_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST5L3

FILE INFORMATION

FILENAME(S): DIST5L3

FILE TYPE(S): PRG

FILE SIZE: 5.6K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

58c8f2cab452319d4284a1cee3cc4bd7856de583a37f932dfd9dbcccafef06ad

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST5L3 PRG Radd Maxx 27 0 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 2F 20 20 20 20 20  20 20 20 20 40 71 7B 7D  | A/         @q{}|
00000010: 40 64 67 30 35 26 64 28  31 2C 55 6E 69 74 2F 6D  |@dg05&d(1,Unit/m|
00000020: 65 61 73 29 26 63 28 32  2C 7B 7D 29 26 63 28 33  |eas)&c(2,{})&c(3|
00000030: 2C 7B 7D 29 26 64 28 34  2C 52 61 74 65 29 26 64  |,{})&d(4,Rate)&d|
00000040: 28 38 2C 54 69 6D 65 29  26 64 28 31 32 2C 44 69  |(8,Time)&d(12,Di|
00000050: 73 74 2E 29 40 72 52 45  41 44 40 70 52 65 61 64  |st.)@rREAD@pRead|
00000060: 20 74 68 65 20 77 68 6F  6C 65 20 70 72 6F 62 6C  | the whole probl|
00000070: 65 6D 2E 20 54 68 69 6E  6B 3A 20 57 68 61 74 20  |em. Think: What |
00000080: 61 72 65 20 74 68 65 20  66 61 63 74 73 3F 20 20  |are the facts?  |
00000090: 57 68 61 74 20 69 73 20  62 65 69 6E 67 20 61 73  |What is being as|
000000A0: 6B 65 64 3F 20 20 28 50  72 65 73 73 20 61 6E 79  |ked?  (Press any|
000000B0: 20 6B 65 79 20 74 6F 20  63 6F 6E 74 69 6E 75 65  | key to continue|
000000C0: 29 2E 40 68 57 68 61 74  20 61 72 65 20 74 68 65  |).@hWhat are the|
000000D0: 20 66 61 63 74 73 3F 20  7B 7D 2E 40 68 57 68 61  | facts? {}.@hWha|
000000E0: 74 20 69 73 20 62 65 69  6E 67 20 61 73 6B 65 64  |t is being asked|
000000F0: 3F 20 7B 7D 40 69 28 30  29 40 72 50 4C 41 4E 20  |? {}@i(0)@rPLAN |
00000100: 40 70 4C 65 74 20 44 7B  7D 20 3D 20 7B 7D 20 64  |@pLet D{} = {} d|
00000110: 69 73 74 61 6E 63 65 20  61 6E 64 20 44 7B 7D 20  |istance and D{} |
00000120: 3D 20 7B 7D 20 64 69 73  74 61 6E 63 65 2E 20 57  |= {} distance. W|
00000130: 72 69 74 65 20 61 6E 20  65 71 75 61 74 69 6F 6E  |rite an equation|
00000140: 20 74 68 61 74 20 72 65  6C 61 74 65 73 20 44 7B  | that relates D{|
00000150: 7D 20 74 6F 20 44 7B 7D  2E 40 68 7B 7D 20 62 6F  |} to D{}.@h{} bo|
00000160: 74 68 20 7B 7D 20 74 68  65 20 73 61 6D 65 20 64  |th {} the same d|
00000170: 69 73 74 61 6E 63 65 2E  40 68 60 44 7B 7D 20 3D  |istance.@h`D{} =|
00000180: 20 44 7B 7D 27 20 73 68  6F 77 73 20 74 68 61 74  | D{}' shows that|
00000190: 20 7B 7D 20 62 6F 74 68  20 7B 7D 20 74 68 65 20  | {} both {} the |
000001A0: 73 61 6D 65 20 64 69 73  74 61 6E 63 65 2E 40 69  |same distance.@i|
000001B0: 28 31 36 2C 63 30 2C 20  29 40 70 4F 6E 65 20 61  |(16,c0, )@pOne a|
000001C0: 6E 73 77 65 72 20 69 73  20 60 44 7B 7D 27 2E 20  |nswer is `D{}'. |
000001D0: 43 68 61 6E 67 65 20 79  6F 75 72 20 61 6E 73 77  |Change your answ|
000001E0: 65 72 20 69 66 20 69 74  20 69 73 20 6E 6F 74 20  |er if it is not |
000001F0: 65 71 75 69 76 61 6C 65  6E 74 2E 20 28 50 72 65  |equivalent. (Pre|
00000200: 73 73 20 72 65 74 75 72  6E 29 40 68 7B 7D 20 62  |ss return)@h{} b|
00000210: 6F 74 68 20 74 72 61 76  65 6C 20 74 68 65 20 73  |oth travel the s|
00000220: 61 6D 65 20 64 69 73 74  61 6E 63 65 2E 40 68 60  |ame distance.@h`|
00000230: 44 7B 7D 3D 44 7B 7D 27  20 73 68 6F 77 73 20 74  |D{}=D{}' shows t|
00000240: 68 61 74 20 7B 7D 20 64  69 73 74 61 6E 63 65 20  |hat {} distance |
00000250: 69 73 20 65 71 75 61 6C  20 74 6F 20 7B 7D 20 64  |is equal to {} d|
00000260: 69 73 74 61 6E 63 65 2E  40 69 28 31 36 2C 63 30  |istance.@i(16,c0|
00000270: 2C 20 29 40 72 44 41 54  41 20 45 4E 54 52 59 40  |, )@rDATA ENTRY@|
00000280: 70 46 69 6C 6C 20 69 6E  20 74 68 65 20 75 6E 69  |pFill in the uni|
00000290: 74 73 20 62 79 20 77 68  69 63 68 20 72 61 74 65  |ts by which rate|
000002A0: 2C 20 74 69 6D 65 20 61  6E 64 20 64 69 73 74 61  |, time and dista|
000002B0: 6E 63 65 20 61 72 65 20  6D 65 61 73 75 72 65 64  |nce are measured|
000002C0: 2E 20 28 55 73 65 20 61  62 62 72 65 76 69 61 74  |. (Use abbreviat|
000002D0: 65 64 20 66 6F 72 6D 2E  29 40 68 52 61 74 65 20  |ed form.)@hRate |
000002E0: 69 73 20 63 6F 6D 6D 6F  6E 6C 79 20 6D 65 61 73  |is commonly meas|
000002F0: 75 72 65 64 20 69 6E 20  6D 69 6C 65 73 20 70 65  |ured in miles pe|
00000300: 72 20 68 6F 75 72 28 6D  69 2F 68 72 29 2C 20 66  |r hour(mi/hr), f|
00000310: 65 65 74 20 70 65 72 20  73 65 63 6F 6E 64 20 28  |eet per second (|
00000320: 66 74 2F 73 65 63 29 2C  20 6D 65 74 65 72 73 20  |ft/sec), meters |
00000330: 70 65 72 20 6B 69 6C 6F  6D 65 74 65 72 20 28 6D  |per kilometer (m|
00000340: 2F 6B 6D 29 2C 20 65 74  63 2E 40 68 54 68 65 20  |/km), etc.@hThe |
00000350: 72 61 74 65 20 6F 66 20  73 70 65 65 64 20 69 6E  |rate of speed in|
00000360: 20 74 68 69 73 20 70 72  6F 62 6C 65 6D 20 69 73  | this problem is|
00000370: 20 6D 65 61 73 75 72 65  64 20 69 6E 20 7B 7D 2E  | measured in {}.|
00000380: 40 69 28 35 2C 63 7B 7D  2C 7B 7D 29 40 68 54 69  |@i(5,c{},{})@hTi|
00000390: 6D 65 20 69 73 20 63 6F  6D 6D 6F 6E 6C 79 20 6D  |me is commonly m|
000003A0: 65 61 73 75 72 65 64 20  69 6E 20 73 65 63 6F 6E  |easured in secon|
000003B0: 64 73 20 28 73 65 63 29  2C 20 6D 69 6E 75 74 65  |ds (sec), minute|
000003C0: 73 20 28 6D 69 6E 29 2C  20 68 6F 75 72 73 20 28  |s (min), hours (|
000003D0: 68 72 29 2C 20 64 61 79  73 20 28 64 61 29 2C 20  |hr), days (da), |
000003E0: 65 74 63 2E 40 68 54 69  6D 65 20 69 6E 20 74 68  |etc.@hTime in th|
000003F0: 69 73 20 70 72 6F 62 6C  65 6D 20 69 73 20 6D 65  |is problem is me|
00000400: 61 73 75 72 65 64 20 69  6E 20 7B 7D 2E 40 69 28  |asured in {}.@i(|
00000410: 39 2C 63 7B 7D 2C 7B 7D  29 40 68 44 69 73 74 61  |9,c{},{})@hDista|
00000420: 6E 63 65 20 69 73 20 63  6F 6D 6D 6F 6E 6C 79 20  |nce is commonly |
00000430: 6D 65 61 73 75 72 65 64  20 69 6E 20 66 65 65 74  |measured in feet|
00000440: 20 28 66 74 29 2C 20 79  61 72 64 73 20 28 79 64  | (ft), yards (yd|
00000450: 29 2C 20 6D 69 6C 65 73  20 28 6D 69 29 2C 20 6D  |), miles (mi), m|
00000460: 65 74 65 72 73 20 28 6D  29 2C 20 6B 69 6C 6F 6D  |eters (m), kilom|
00000470: 65 74 65 72 73 20 28 6B  6D 29 2C 20 65 74 63 2E  |eters (km), etc.|
00000480: 40 68 44 69 73 74 61 6E  63 65 20 69 6E 20 74 68  |@hDistance in th|
00000490: 69 73 20 70 72 6F 62 6C  65 6D 20 69 73 20 6D 65  |is problem is me|
000004A0: 61 73 75 72 65 64 20 69  6E 20 7B 7D 2E 40 69 28  |asured in {}.@i(|
000004B0: 31 33 2C 63 7B 7D 2C 7B  7D 29 40 70 45 6E 74 65  |13,c{},{})@pEnte|
000004C0: 72 20 74 68 65 20 66 61  63 74 73 20 66 72 6F 6D  |r the facts from|
000004D0: 20 74 68 65 20 70 72 6F  62 6C 65 6D 20 69 6E 74  | the problem int|
000004E0: 6F 20 74 68 65 20 67 72  69 64 2E 40 68 7B 7D 40  |o the grid.@h{}@|
000004F0: 68 7B 7D 40 69 28 36 2C  69 2C 7B 7D 29 40 68 7B  |h{}@i(6,i,{})@h{|
00000500: 7D 40 68 7B 7D 40 69 28  37 2C 69 2C 7B 7D 29 40  |}@h{}@i(7,i,{})@|
00000510: 70 52 65 70 72 65 73 65  6E 74 20 74 68 65 20 74  |pRepresent the t|
00000520: 69 6D 65 20 65 61 63 68  20 7B 7D 2E 40 68 55 73  |ime each {}.@hUs|
00000530: 65 20 61 20 76 61 72 69  61 62 6C 65 20 74 6F 20  |e a variable to |
00000540: 72 65 70 72 65 73 65 6E  74 20 74 68 65 20 73 6D  |represent the sm|
00000550: 61 6C 6C 65 72 20 61 6D  6F 75 6E 74 20 6F 66 20  |aller amount of |
00000560: 74 69 6D 65 2E 20 49 6E  20 74 68 69 73 20 63 61  |time. In this ca|
00000570: 73 65 2C 20 7B 7D 20 6C  65 73 73 20 74 69 6D 65  |se, {} less time|
00000580: 20 74 68 61 6E 20 7B 7D  2E 40 68 55 73 65 20 61  | than {}.@hUse a|
00000590: 20 76 61 72 69 61 62 6C  65 2C 20 73 75 63 68 20  | variable, such |
000005A0: 61 73 20 60 7B 7D 27 20  74 6F 20 72 65 70 72 65  |as `{}' to repre|
000005B0: 73 65 6E 74 20 74 68 65  20 6E 75 6D 62 65 72 20  |sent the number |
000005C0: 6F 66 20 7B 7D 2E 40 69  28 7B 7D 2C 69 2C 26 76  |of {}.@i({},i,&v|
000005D0: 29 40 68 52 65 70 72 65  73 65 6E 74 20 74 68 65  |)@hRepresent the|
000005E0: 20 74 69 6D 65 20 7B 7D  20 69 6E 20 74 65 72 6D  | time {} in term|
000005F0: 73 20 6F 66 20 22 26 76  22 2C 20 7B 7D 2E 40 68  |s of "&v", {}.@h|
00000600: 7B 7D 40 69 28 7B 7D 2C  69 2C 7B 7D 29 40 72 50  |{}@i({},i,{})@rP|
00000610: 41 52 54 53 40 70 57 72  69 74 65 20 61 6E 20 65  |ARTS@pWrite an e|
00000620: 78 70 72 65 73 73 69 6F  6E 20 74 6F 20 72 65 70  |xpression to rep|
00000630: 72 65 73 65 6E 74 20 74  62 65 20 64 69 73 74 61  |resent tbe dista|
00000640: 6E 63 65 20 74 72 61 76  65 6C 6C 65 64 20 62 79  |nce travelled by|
00000650: 20 65 61 63 68 20 76 65  68 69 63 6C 65 2E 40 68  | each vehicle.@h|
00000660: 52 61 74 65 2A 54 69 6D  65 20 3D 20 44 69 73 74  |Rate*Time = Dist|
00000670: 61 6E 63 65 40 68 52 61  74 65 20 20 5C 66 30 36  |ance@hRate  \f06|
00000680: 2A 20 54 69 6D 65 20 20  5C 66 31 35 3D 20 44 69  |* Time  \f15= Di|
00000690: 73 74 61 6E 63 65 20 5C  6E 7B 7D 40 69 28 31 34  |stance \n{}@i(14|
000006A0: 2C 69 2C 7B 7D 29 40 68  52 61 74 65 2A 54 69 6D  |,i,{})@hRate*Tim|
000006B0: 65 20 3D 20 44 69 73 74  61 6E 63 65 40 68 52 61  |e = Distance@hRa|
000006C0: 74 65 20 5C 66 30 36 2A  20 54 69 6D 65 20 5C 66  |te \f06* Time \f|
000006D0: 31 35 3D 20 44 69 73 74  61 6E 63 65 20 5C 6E 7B  |15= Distance \n{|
000006E0: 7D 40 69 28 31 35 2C 69  2C 7B 7D 29 40 72 57 48  |}@i(15,i,{})@rWH|
000006F0: 4F 4C 45 26 64 28 31 36  2C 20 29 40 70 53 75 62  |OLE&d(16, )@pSub|
00000700: 73 74 69 74 75 74 65 20  79 6F 75 72 20 65 78 70  |stitute your exp|
00000710: 72 65 73 73 69 6F 6E 73  20 66 6F 72 20 44 7B 7D  |ressions for D{}|
00000720: 20 61 6E 64 20 44 7B 7D  20 69 6E 20 74 68 65 20  | and D{} in the |
00000730: 65 71 75 61 74 69 6F 6E  20 3A 20 44 7B 7D 20 3D  |equation : D{} =|
00000740: 20 44 7B 7D 40 68 44 7B  7D 20 3D 20 7B 7D 20 61  | D{}@hD{} = {} a|
00000750: 6E 64 20 44 7B 7D 20 3D  20 7B 7D 2E 40 68 7B 7D  |nd D{} = {}.@h{}|
00000760: 40 69 28 31 36 2C 69 2C  7B 7D 29 40 73 40 72 43  |@i(16,i,{})@s@rC|
00000770: 4F 4D 50 55 54 45 40 70  53 6F 6C 76 65 20 74 68  |OMPUTE@pSolve th|
00000780: 65 20 65 71 75 61 74 69  6F 6E 20 66 6F 72 20 22  |e equation for "|
00000790: 26 76 22 2E 20 55 73 65  20 70 61 70 65 72 20 61  |&v". Use paper a|
000007A0: 6E 64 20 70 65 6E 63 69  6C 20 61 6E 64 20 65 6E  |nd pencil and en|
000007B0: 74 65 72 20 74 68 65 20  66 69 6E 61 6C 20 65 71  |ter the final eq|
000007C0: 75 61 74 69 6F 6E 73 20  6F 72 20 75 73 65 20 74  |uations or use t|
000007D0: 68 65 20 43 61 6C 63 75  6C 61 74 6F 72 2E 40 68  |he Calculator.@h|
000007E0: 49 73 6F 6C 61 74 65 20  22 26 76 22 20 6F 6E 20  |Isolate "&v" on |
000007F0: 6F 6E 65 20 73 69 64 65  20 6F 66 20 74 68 65 20  |one side of the |
00000800: 65 71 75 61 74 69 6F 6E  2E 40 68 54 68 65 20 43  |equation.@hThe C|
00000810: 61 6C 63 75 6C 61 74 6F  72 20 73 6F 6C 76 65 73  |alculator solves|
00000820: 20 65 71 75 61 74 69 6F  6E 73 20 66 6F 72 20 79  | equations for y|
00000830: 6F 75 20 61 6E 64 20 64  69 73 70 6C 61 79 73 20  |ou and displays |
00000840: 74 68 65 20 73 74 65 70  73 20 69 6E 20 74 68 65  |the steps in the|
00000850: 20 73 6F 6C 75 74 69 6F  6E 2E 40 69 28 31 36 2C  | solution.@i(16,|
00000860: 69 2C 26 76 3D 7B 7D 29  40 70 45 6E 74 65 72 20  |i,&v={})@pEnter |
00000870: 79 6F 75 72 20 61 6E 73  77 65 72 20 74 6F 20 74  |your answer to t|
00000880: 68 65 20 70 72 6F 62 6C  65 6D 20 69 6E 20 74 68  |he problem in th|
00000890: 65 20 67 72 69 64 2E 20  52 65 6D 65 6D 62 65 72  |e grid. Remember|
000008A0: 20 74 68 65 20 71 75 65  73 74 69 6F 6E 2E 20 26  | the question. &|
000008B0: 71 7B 7D 26 71 26 77 28  31 36 29 40 68 54 68 65  |q{}&q&w(16)@hThe|
000008C0: 20 74 69 6D 65 20 66 6F  72 20 7B 7D 20 69 73 20  | time for {} is |
000008D0: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 22 26 76  |the value of "&v|
000008E0: 22 2E 40 68 54 68 65 20  74 69 6D 65 20 66 6F 72  |".@hThe time for|
000008F0: 20 7B 7D 20 69 73 20 74  68 65 20 76 61 6C 75 65  | {} is the value|
00000900: 20 6F 66 20 22 26 76 22  2E 20 26 76 20 3D 20 7B  | of "&v". &v = {|
00000910: 7D 2C 20 73 6F 20 65 6E  74 65 72 20 27 7B 7D 27  |}, so enter '{}'|
00000920: 2E 40 69 28 31 31 2C 69  2C 7B 7D 29 40 73 40 72  |.@i(11,i,{})@s@r|
00000930: 43 48 45 43 4B 40 70 52  65 72 65 61 64 20 74 68  |CHECK@pReread th|
00000940: 65 20 70 72 6F 62 6C 65  6D 2E 20 43 68 65 63 6B  |e problem. Check|
00000950: 20 79 6F 75 72 20 61 6E  73 77 65 72 73 2E 20 45  | your answers. E|
00000960: 76 61 6C 75 61 74 65 20  74 68 65 20 72 65 6D 61  |valuate the rema|
00000970: 69 6E 69 6E 67 20 65 78  70 72 65 73 73 69 6F 6E  |ining expression|
00000980: 73 20 69 6E 20 74 68 65  20 63 68 61 72 74 2E 40  |s in the chart.@|
00000990: 68 53 75 62 73 74 69 74  75 74 65 20 66 6F 72 20  |hSubstitute for |
000009A0: 22 26 76 22 20 69 6E 20  74 68 65 20 65 78 70 72  |"&v" in the expr|
000009B0: 65 73 73 69 6F 6E 20 66  6F 72 20 7B 7D 20 74 69  |ession for {} ti|
000009C0: 6D 65 2E 20 54 68 65 6E  20 63 61 6C 63 75 6C 61  |me. Then calcula|
000009D0: 74 65 20 74 68 65 20 72  65 73 75 6C 74 2E 40 68  |te the result.@h|
000009E0: 7B 7D 40 69 28 7B 7D 2C  69 2C 7B 7D 29 40 68 53  |{}@i({},i,{})@hS|
000009F0: 75 62 73 74 69 74 75 74  65 20 66 6F 72 20 22 26  |ubstitute for "&|
00000A00: 76 22 20 69 6E 20 74 68  65 20 65 78 70 72 65 73  |v" in the expres|
00000A10: 73 69 6F 6E 20 66 6F 72  20 7B 7D 20 64 69 73 74  |sion for {} dist|
00000A20: 61 6E 63 65 2E 20 54 68  65 6E 20 63 61 6C 63 75  |ance. Then calcu|
00000A30: 6C 61 74 65 20 74 68 65  20 72 65 73 75 6C 74 2E  |late the result.|
00000A40: 40 68 7B 7D 40 69 28 31  34 2C 69 2C 7B 7D 29 40  |@h{}@i(14,i,{})@|
00000A50: 68 53 75 62 73 74 69 74  75 74 65 20 66 6F 72 20  |hSubstitute for |
00000A60: 22 26 76 22 20 69 6E 20  74 68 65 20 65 78 70 72  |"&v" in the expr|
00000A70: 65 73 73 69 6F 6E 20 66  6F 72 20 7B 7D 20 64 69  |ession for {} di|
00000A80: 73 74 61 6E 63 65 2E 20  54 68 65 6E 20 63 61 6C  |stance. Then cal|
00000A90: 63 75 6C 61 74 65 20 74  68 65 20 72 65 73 75 6C  |culate the resul|
00000AA0: 74 2E 40 68 7B 7D 40 69  28 31 35 2C 69 2C 7B 7D  |t.@h{}@i(15,i,{}|
00000AB0: 29 26 64 28 30 2C 43 68  65 63 6B 20 79 6F 75 72  |)&d(0,Check your|
00000AC0: 20 77 6F 72 6B 2E 20 7B  7D 20 64 69 73 74 61 6E  | work. {} distan|
00000AD0: 63 65 20 73 68 6F 75 6C  64 20 65 71 75 61 6C 20  |ce should equal |
00000AE0: 7B 7D 20 64 69 73 74 61  6E 63 65 2E 20 28 4F 6E  |{} distance. (On|
00000AF0: 20 74 6F 20 61 20 6E 65  77 20 70 72 6F 62 6C 65  | to a new proble|
00000B00: 6D 2E 29 29 40 66 41 74  20 31 20 50 4D 2C 20 61  |m.))@fAt 1 PM, a|
00000B10: 20 62 75 73 20 6C 65 61  76 65 73 20 41 6D 61 72  | bus leaves Amar|
00000B20: 69 6C 6C 6F 20 66 6F 72  20 45 6C 20 50 61 73 6F  |illo for El Paso|
00000B30: 20 61 74 20 35 30 20 6B  6D 2F 68 72 2E 20 49 66  | at 50 km/hr. If|
00000B40: 20 61 6E 20 65 78 70 72  65 73 73 20 76 61 6E 20  | an express van |
00000B50: 74 72 61 76 65 6C 6C 69  6E 67 20 61 74 20 35 35  |travelling at 55|
00000B60: 20 6B 6D 2F 68 72 20 6C  65 61 76 65 73 20 66 6F  | km/hr leaves fo|
00000B70: 72 20 74 68 65 20 73 61  6D 65 20 74 72 69 70 20  |r the same trip |
00000B80: 61 74 20 31 3A 33 30 20  50 4D 2C 20 68 6F 77 20  |at 1:30 PM, how |
00000B90: 6C 6F 6E 67 20 77 69 6C  6C 20 69 74 20 74 61 6B  |long will it tak|
00000BA0: 65 20 74 68 65 20 76 61  6E 20 74 6F 20 70 61 73  |e the van to pas|
00000BB0: 73 20 74 68 65 20 62 75  73 3F 00 42 75 73 00 56  |s the bus?.Bus.V|
00000BC0: 61 6E 00 54 68 65 20 62  75 73 20 61 6E 64 20 74  |an.The bus and t|
00000BD0: 68 65 20 76 61 6E 20 77  69 6C 6C 20 74 72 61 76  |he van will trav|
00000BE0: 65 6C 20 74 68 65 20 73  61 6D 65 20 64 69 73 74  |el the same dist|
00000BF0: 61 6E 63 65 2C 20 62 75  74 20 74 68 65 20 62 75  |ance, but the bu|
00000C00: 73 20 74 61 6B 65 73 20  31 2F 32 20 68 6F 75 72  |s takes 1/2 hour|
00000C10: 20 6C 6F 6E 67 65 72 00  48 6F 77 20 6C 6F 6E 67  | longer.How long|
00000C20: 20 77 69 6C 6C 20 69 74  20 74 61 6B 65 20 74 68  | will it take th|
00000C30: 65 20 76 61 6E 20 74 6F  20 70 61 73 73 20 74 68  |e van to pass th|
00000C40: 65 20 62 75 73 3F 00 62  00 74 68 65 20 62 75 73  |e bus?.b.the bus|
00000C50: 27 00 76 00 74 68 65 20  76 61 6E 27 73 00 62 00  |'.v.the van's.b.|
00000C60: 76 00 54 68 65 20 62 75  73 20 61 6E 64 20 74 68  |v.The bus and th|
00000C70: 65 20 76 61 6E 00 64 72  69 76 65 00 62 00 76 00  |e van.drive.b.v.|
00000C80: 54 68 65 20 62 75 73 20  61 6E 64 20 74 68 65 20  |The bus and the |
00000C90: 76 61 6E 00 64 72 69 76  65 00 62 3D 44 76 00 54  |van.drive.b=Dv.T|
00000CA0: 68 65 20 62 75 73 20 61  6E 64 20 74 68 65 20 76  |he bus and the v|
00000CB0: 61 6E 00 62 00 76 00 74  68 65 20 62 75 73 27 00  |an.b.v.the bus'.|
00000CC0: 74 68 65 20 76 61 6E 27  73 00 6B 69 6C 6F 6D 65  |the van's.kilome|
00000CD0: 74 65 72 73 20 70 65 72  20 68 6F 75 72 20 28 60  |ters per hour (`|
00000CE0: 6B 6D 2F 68 72 27 29 00  34 00 6B 6D 2F 68 72 00  |km/hr').4.km/hr.|
00000CF0: 68 6F 75 72 73 20 28 60  68 72 27 29 00 32 00 68  |hours (`hr').2.h|
00000D00: 72 00 6B 69 6C 6F 6D 65  74 65 72 73 20 28 60 6B  |r.kilometers (`k|
00000D10: 6D 27 29 00 32 00 6B 6D  00 54 68 65 20 62 75 73  |m').2.km.The bus|
00000D20: 20 74 72 61 76 65 6C 73  20 61 74 20 26 68 35 30  | travels at &h50|
00000D30: 20 6B 6D 2F 68 72 26 68  2E 00 54 68 65 20 72 61  | km/hr&h..The ra|
00000D40: 74 65 20 66 6F 72 20 74  68 65 20 62 75 73 20 69  |te for the bus i|
00000D50: 73 20 60 35 30 27 20 6B  6D 2F 68 72 2E 00 35 30  |s `50' km/hr..50|
00000D60: 00 54 68 65 20 76 61 6E  20 74 72 61 76 65 6C 73  |.The van travels|
00000D70: 20 61 74 20 26 68 35 35  20 6B 6D 2F 68 72 26 68  | at &h55 km/hr&h|
00000D80: 2E 00 54 68 65 20 72 61  74 65 20 66 6F 72 20 74  |..The rate for t|
00000D90: 68 65 20 76 61 6E 20 69  73 20 60 35 35 27 20 6B  |he van is `55' k|
00000DA0: 6D 2F 68 72 2E 00 35 35  00 76 65 68 69 63 6C 65  |m/hr..55.vehicle|
00000DB0: 20 74 72 61 76 65 6C 73  00 74 68 65 20 76 61 6E  | travels.the van|
00000DC0: 20 74 72 61 76 65 6C 73  20 66 6F 72 00 74 68 65  | travels for.the|
00000DD0: 20 62 75 73 00 76 00 68  6F 75 72 73 20 74 68 65  | bus.v.hours the|
00000DE0: 20 76 61 6E 20 74 72 61  76 65 6C 73 00 31 31 00  | van travels.11.|
00000DF0: 74 68 65 20 62 75 73 20  74 72 61 76 65 6C 73 00  |the bus travels.|
00000E00: 74 68 65 20 74 69 6D 65  20 74 68 65 20 76 61 6E  |the time the van|
00000E10: 20 74 72 61 76 65 6C 73  00 53 69 6E 63 65 20 74  | travels.Since t|
00000E20: 68 65 20 62 75 73 20 73  74 61 72 74 65 64 20 61  |he bus started a|
00000E30: 74 20 31 20 50 4D 20 61  6E 64 20 74 68 65 20 76  |t 1 PM and the v|
00000E40: 61 6E 20 73 74 61 72 74  65 64 20 61 74 20 31 3A  |an started at 1:|
00000E50: 33 30 20 50 4D 2C 20 74  68 65 20 62 75 73 20 74  |30 PM, the bus t|
00000E60: 61 6B 65 73 20 31 2F 32  20 68 6F 75 72 20 6C 6F  |akes 1/2 hour lo|
00000E70: 6E 67 65 72 2C 20 6F 72  20 60 26 76 2B 2E 35 27  |nger, or `&v+.5'|
00000E80: 20 68 6F 75 72 73 2E 00  31 30 00 26 76 2B 2E 35  | hours..10.&v+.5|
00000E90: 00 20 60 35 30 20 5C 66  30 36 2A 20 28 26 76 2B  |. `50 \f06* (&v+|
00000EA0: 2E 35 29 27 20 5C 66 31  35 3D 20 42 75 73 27 00  |.5)' \f15= Bus'.|
00000EB0: 35 30 28 26 76 2B 2E 35  29 00 20 60 35 35 20 20  |50(&v+.5). `55  |
00000EC0: 5C 66 30 36 2A 20 26 76  27 20 5C 66 31 35 3D 20  |\f06* &v' \f15= |
00000ED0: 56 61 6E 27 73 20 44 69  73 74 2E 00 35 35 26 76  |Van's Dist..55&v|
00000EE0: 00 62 00 76 00 62 00 76  00 62 00 35 30 28 26 76  |.b.v.b.v.b.50(&v|
00000EF0: 2B 2E 35 29 00 76 00 35  35 26 76 00 54 68 65 20  |+.5).v.55&v.The |
00000F00: 42 75 73 27 20 44 69 73  74 61 6E 63 65 20 3D 20  |Bus' Distance = |
00000F10: 54 68 65 20 56 61 6E 27  73 20 44 69 73 74 61 6E  |The Van's Distan|
00000F20: 63 65 20 5C 6E 20 20 20  20 60 35 30 28 26 76 2B  |ce \n    `50(&v+|
00000F30: 2E 35 29 20 20 20 20 20  5C 66 32 30 3D 20 20 35  |.5)     \f20=  5|
00000F40: 35 26 76 27 00 35 30 28  26 76 2B 2E 35 29 3D 35  |5&v'.50(&v+.5)=5|
00000F50: 35 26 76 00 35 00 41 66  74 65 72 20 68 6F 77 20  |5&v.5.After how |
00000F60: 6D 75 63 68 20 74 69 6D  65 20 77 69 6C 6C 20 69  |much time will i|
00000F70: 74 20 63 61 74 63 68 20  75 70 20 74 6F 20 74 68  |t catch up to th|
00000F80: 65 20 62 75 73 3F 00 74  68 65 20 76 61 6E 00 76  |e bus?.the van.v|
00000F90: 61 6E 00 35 00 35 00 35  00 74 68 65 20 62 75 73  |an.5.5.5.the bus|
00000FA0: 27 00 26 76 20 3D 20 35  2C 20 61 6E 64 20 26 76  |'.&v = 5, and &v|
00000FB0: 2B 2E 35 20 72 65 70 72  65 73 65 6E 74 73 20 74  |+.5 represents t|
00000FC0: 68 65 20 62 75 73 27 20  74 69 6D 65 2C 20 73 6F  |he bus' time, so|
00000FD0: 20 74 68 65 20 62 75 73  20 74 72 61 76 65 6C 6C  | the bus travell|
00000FE0: 65 64 20 66 6F 72 20 60  35 2E 35 27 20 68 6F 75  |ed for `5.5' hou|
00000FF0: 72 73 2E 00 31 30 00 35  2E 35 00 74 68 65 20 62  |rs..10.5.5.the b|
00001000: 75 73 27 00 26 76 3D 35  20 61 6E 64 20 35 30 28  |us'.&v=5 and 50(|
00001010: 26 76 2B 2E 35 29 20 72  65 70 72 65 73 65 6E 74  |&v+.5) represent|
00001020: 73 20 74 68 65 20 62 75  73 27 20 64 69 73 74 61  |s the bus' dista|
00001030: 6E 63 65 2C 20 73 6F 20  35 30 20 2A 20 35 2E 35  |nce, so 50 * 5.5|
00001040: 20 6F 72 20 60 32 37 35  27 20 3D 20 74 68 65 20  | or `275' = the |
00001050: 62 75 73 27 20 64 69 73  74 61 6E 63 65 2E 00 32  |bus' distance..2|
00001060: 37 35 00 74 68 65 20 76  61 6E 27 73 00 26 76 3D  |75.the van's.&v=|
00001070: 35 20 61 6E 64 20 35 35  26 76 20 72 65 70 72 65  |5 and 55&v repre|
00001080: 73 65 6E 74 73 20 74 68  65 20 76 61 6E 27 73 20  |sents the van's |
00001090: 64 69 73 74 61 6E 63 65  2C 20 73 6F 20 35 35 20  |distance, so 55 |
000010A0: 2A 20 35 2C 20 6F 72 20  60 32 37 35 27 20 3D 20  |* 5, or `275' = |
000010B0: 74 68 65 20 76 61 6E 27  73 20 64 69 73 74 61 6E  |the van's distan|
000010C0: 63 65 2E 00 32 37 35 00  54 68 65 20 62 75 73 27  |ce..275.The bus'|
000010D0: 00 74 68 65 20 76 61 6E  27 73 00 40 66 42 6F 62  |.the van's.@fBob|
000010E0: 20 63 79 63 6C 65 73 20  61 74 20 61 20 72 61 74  | cycles at a rat|
000010F0: 65 20 6F 66 20 32 34 20  6B 6D 2F 68 72 20 61 6E  |e of 24 km/hr an|
00001100: 64 20 47 72 65 67 20 63  79 63 6C 65 73 20 61 74  |d Greg cycles at|
00001110: 20 33 30 20 6B 6D 2F 68  72 2E 20 49 66 20 47 72  | 30 km/hr. If Gr|
00001120: 65 67 20 67 69 76 65 73  20 42 6F 62 20 61 20 31  |eg gives Bob a 1|
00001130: 35 20 6D 69 6E 75 74 65  20 68 65 61 64 20 73 74  |5 minute head st|
00001140: 61 72 74 2C 20 68 6F 77  20 6C 6F 6E 67 20 77 69  |art, how long wi|
00001150: 6C 6C 20 68 65 20 68 61  76 65 20 74 6F 20 72 69  |ll he have to ri|
00001160: 64 65 20 62 65 66 6F 72  65 20 68 65 20 63 61 74  |de before he cat|
00001170: 63 68 65 73 20 75 70 20  74 6F 20 42 6F 62 3F 00  |ches up to Bob?.|
00001180: 42 6F 62 00 47 72 65 67  00 42 6F 62 20 61 6E 64  |Bob.Greg.Bob and|
00001190: 20 47 72 65 67 20 63 79  63 6C 65 20 74 68 65 20  | Greg cycle the |
000011A0: 73 61 6D 65 20 64 69 73  74 61 6E 63 65 2C 20 62  |same distance, b|
000011B0: 75 74 20 42 6F 62 20 74  61 6B 65 73 20 31 35 20  |ut Bob takes 15 |
000011C0: 6D 69 6E 75 74 65 73 20  6C 6F 6E 67 65 72 20 74  |minutes longer t|
000011D0: 68 61 6E 20 47 72 65 67  00 26 68 48 6F 77 20 6C  |han Greg.&hHow l|
000011E0: 6F 6E 67 20 77 69 6C 6C  20 68 65 20 68 61 76 65  |ong will he have|
000011F0: 20 74 6F 20 72 69 64 65  20 62 65 66 6F 72 65 20  | to ride before |
00001200: 68 65 20 63 61 74 63 68  65 73 20 75 70 20 74 6F  |he catches up to|
00001210: 20 42 6F 62 3F 26 68 00  62 00 42 6F 62 27 73 00  | Bob?&h.b.Bob's.|
00001220: 67 00 47 72 65 67 27 73  00 62 00 67 00 54 68 65  |g.Greg's.b.g.The|
00001230: 20 62 6F 79 73 00 63 79  63 6C 65 00 62 00 67 00  | boys.cycle.b.g.|
00001240: 54 68 65 79 00 72 69 64  65 00 62 3D 44 67 00 54  |They.ride.b=Dg.T|
00001250: 68 65 20 62 6F 79 73 00  62 00 67 00 42 6F 62 27  |he boys.b.g.Bob'|
00001260: 73 20 66 69 6E 61 6C 00  47 72 65 67 27 73 20 66  |s final.Greg's f|
00001270: 69 6E 61 6C 00 6B 69 6C  6F 6D 65 74 65 72 73 20  |inal.kilometers |
00001280: 70 65 72 20 68 6F 75 72  20 28 60 6B 6D 2F 68 72  |per hour (`km/hr|
00001290: 27 29 00 34 00 6B 6D 2F  68 72 00 68 6F 75 72 73  |').4.km/hr.hours|
000012A0: 20 28 60 68 72 27 29 00  32 00 68 72 00 6B 69 6C  | (`hr').2.hr.kil|
000012B0: 6F 6D 65 74 65 72 73 20  28 60 6B 6D 27 29 00 32  |ometers (`km').2|
000012C0: 00 6B 6D 00 26 68 42 6F  62 20 63 79 63 6C 65 73  |.km.&hBob cycles|
000012D0: 20 61 74 20 61 20 72 61  74 65 20 6F 66 20 32 34  | at a rate of 24|
000012E0: 20 6B 6D 2F 68 72 26 68  2E 00 42 6F 62 27 73 20  | km/hr&h..Bob's |
000012F0: 72 61 74 65 20 69 73 20  60 32 34 27 20 6B 6D 2F  |rate is `24' km/|
00001300: 68 72 2E 00 32 34 00 26  68 47 72 65 67 20 63 79  |hr..24.&hGreg cy|
00001310: 63 6C 65 73 20 61 74 20  61 20 72 61 74 65 20 6F  |cles at a rate o|
00001320: 66 20 33 30 20 6B 6D 2F  68 72 26 68 2E 00 47 72  |f 30 km/hr&h..Gr|
00001330: 65 67 27 73 20 72 61 74  65 20 69 73 20 60 33 30  |eg's rate is `30|
00001340: 27 20 6B 6D 2F 68 72 2E  00 33 30 00 62 6F 79 20  |' km/hr..30.boy |
00001350: 63 79 63 6C 65 64 00 47  72 65 67 20 72 69 64 65  |cycled.Greg ride|
00001360: 73 20 66 6F 72 00 42 6F  62 00 67 00 68 6F 75 72  |s for.Bob.g.hour|
00001370: 73 20 47 72 65 67 20 72  6F 64 65 00 31 31 00 42  |s Greg rode.11.B|
00001380: 6F 62 20 63 79 63 6C 65  64 00 47 72 65 67 27 73  |ob cycled.Greg's|
00001390: 20 74 69 6D 65 20 28 63  6F 6E 76 65 72 74 20 74  | time (convert t|
000013A0: 68 65 20 61 6E 73 77 65  72 20 74 6F 20 68 6F 75  |he answer to hou|
000013B0: 72 73 29 00 42 6F 62 20  73 74 61 72 74 65 64 20  |rs).Bob started |
000013C0: 31 35 20 6D 69 6E 75 74  65 73 2C 20 6F 72 20 2E  |15 minutes, or .|
000013D0: 32 35 20 68 6F 75 72 73  20 62 65 66 6F 72 65 20  |25 hours before |
000013E0: 47 72 65 67 2C 20 73 6F  20 42 6F 62 27 73 20 74  |Greg, so Bob's t|
000013F0: 69 6D 65 20 69 73 20 60  26 76 2B 2E 32 35 27 20  |ime is `&v+.25' |
00001400: 68 6F 75 72 73 2E 00 31  30 00 26 76 2B 2E 32 35  |hours..10.&v+.25|
00001410: 00 60 32 34 20 20 5C 66  30 36 2A 20 28 26 76 2B  |.`24  \f06* (&v+|
00001420: 2E 32 35 29 27 20 5C 66  31 35 3D 20 42 6F 62 27  |.25)' \f15= Bob'|
00001430: 73 00 32 34 28 26 76 2B  2E 32 35 29 00 60 33 30  |s.24(&v+.25).`30|
00001440: 20 5C 66 30 36 2A 20 20  26 76 27 20 5C 66 31 35  | \f06*  &v' \f15|
00001450: 3D 20 47 72 65 67 27 73  20 44 69 73 74 2E 00 33  |= Greg's Dist..3|
00001460: 30 26 76 00 62 00 67 00  62 00 67 00 62 00 32 34  |0&v.b.g.b.g.b.24|
00001470: 28 26 76 2B 2E 32 35 29  00 67 00 33 30 26 76 00  |(&v+.25).g.30&v.|
00001480: 42 6F 62 27 73 20 44 69  73 74 61 6E 63 65 20 5C  |Bob's Distance \|
00001490: 66 31 38 3D 20 47 72 65  67 27 73 20 44 69 73 74  |f18= Greg's Dist|
000014A0: 61 6E 63 65 20 5C 6E 20  20 20 20 60 32 34 28 26  |ance \n    `24(&|
000014B0: 76 2B 2E 32 35 29 20 5C  66 31 38 3D 20 20 20 20  |v+.25) \f18=    |
000014C0: 20 33 30 26 76 27 00 32  34 28 26 76 2B 2E 32 35  | 30&v'.24(&v+.25|
000014D0: 29 3D 33 30 26 76 00 31  00 48 6F 77 20 6C 6F 6E  |)=30&v.1.How lon|
000014E0: 67 20 77 69 6C 6C 20 68  65 20 68 61 76 65 20 74  |g will he have t|
000014F0: 6F 20 72 69 64 65 20 62  65 66 6F 72 65 20 68 65  |o ride before he|
00001500: 20 63 61 74 63 68 65 73  20 75 70 20 74 6F 20 42  | catches up to B|
00001510: 6F 62 3F 00 47 72 65 67  00 47 72 65 67 00 31 00  |ob?.Greg.Greg.1.|
00001520: 31 00 31 00 42 6F 62 27  73 00 26 76 3D 31 20 61  |1.1.Bob's.&v=1 a|
00001530: 6E 64 20 26 76 2B 2E 32  35 20 72 65 70 72 65 73  |nd &v+.25 repres|
00001540: 65 6E 74 73 20 42 6F 62  27 73 20 74 69 6D 65 2C  |ents Bob's time,|
00001550: 20 73 6F 20 31 2B 2E 32  35 2C 20 6F 72 20 60 31  | so 1+.25, or `1|
00001560: 2E 32 35 27 20 69 73 20  42 6F 62 27 73 20 74 69  |.25' is Bob's ti|
00001570: 6D 65 2E 00 31 30 00 31  2E 32 35 00 42 6F 62 27  |me..10.1.25.Bob'|
00001580: 73 00 26 76 3D 31 20 61  6E 64 20 32 34 28 26 76  |s.&v=1 and 24(&v|
00001590: 2B 2E 32 35 29 20 72 65  70 72 65 73 65 6E 74 73  |+.25) represents|
000015A0: 20 42 6F 62 27 73 20 64  69 73 74 61 6E 63 65 2C  | Bob's distance,|
000015B0: 20 73 6F 20 32 34 20 2A  20 31 2E 32 35 2C 20 6F  | so 24 * 1.25, o|
000015C0: 72 20 60 33 30 27 20 69  73 20 42 6F 62 27 73 20  |r `30' is Bob's |
000015D0: 64 69 73 74 61 6E 63 65  2E 00 33 30 00 47 72 65  |distance..30.Gre|
000015E0: 67 27 73 00 26 76 3D 31  20 61 6E 64 20 33 30 26  |g's.&v=1 and 30&|
000015F0: 76 20 72 65 70 72 65 73  65 6E 74 73 20 47 72 65  |v represents Gre|
00001600: 67 27 73 20 64 69 73 74  61 6E 63 65 2C 20 73 6F  |g's distance, so|
00001610: 20 60 33 30 27 20 69 73  20 47 72 65 67 27 73 20  | `30' is Greg's |
00001620: 64 69 73 74 61 6E 63 65  2E 00 33 30 00 42 6F 62  |distance..30.Bob|
00001630: 27 73 00 47 72 65 67 27  73 00 7C 2E              |'s.Greg's.|.    |
 A/         @Q{}@DG05&D(1,UNIT/MEAS)&C(2
,{})&C(3,{})&D(4,RATE)&D(8,TIME)&D(12,DI
ST.)@RREAD@PREAD THE WHOLE PROBLEM. THIN
K: WHAT ARE THE FACTS?  WHAT IS BEING AS
KED?  (PRESS ANY KEY TO CONTINUE).@HWHAT
 ARE THE FACTS? {}.@HWHAT IS BEING ASKED
? {}@I(0)@RPLAN @PLET D{} = {} DISTANCE 
AND D{} = {} DISTANCE. WRITE AN EQUATION
 THAT RELATES D{} TO D{}.@H{} BOTH {} TH
E SAME DISTANCE.@H`D{} = D{}' SHOWS THAT
 {} BOTH {} THE SAME DISTANCE.@I(16,C0, 
)@PONE ANSWER IS `D{}'. CHANGE YOUR ANSW
ER IF IT IS NOT EQUIVALENT. (PRESS RETUR
N)@H{} BOTH TRAVEL THE SAME DISTANCE.@H`
D{}=D{}' SHOWS THAT {} DISTANCE IS EQUAL
 TO {} DISTANCE.@I(16,C0, )@RDATA ENTRY@
PFILL IN THE UNITS BY WHICH RATE, TIME A
ND DISTANCE ARE MEASURED. (USE ABBREVIAT
ED FORM.)@HRATE IS COMMONLY MEASURED IN 
MILES PER HOUR(MI/HR), FEET PER SECOND (
FT/SEC), METERS PER KILOMETER (M/KM), ET
C.@HTHE RATE OF SPEED IN THIS PROBLEM IS
 MEASURED IN {}.@I(5,C{},{})@HTIME IS CO
MMONLY MEASURED IN SECONDS (SEC), MINUTE
S (MIN), HOURS (HR), DAYS (DA), ETC.@HTI
ME IN THIS PROBLEM IS MEASURED IN {}.@I(
9,C{},{})@HDISTANCE IS COMMONLY MEASURED
 IN FEET (FT), YARDS (YD), MILES (MI), M
ETERS (M), KILOMETERS (KM), ETC.@HDISTAN
CE IN THIS PROBLEM IS MEASURED IN {}.@I(
13,C{},{})@PENTER THE FACTS FROM THE PRO
BLEM INTO THE GRID.@H{}@H{}@I(6,I,{})@H{
}@H{}@I(7,I,{})@PREPRESENT THE TIME EACH
 {}.@HUSE A VARIABLE TO REPRESENT THE SM
ALLER AMOUNT OF TIME. IN THIS CASE, {} L
ESS TIME THAN {}.@HUSE A VARIABLE, SUCH 
AS `{}' TO REPRESENT THE NUMBER OF {}.@I
({},I,&V)@HREPRESENT THE TIME {} IN TERM
S OF "&V", {}.@H{}@I({},I,{})@RPARTS@PWR
ITE AN EXPRESSION TO REPRESENT TBE DISTA
NCE TRAVELLED BY EACH VEHICLE.@HRATE*TIM
E = DISTANCE@HRATE  \F06* TIME  \F15= DI
STANCE \N{}@I(14,I,{})@HRATE*TIME = DIST
ANCE@HRATE \F06* TIME \F15= DISTANCE \N{
}@I(15,I,{})@RWHOLE&D(16, )@PSUBSTITUTE 
YOUR EXPRESSIONS FOR D{} AND D{} IN THE 
EQUATION : D{} = D{}@HD{} = {} AND D{} =
 {}.@H{}@I(16,I,{})@S@RCOMPUTE@PSOLVE TH
E EQUATION FOR "&V". USE PAPER AND PENCI
L AND ENTER THE FINAL EQUATIONS OR USE T
HE CALCULATOR.@HISOLATE "&V" ON ONE SIDE
 OF THE EQUATION.@HTHE CALCULATOR SOLVES
 EQUATIONS FOR YOU AND DISPLAYS THE STEP
S IN THE SOLUTION.@I(16,I,&V={})@PENTER 
YOUR ANSWER TO THE PROBLEM IN THE GRID. 
REMEMBER THE QUESTION. &Q{}&Q&W(16)@HTHE
 TIME FOR {} IS THE VALUE OF "&V".@HTHE 
TIME FOR {} IS THE VALUE OF "&V". &V = {
}, SO ENTER '{}'.@I(11,I,{})@S@RCHECK@PR
EREAD THE PROBLEM. CHECK YOUR ANSWERS. E
VALUATE THE REMAINING EXPRESSIONS IN THE
 CHART.@HSUBSTITUTE FOR "&V" IN THE EXPR
ESSION FOR {} TIME. THEN CALCULATE THE R
ESULT.@H{}@I({},I,{})@HSUBSTITUTE FOR "&
V" IN THE EXPRESSION FOR {} DISTANCE. TH
EN CALCULATE THE RESULT.@H{}@I(14,I,{})@
HSUBSTITUTE FOR "&V" IN THE EXPRESSION F
OR {} DISTANCE. THEN CALCULATE THE RESUL
T.@H{}@I(15,I,{})&D(0,CHECK YOUR WORK. {
} DISTANCE SHOULD EQUAL {} DISTANCE. (ON
 TO A NEW PROBLEM.))@FAT 1 PM, A BUS LEA
VES AMARILLO FOR EL PASO AT 50 KM/HR. IF
 AN EXPRESS VAN TRAVELLING AT 55 KM/HR L
EAVES FOR THE SAME TRIP AT 1:30 PM, HOW 
LONG WILL IT TAKE THE VAN TO PASS THE BU
S?.BUS.VAN.THE BUS AND THE VAN WILL TRAV
EL THE SAME DISTANCE, BUT THE BUS TAKES 
1/2 HOUR LONGER.HOW LONG WILL IT TAKE TH
E VAN TO PASS THE BUS?.B.THE BUS'.V.THE 
VAN'S.B.V.THE BUS AND THE VAN.DRIVE.B.V.
THE BUS AND THE VAN.DRIVE.B=DV.THE BUS A
ND THE VAN.B.V.THE BUS'.THE VAN'S.KILOME
TERS PER HOUR (`KM/HR').4.KM/HR.HOURS (`
HR').2.HR.KILOMETERS (`KM').2.KM.THE BUS
 TRAVELS AT &H50 KM/HR&H..THE RATE FOR T
HE BUS IS `50' KM/HR..50.THE VAN TRAVELS
 AT &H55 KM/HR&H..THE RATE FOR THE VAN I
S `55' KM/HR..55.VEHICLE TRAVELS.THE VAN
 TRAVELS FOR.THE BUS.V.HOURS THE VAN TRA
VELS.11.THE BUS TRAVELS.THE TIME THE VAN
 TRAVELS.SINCE THE BUS STARTED AT 1 PM A
ND THE VAN STARTED AT 1:30 PM, THE BUS T
AKES 1/2 HOUR LONGER, OR `&V+.5' HOURS..
10.&V+.5. `50 \F06* (&V+.5)' \F15= BUS'.
50(&V+.5). `55  \F06* &V' \F15= VAN'S DI
ST..55&V.B.V.B.V.B.50(&V+.5).V.55&V.THE 
BUS' DISTANCE = THE VAN'S DISTANCE \N   
 `50(&V+.5)     \F20=  55&V'.50(&V+.5)=5
5&V.5.AFTER HOW MUCH TIME WILL IT CATCH 
UP TO THE BUS?.THE VAN.VAN.5.5.5.THE BUS
'.&V = 5, AND &V+.5 REPRESENTS THE BUS' 
TIME, SO THE BUS TRAVELLED FOR `5.5' HOU
RS..10.5.5.THE BUS'.&V=5 AND 50(&V+.5) R
EPRESENTS THE BUS' DISTANCE, SO 50 * 5.5
 OR `275' = THE BUS' DISTANCE..275.THE V
AN'S.&V=5 AND 55&V REPRESENTS THE VAN'S 
DISTANCE, SO 55 * 5, OR `275' = THE VAN'
S DISTANCE..275.THE BUS'.THE VAN'S.@FBOB
 CYCLES AT A RATE OF 24 KM/HR AND GREG C
YCLES AT 30 KM/HR. IF GREG GIVES BOB A 1
5 MINUTE HEAD START, HOW LONG WILL HE HA
VE TO RIDE BEFORE HE CATCHES UP TO BOB?.
BOB.GREG.BOB AND GREG CYCLE THE SAME DIS
TANCE, BUT BOB TAKES 15 MINUTES LONGER T
HAN GREG.&HHOW LONG WILL HE HAVE TO RIDE
 BEFORE HE CATCHES UP TO BOB?&H.B.BOB'S.
G.GREG'S.B.G.THE BOYS.CYCLE.B.G.THEY.RID
E.B=DG.THE BOYS.B.G.BOB'S FINAL.GREG'S F
INAL.KILOMETERS PER HOUR (`KM/HR').4.KM/
HR.HOURS (`HR').2.HR.KILOMETERS (`KM').2
.KM.&HBOB CYCLES AT A RATE OF 24 KM/HR&H
..BOB'S RATE IS `24' KM/HR..24.&HGREG CY
CLES AT A RATE OF 30 KM/HR&H..GREG'S RAT
E IS `30' KM/HR..30.BOY CYCLED.GREG RIDE
S FOR.BOB.G.HOURS GREG RODE.11.BOB CYCLE
D.GREG'S TIME (CONVERT THE ANSWER TO HOU
RS).BOB STARTED 15 MINUTES, OR .25 HOURS
 BEFORE GREG, SO BOB'S TIME IS `&V+.25' 
HOURS..10.&V+.25.`24  \F06* (&V+.25)' \F
15= BOB'S.24(&V+.25).`30 \F06*  &V' \F15
= GREG'S DIST..30&V.B.G.B.G.B.24(&V+.25)
.G.30&V.BOB'S DISTANCE \F18= GREG'S DIST
ANCE \N    `24(&V+.25) \F18=     30&V'.2
4(&V+.25)=30&V.1.HOW LONG WILL HE HAVE T
O RIDE BEFORE HE CATCHES UP TO BOB?.GREG
.GREG.1.1.1.BOB'S.&V=1 AND &V+.25 REPRES
ENTS BOB'S TIME, SO 1+.25, OR `1.25' IS 
BOB'S TIME..10.1.25.BOB'S.&V=1 AND 24(&V
+.25) REPRESENTS BOB'S DISTANCE, SO 24 *
 1.25, OR `30' IS BOB'S DISTANCE..30.GRE
G'S.&V=1 AND 30&V REPRESENTS GREG'S DIST
ANCE, SO `30' IS GREG'S DISTANCE..30.BOB
'S.GREG'S.|.
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL