.@H{} SHOWS THAT {}@I(20,C0, )@RDATA
 ENTRY@PFILL IN THE UNITS BY WHICH RATE,
 TIME AND DISTANCE ARE MEASURED. (USE AB
BREVIATED FORM).@HRATE OF SPEED IS COMMO
NLY MEASURED IN MILES PER HOUR (MI/HR), 
METERS PER MINUTE (M/MIN), ETC.@HTHE RAT
E OF SPEED IN THIS PROBLEM IS MEASURED I
N {}.@I(6,C{},{})@HTIME IS COMMONLY MEAS
URED IN SECONDS(SEC), MINUTES(MIN), HOUR
S(HR), DAYS(DA), ETC.@HTIME IN THIS PROB
LEM IS MEASURED IN {}.@I(11,C{},{})@HDIS
TANCE IS COMMONLY MEASURED IN FEET(FT), 
YARDS(YD), METERS(M), MILES(MI), KILOMET
ERS(KM), ETC.@HDISTANCE IN THIS PROBLEM 
IS MEASURED IN {}.@I(16,C{},{})@PENTER T
HE FACTS FROM THE PROBLEM INTO THE GRID.
@H{}@HTHE TIME FOR {}@I(12,{},{})@HTHE T
IME FOR {} IS THE SAME AS THE TIME FOR {
}.@HTHE TIME FOR {} IS ALSO {}.@I(13,{},
{})@H{}@HTHE TOTAL DISTANCE IS {}@I(19,I
,{})@PCHOOSE A VARIABLE TO REPRESENT THE
 RATE OF SPEED FOR EACH {}.@HUSE A VARIA
BLE TO REPRESENT THE SLOWER SPEED. IN TH
IS CASE, {}@HUSE A LETTER SUCH AS '{}' T
O REPRESENT {} RATE OF SPEED.@I({},I,&V)
@HREPRESENT {} RATE IN TERMS OF "&V" ({}
) RATE. {}@H`{}' SHOWS THAT {} {} EACH {
}.@I({},I,&V{})@RPARTS@PWRITE AN EXPRESS
ION TO REPRESENT THE DISTANCE TRAVELLED 
BY EACH {}.@HRATE * TIME = DISTANCE@HRAT
E  \F08* TIME \F15= DISTANCE \N{}@I(17,I
,{})@HRATE * TIME = DISTANCE@HRATE  \F06
* TIME  \F13= DISTANCE \N{}@I(18,I,{})&D
(20, )@RWHOLE@PSUBSTITUTE YOUR EXPRESSIO
NS FOR D{} AND D{} IN THE EQUATION : D{}
+D{}= TOTAL.@H{} DISTANCE = {}, {} DISTA
NCE = {} AND TOTAL = {}.@H{} DIST.+{} DI
ST. = TOTAL DIST. \N{}@I(20,I,{})@S@RCOM
PUTE@PSOLVE THE EQUATION FOR "&V". USE P
APER AND PENCIL AND ENTER THE FINAL EQUA
TION, OR USE THE CALCULATOR.@HISOLATE "&
V" ON ONE SIDE OF THE EQUATION.@HTHE CAL
CULATOR SOLVES EQUATIONS FOR YOU AND DIS
PLAYS THE STEPS IN THE SOLUTION.@I(20,I,
&V={})@PENTER YOUR ANSWERS TO THE PROBLE
M IN THE CHART. REMEMBER THE QUESTION. {
}&W(20)@HTHE RATE OF SPEED FOR {} IS THE
 VALUE OF "&V".@HTHE RATE OF SPEED FOR {
} IS THE VALUE OF "&V". &V = {}, SO ENTE
R `{}'.@I({},I,{})@S&W(20)@HTHE RATE OF 
SPEED FOR {} IS THE VALUE OF {}.@HTHE RA
TE OF SPEED FOR {} IS THE VALUE OF {}. {
}, SO ENTER `{}'.@I({},I,{})@S@RCHECK@PR
EREAD THE QUESTION. CHECK YOUR ANSWERS. 
EVALUATE THE REMAINING EXPRESSIONS IN TH
E CHART.@HSUBSTITUTE FOR "&V" IN THE EXP
RESSION FOR {} DISTANCE. THEN CALCULATE 
THE RESULT.@H{}@I(17,I,{})@HSUBSTITUTE F
OR "&V" IN THE EXPRESSION FOR {} DISTANC
E. THEN CALCULATE THE RESULT.@H{}@I(18,I
,{})&D(0,CHECK YOUR WORK. THE SUM OF {} 
DISTANCES SHOULD BE {}. GET READY FOR A 
NEW PROBLEM.)@FEASTBOUND PLANES TO ROME 
USUALLY GO 60 MI/HR FASTER THAN WESTBOUN
D PLANES TO NEW YORK. IF THE TRIP IS 450
0 MI. AND THE EASTBOUND AND WESTBOUND PL
ANES PASS AFTER 5 HRS, HOW FAST DO THEY 
EACH FLY?.EAST.WEST.TWO PLANES LEAVING A
T THE SAME TIME FLY TOWARDS EACH OTHER A
T DIFFERENT RATES..HOW FAST DO THEY EACH
 FLY.E.EAST'S.W.WEST'S.E.W.FLY.`DE+DW = 
TOTAL'.THE SUM OF THEIR DISTANCES IS EQU
AL TO THE TOTAL DISTANCE..DE+DW = TOTAL.
FLY.`DE+DW = TOTAL'.THE SUM OF THEIR DIS
TANCES IS EQUAL TO THE TOTAL DISTANCE..`
MI/HR'.4.MI/HR.HOURS (`HR').2.HR.MILES (
`MI').2.MI.BOTH PLANES WILL FLY FOR &H5 
HRS&H BEFORE THEY PASS EACH OTHER..THE E
ASTBOUND PLANE IS `5' HOURS..I.5.THE WES
TBOUND PLANE.THE EASTBOUND PLANE.WEST.`5
' HOURS.I.5.&HTHE TRIP IS 4500 MI&H..`45
00' MILES..4500.PLANE.THE WESTBOUND PLAN
E IS SLOWER..W.WEST'S.8.EAST'S.WEST'S.EA
STBOUND PLANES GO &H60 MI/HR FASTER&H TH
AN WESTBOUND PLANES..&V+60.EAST FLIES 60
 MILES.FURTHER THAN WEST.HOUR.7.+60.PLAN
E.`(&V+60) \F08* 5' \F15= EAST'S DIST..5
(&V+60).`&V \F06*   5'  \F13= WEST'S DIS
T..5&V.E.W.E.W.EAST'S.5(&V+60).WEST'S.5&
V.4500.EAST'S.WEST'S.`5(&V+60) + 5&V = 4
500'.5(&V+60)+5&V=4500.420.&QHOW FAST DO
 THEY EACH FLY?&Q.THE WESTBOUND PLANE.WE
ST.420.420.8.420.THE EASTBOUND PLANE.&V+
60.EAST.&V+60.&V+60 = 420+60 = `480'.480
.7.480.EAST'S.&V = 420, SO 5(&V+60) = 5(
480) = `2400'..2400.WEST'S.&V = 420, SO 
5&V = 5*420 = `2100'..2100.THEIR.4500.@F
CHARLIE DRIVES TWICE AS FAST AS EDITH. I
F THEY LEAVE THEIR HOUSES (144 MILES APA
RT) AT THE SAME TIME AND DRIVE TOWARDS E
ACH OTHER, THEY MEET AFTER 2 HOURS. HOW 
FAST DOES EACH DRIVE?.CHARLIE.EDITH.THEY
 DRIVE TOWARDS EACH OTHER AT DIFFERENT R
ATES FOR 2 HOURS UNTIL THEY MEET..HOW FA
ST DOES EACH DRIVE.C.CHARLIE'S.E.EDITH'S
.C.E.DRIVE.`DC+DE = TOTAL'.THE SUM OF TH
EIR DISTANCES IS EQUAL TO THE TOTAL DIST
ANCE..`DC+DE = TOTAL'.DRIVE.`DC+DE = TOT
AL'.THE SUM OF THEIR DISTANCES IS EQUAL 
TO THE TOTAL DISTANCE..MILES PER HOUR (`
MI/HR').4.MI/HR.HOURS (`HR').2.HR.MILES 
(`MI').2.MI.BOTH OF THEM DRIVE FOR &H2 H
OURS&H..CHARLIE IS `2' HOURS..I.2.EDITH.
CHARLIE.EDITH.`2' HOURS.I.2.THE TOTAL DI
STANCE BETWEEN THEIR HOUSES IS &H144 MIL
ES&H..`144' MILES..144.PERSON.EDITH DRIV
ES SLOWER THAN CHARLIE..E.EDITH'S.8.CHAR
LIE'S.EDITH'S.&QCHARLIE DRIVES TWICE AS 
FAST AS EDITH&Q.2&V.CHARLIE DRIVES.TWICE
 AS FAST AS EDITH.HOUR.7.*2.PERSON. `2&V
 \F06* 2'  \F13= C'S DIST..2*2&V. `&V \F
06*   2' \F13= E'S DIST..2*&V.C.E.C.T.CH
ARLIE'S.4&V.EDITH'S.2&V.144 MILES.CHARLI
E'S.EDITH'S.`4&V + 2&V = 144'.4&V+2&V=14
4.24.&QHOW FAST DOES EACH DRIVE?&Q.EDITH
.EDITH.24.24.8.24.CHARLIE.2&V.CHARLIE.2&
V.2&V = 2*24.48.7.48.CHARLIE'S.4&V REPRE
SENTS CHARLIE'S DISTANCE AND 4*24 = `96'
 MILES..96.EDITH'S.2&V REPRESENTS EDITH'
S DISTANCE AND 2*24 = `48' MILES..48.THE
IR.144 MILES.|2
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL