00000000: 0D 20 20 20 20 20 20 D4 48 45 20 D5 4E 49 46 4F |. .HE .NIFO|
00000010: 52 4D 20 C4 49 53 54 52 49 42 55 54 49 4F 4E 0D |RM .ISTRIBUTION.|
00000020: 0D 20 20 C9 4E 20 47 45 4E 45 52 41 4C 20 41 20 |. .N GENERAL A |
00000030: 44 49 53 54 52 49 42 55 54 49 4F 4E 20 49 53 20 |DISTRIBUTION IS |
00000040: 41 20 46 52 45 51 2D 0D 0D 55 45 4E 43 59 20 43 |A FREQ-..UENCY C|
00000050: 4F 55 4E 54 20 4F 46 20 48 4F 57 20 4F 46 54 45 |OUNT OF HOW OFTE|
00000060: 4E 20 45 41 43 48 20 50 4F 53 53 49 42 4C 45 0D |N EACH POSSIBLE.|
00000070: 0D 56 41 4C 55 45 20 41 50 50 45 41 52 53 20 57 |.VALUE APPEARS W|
00000080: 48 45 4E 20 41 4E 20 45 58 50 45 52 49 4D 45 4E |HEN AN EXPERIMEN|
00000090: 54 20 49 53 0D 0D 50 45 52 46 4F 52 4D 45 44 2E |T IS..PERFORMED.|
000000A0: 20 20 C6 4F 52 20 45 58 41 4D 50 4C 45 2C 20 43 | .OR EXAMPLE, C|
000000B0: 4F 55 4E 54 49 4E 47 20 54 48 45 0D 0D 4E 55 4D |OUNTING THE..NUM|
000000C0: 42 45 52 20 4F 46 20 48 45 41 44 53 20 41 4E 44 |BER OF HEADS AND|
000000D0: 20 54 48 45 20 4E 55 4D 42 45 52 20 4F 46 0D 0D | THE NUMBER OF..|
000000E0: 54 41 49 4C 53 20 57 48 45 4E 20 41 20 43 4F 49 |TAILS WHEN A COI|
000000F0: 4E 20 49 53 20 46 4C 49 50 50 45 44 20 31 30 30 |N IS FLIPPED 100|
00000100: 0D 0D 54 49 4D 45 53 2E 20 20 D7 45 20 57 4F 55 |..TIMES. .E WOU|
00000110: 4C 44 20 27 45 58 50 45 43 54 27 20 54 48 45 20 |LD 'EXPECT' THE |
00000120: 4E 55 4D 42 45 52 0D 0D 54 4F 20 42 45 20 41 42 |NUMBER..TO BE AB|
00000130: 4F 55 54 20 35 30 2D 35 30 2E 20 20 D3 49 4E 43 |OUT 50-50. .INC|
00000140: 45 20 42 4F 54 48 20 48 45 41 44 53 0D 0D 41 4E |E BOTH HEADS..AN|
00000150: 44 20 54 41 49 4C 53 20 53 48 4F 55 4C 44 20 54 |D TAILS SHOULD T|
00000160: 48 45 4F 52 45 54 49 43 41 4C 4C 59 20 41 50 50 |HEORETICALLY APP|
00000170: 45 41 52 0D 0D 49 4E 20 45 51 55 41 4C 20 4E 55 |EAR..IN EQUAL NU|
00000180: 4D 42 45 52 53 2C 20 54 48 49 53 20 44 49 53 54 |MBERS, THIS DIST|
00000190: 52 49 42 55 54 49 4F 4E 0D 0D 49 53 20 4B 4E 4F |RIBUTION..IS KNO|
000001A0: 57 4E 20 41 53 20 55 4E 49 46 4F 52 4D 2E 0D 0D |WN AS UNIFORM...|
000001B0: 20 20 D2 4F 4C 4C 49 4E 47 20 41 20 46 41 49 52 | .OLLING A FAIR|
000001C0: 20 44 49 45 20 41 4C 53 4F 20 48 41 53 20 41 0D | DIE ALSO HAS A.|
000001D0: 0D 55 4E 49 46 4F 52 4D 20 44 49 53 54 52 49 42 |.UNIFORM DISTRIB|
000001E0: 55 54 49 4F 4E 2E 20 20 C5 41 43 48 20 4F 46 20 |UTION. .ACH OF |
000001F0: 54 48 45 0D 0D 53 49 58 20 4E 55 4D 42 45 52 53 |THE..SIX NUMBERS|
00000200: 20 4F 4E 20 54 48 45 20 44 49 45 20 49 53 20 45 | ON THE DIE IS E|
00000210: 51 55 41 4C 4C 59 0D 0D 4C 49 4B 45 4C 59 20 41 |QUALLY..LIKELY A|
00000220: 4E 44 20 49 4E 20 54 48 45 20 4C 4F 4E 47 20 52 |ND IN THE LONG R|
00000230: 55 4E 2C 20 53 41 59 20 41 46 54 45 52 0D 0D 36 |UN, SAY AFTER..6|
00000240: 30 30 20 54 4F 53 53 45 53 20 4F 46 20 54 48 45 |00 TOSSES OF THE|
00000250: 20 44 49 45 2C 20 57 45 20 57 4F 55 4C 44 0D 0D | DIE, WE WOULD..|
00000260: 45 58 50 45 43 54 20 41 42 4F 55 54 20 31 30 30 |EXPECT ABOUT 100|
00000270: 20 4F 46 20 45 41 43 48 20 4E 55 4D 42 45 52 20 | OF EACH NUMBER |
00000280: 54 4F 0D 0D 48 41 56 45 20 41 50 50 45 41 52 45 |TO..HAVE APPEARE|
00000290: 44 2E 20 C6 4F 52 20 41 4E 20 45 58 41 4D 50 4C |D. .OR AN EXAMPL|
000002A0: 45 20 4F 46 20 41 0D 0D 44 49 53 54 52 49 42 55 |E OF A..DISTRIBU|
000002B0: 54 49 4F 4E 20 57 48 49 43 48 20 49 53 20 4E 4F |TION WHICH IS NO|
000002C0: 54 20 55 4E 49 46 4F 52 4D 2C 0D 0D 54 41 4B 45 |T UNIFORM,..TAKE|
000002D0: 20 41 20 47 49 56 45 4E 20 48 49 47 48 20 53 43 | A GIVEN HIGH SC|
000002E0: 48 4F 4F 4C 20 41 4E 44 20 43 4F 55 4E 54 0D 0D |HOOL AND COUNT..|
000002F0: 54 48 45 20 4E 55 4D 42 45 52 20 4F 46 20 31 38 |THE NUMBER OF 18|
00000300: 20 59 45 41 52 2D 4F 4C 44 20 42 4F 59 53 20 57 | YEAR-OLD BOYS W|
00000310: 48 4F 53 45 0D 0D 48 45 49 47 48 54 53 20 46 41 |HOSE..HEIGHTS FA|
00000320: 4C 4C 20 49 4E 20 45 41 43 48 20 49 4E 43 48 20 |LL IN EACH INCH |
00000330: 49 4E 54 45 52 56 41 4C 2E 0D 0D C1 53 20 59 4F |INTERVAL....S YO|
00000340: 55 20 4D 49 47 48 54 20 45 58 50 45 43 54 2C 20 |U MIGHT EXPECT, |
00000350: 54 48 45 20 48 45 49 47 48 54 53 20 57 49 4C 4C |THE HEIGHTS WILL|
00000360: 0D 0D 43 4C 55 53 54 45 52 20 41 52 4F 55 4E 44 |..CLUSTER AROUND|
00000370: 20 41 20 56 41 4C 55 45 20 4F 46 20 41 42 4F 55 | A VALUE OF ABOU|
00000380: 54 20 36 38 0D 0D 49 4E 43 48 45 53 2C 20 41 4E |T 68..INCHES, AN|
00000390: 44 20 54 48 45 4E 20 54 41 50 45 52 20 4F 46 46 |D THEN TAPER OFF|
000003A0: 20 49 4E 20 42 4F 54 48 0D 0D 44 49 52 45 43 54 | IN BOTH..DIRECT|
000003B0: 49 4F 4E 53 20 2D 20 53 48 4F 52 54 45 52 20 41 |IONS - SHORTER A|
000003C0: 4E 44 20 54 41 4C 4C 45 52 2E 20 20 C9 46 0D 0D |ND TALLER. .F..|
000003D0: 41 4E 59 20 49 4E 44 49 56 49 44 55 41 4C 20 49 |ANY INDIVIDUAL I|
000003E0: 53 20 50 49 43 4B 45 44 20 41 54 20 52 41 4E 44 |S PICKED AT RAND|
000003F0: 4F 4D 2C 0D 0D 54 48 45 20 43 48 41 4E 43 45 53 |OM,..THE CHANCES|
00000400: 20 4F 46 20 48 49 53 20 48 45 49 47 48 54 20 42 | OF HIS HEIGHT B|
00000410: 45 49 4E 47 20 36 38 0D 0D 49 4E 43 48 45 53 20 |EING 68..INCHES |
00000420: 54 41 4C 4C 20 41 52 45 20 4E 4F 54 20 54 48 45 |TALL ARE NOT THE|
00000430: 20 53 41 4D 45 20 41 53 20 48 49 53 0D 0D 48 45 | SAME AS HIS..HE|
00000440: 49 47 48 54 20 42 45 49 4E 47 20 38 30 20 49 4E |IGHT BEING 80 IN|
00000450: 43 48 45 53 20 54 41 4C 4C 2E 0D 0D 20 20 D3 4F |CHES TALL... .O|
00000460: 20 57 48 45 4E 20 45 41 43 48 20 56 41 4C 55 45 | WHEN EACH VALUE|
00000470: 20 48 41 53 20 54 48 45 20 53 41 4D 45 0D 0D 45 | HAS THE SAME..E|
00000480: 58 50 45 43 54 41 54 49 4F 4E 2C 20 54 48 45 20 |XPECTATION, THE |
00000490: 44 49 53 54 52 49 42 55 54 49 4F 4E 20 49 53 0D |DISTRIBUTION IS.|
000004A0: 0D 43 41 4C 4C 45 44 20 55 4E 49 46 4F 52 4D 2E |.CALLED UNIFORM.|
000004B0: 20 20 CE 4F 54 20 41 4C 4C 20 44 49 53 54 52 49 | .OT ALL DISTRI|
000004C0: 42 55 54 49 4F 4E 53 0D 0D 41 52 45 20 55 4E 49 |BUTIONS..ARE UNI|
000004D0: 46 4F 52 4D 2E 0D 0D 20 20 C1 20 52 41 4E 44 4F |FORM... . RANDO|
000004E0: 4D 20 4E 55 4D 42 45 52 20 47 45 4E 45 52 41 54 |M NUMBER GENERAT|
000004F0: 4F 52 20 53 48 4F 55 4C 44 2C 0D 0D 54 48 45 4F |OR SHOULD,..THEO|
00000500: 52 45 54 49 43 41 4C 4C 59 2C 20 50 52 4F 56 49 |RETICALLY, PROVI|
00000510: 44 45 20 55 53 20 57 49 54 48 20 41 0D 0D 55 4E |DE US WITH A..UN|
00000520: 49 46 4F 52 4D 20 44 49 53 54 52 49 42 55 54 49 |IFORM DISTRIBUTI|
00000530: 4F 4E 2E 20 20 D4 48 41 54 20 49 53 2C 20 45 41 |ON. .HAT IS, EA|
00000540: 43 48 0D 0D 4E 55 4D 42 45 52 20 42 45 54 57 45 |CH..NUMBER BETWE|
00000550: 45 4E 20 30 20 41 4E 44 20 31 20 53 48 4F 55 4C |EN 0 AND 1 SHOUL|
00000560: 44 20 48 41 56 45 20 41 4E 0D 0D 45 51 55 41 4C |D HAVE AN..EQUAL|
00000570: 20 43 48 41 4E 43 45 20 4F 46 20 41 50 50 45 41 | CHANCE OF APPEA|
00000580: 52 49 4E 47 2E 20 20 D3 49 4E 43 45 20 54 48 45 |RING. .INCE THE|
00000590: 0D 0D C3 2D 36 34 27 53 20 52 41 4E 44 4F 4D 20 |...-64'S RANDOM |
000005A0: 4E 55 4D 42 45 52 20 47 45 4E 45 52 41 54 4F 52 |NUMBER GENERATOR|
000005B0: 20 49 53 20 4E 4F 54 0D 0D 41 20 54 52 55 45 20 | IS NOT..A TRUE |
000005C0: 52 41 4E 44 4F 4D 20 4E 55 4D 42 45 52 20 47 45 |RANDOM NUMBER GE|
000005D0: 4E 45 52 41 54 4F 52 2C 20 49 54 0D 0D 57 49 4C |NERATOR, IT..WIL|
000005E0: 4C 20 42 45 20 4A 55 44 47 45 44 20 4F 4E 20 48 |L BE JUDGED ON H|
000005F0: 4F 57 20 55 4E 49 46 4F 52 4D 20 41 0D 0D 44 49 |OW UNIFORM A..DI|
00000600: 53 54 52 49 42 55 54 49 4F 4E 20 49 54 20 47 45 |STRIBUTION IT GE|
00000610: 4E 45 52 41 54 45 53 2E 0D 0D 20 20 D7 45 20 50 |NERATES... .E P|
00000620: 52 4F 50 4F 53 45 20 54 4F 20 54 45 53 54 20 54 |ROPOSE TO TEST T|
00000630: 48 49 53 20 41 53 20 46 4F 4C 4C 4F 57 53 3A 0D |HIS AS FOLLOWS:.|
00000640: 0D 42 52 45 41 4B 20 54 48 45 20 49 4E 54 45 52 |.BREAK THE INTER|
00000650: 56 41 4C 20 46 52 4F 4D 20 30 20 54 4F 20 31 20 |VAL FROM 0 TO 1 |
00000660: 49 4E 54 4F 20 CE 0D 0D 53 55 42 49 4E 54 45 52 |INTO ...SUBINTER|
00000670: 56 41 4C 53 20 57 49 54 48 20 54 48 45 20 45 51 |VALS WITH THE EQ|
00000680: 55 41 4C 20 4C 45 4E 47 54 48 0D 0D 31 2F CE 2E |UAL LENGTH..1/..|
00000690: 20 20 C6 4F 52 20 45 58 41 4D 50 4C 45 2C 20 49 | .OR EXAMPLE, I|
000006A0: 46 20 57 45 20 44 45 43 49 44 45 20 54 4F 20 55 |F WE DECIDE TO U|
000006B0: 53 45 0D 0D 54 45 4E 20 53 55 42 49 4E 54 45 52 |SE..TEN SUBINTER|
000006C0: 56 41 4C 53 2C 20 54 48 45 4E 20 45 41 43 48 20 |VALS, THEN EACH |
000006D0: 57 49 4C 4C 20 48 41 56 45 0D 0D 4C 45 4E 47 54 |WILL HAVE..LENGT|
000006E0: 48 20 30 2E 31 20 28 4F 4E 45 20 54 45 4E 54 48 |H 0.1 (ONE TENTH|
000006F0: 29 2E 0D 0D 20 20 D7 45 20 57 49 4C 4C 20 54 48 |)... .E WILL TH|
00000700: 45 4E 20 52 55 4E 20 54 48 45 20 52 41 4E 44 4F |EN RUN THE RANDO|
00000710: 4D 20 4E 55 4D 42 45 52 0D 0D 47 45 4E 45 52 41 |M NUMBER..GENERA|
00000720: 54 4F 52 20 54 48 52 4F 55 47 48 20 53 45 56 45 |TOR THROUGH SEVE|
00000730: 52 41 4C 20 48 55 4E 44 52 45 44 0D 0D 49 54 45 |RAL HUNDRED..ITE|
00000740: 52 41 54 49 4F 4E 53 20 41 4E 44 20 54 48 45 4E |RATIONS AND THEN|
00000750: 20 43 4F 55 4E 54 20 54 48 45 20 4E 55 4D 42 45 | COUNT THE NUMBE|
00000760: 52 0D 0D 4F 46 20 54 49 4D 45 53 20 54 48 45 20 |R..OF TIMES THE |
00000770: 52 41 4E 44 4F 4D 20 4E 55 4D 42 45 52 20 47 45 |RANDOM NUMBER GE|
00000780: 4E 45 52 41 54 45 44 0D 0D 46 41 4C 4C 53 20 49 |NERATED..FALLS I|
00000790: 4E 20 45 41 43 48 20 53 55 42 49 4E 54 45 52 56 |N EACH SUBINTERV|
000007A0: 41 4C 2E 20 20 C9 46 20 54 48 45 0D 0D 52 41 4E |AL. .F THE..RAN|
000007B0: 44 4F 4D 20 4E 55 4D 42 45 52 20 47 45 4E 45 52 |DOM NUMBER GENER|
000007C0: 41 54 4F 52 20 49 53 20 49 4E 20 46 41 43 54 0D |ATOR IS IN FACT.|
000007D0: 0D 55 4E 49 46 4F 52 4D 2C 20 54 48 45 20 43 4F |.UNIFORM, THE CO|
000007E0: 55 4E 54 53 20 46 4F 52 20 45 41 43 48 20 4F 46 |UNTS FOR EACH OF|
000007F0: 20 54 48 45 0D 0D 53 55 42 49 4E 54 45 52 56 41 | THE..SUBINTERVA|
00000800: 4C 53 20 53 48 4F 55 4C 44 20 42 45 20 41 42 4F |LS SHOULD BE ABO|
00000810: 55 54 20 45 51 55 41 4C 2E 0D 0D 20 20 C1 20 53 |UT EQUAL... . S|
00000820: 54 41 54 49 53 54 49 43 41 4C 20 54 45 53 54 20 |TATISTICAL TEST |
00000830: 57 48 49 43 48 20 54 45 53 54 53 20 54 48 45 0D |WHICH TESTS THE.|
00000840: 0D 48 59 50 4F 54 48 45 53 49 53 20 54 48 41 54 |.HYPOTHESIS THAT|
00000850: 20 54 48 45 20 53 55 42 49 4E 54 45 52 56 41 4C | THE SUBINTERVAL|
00000860: 53 20 46 49 4C 4C 0D 0D 55 4E 49 46 4F 52 4D 4C |S FILL..UNIFORML|
00000870: 59 20 49 53 20 54 48 45 20 43 48 49 2D 53 51 55 |Y IS THE CHI-SQU|
00000880: 41 52 45 0D 0D 47 4F 4F 44 4E 45 53 53 2D 4F 46 |ARE..GOODNESS-OF|
00000890: 2D 46 49 54 20 54 45 58 54 2E 0D 0D 20 20 D2 55 |-FIT TEXT... .U|
000008A0: 4E 20 54 48 45 20 CC 4F 41 44 53 54 41 52 20 43 |N THE .OADSTAR C|
000008B0: 45 4E 54 52 41 4C 20 4C 49 4D 49 54 0D 0D 50 52 |ENTRAL LIMIT..PR|
000008C0: 4F 47 52 41 4D 20 57 49 54 48 20 54 48 45 20 55 |OGRAM WITH THE U|
000008D0: 4E 49 46 4F 52 4D 20 4F 50 54 49 4F 4E 2E 20 20 |NIFORM OPTION. |
000008E0: C1 0D 0D 48 49 47 48 20 50 2D 56 41 4C 55 45 20 |...HIGH P-VALUE |
000008F0: 28 43 4C 4F 53 45 20 54 4F 20 31 29 20 4D 45 41 |(CLOSE TO 1) MEA|
00000900: 4E 53 20 54 48 45 0D 0D 48 59 50 4F 54 48 45 53 |NS THE..HYPOTHES|
00000910: 49 53 20 54 48 41 54 20 54 48 45 20 44 49 53 54 |IS THAT THE DIST|
00000920: 52 49 42 55 54 49 4F 4E 20 49 53 0D 0D 55 4E 49 |RIBUTION IS..UNI|
00000930: 46 4F 52 4D 20 49 53 20 4E 4F 54 20 52 45 4A 45 |FORM IS NOT REJE|
00000940: 43 54 45 44 2E 20 20 C1 0D 0D 50 52 4F 42 41 42 |CTED. ...PROBAB|
00000950: 49 4C 49 54 59 20 43 4C 4F 53 45 20 54 4F 20 30 |ILITY CLOSE TO 0|
00000960: 20 28 53 41 59 20 4C 45 53 53 20 54 48 41 4E 0D | (SAY LESS THAN.|
00000970: 0D 2E 30 35 29 20 43 41 4E 20 42 45 20 49 4E 54 |..05) CAN BE INT|
00000980: 45 52 50 52 45 54 45 44 20 54 4F 20 4D 45 41 4E |ERPRETED TO MEAN|
00000990: 20 54 48 41 54 0D 0D 54 48 45 20 48 59 50 4F 54 | THAT..THE HYPOT|
000009A0: 48 45 53 49 53 20 54 48 41 54 20 54 48 45 20 44 |HESIS THAT THE D|
000009B0: 49 53 54 52 49 42 55 54 49 4F 4E 0D 0D 49 53 20 |ISTRIBUTION..IS |
000009C0: 55 4E 49 46 4F 52 4D 20 43 41 4E 20 42 45 20 52 |UNIFORM CAN BE R|
000009D0: 45 4A 45 43 54 45 44 2E 0D 0D 2D 2D 2D 2D 3C 20 |EJECTED...----< |
000009E0: 43 4F 4E 54 49 4E 55 45 44 20 49 4E 20 4E 45 58 |CONTINUED IN NEX|
000009F0: 54 20 41 52 54 49 43 4C 45 20 3E 2D 2D 2D 2D 2D |T ARTICLE >-----|
00000A00: 0D |. |
. THE UNIFORM DISTRIBUTION.. IN GE
NERAL A DISTRIBUTION IS A FREQ-..UENCY C
OUNT OF HOW OFTEN EACH POSSIBLE..VALUE A
PPEARS WHEN AN EXPERIMENT IS..PERFORMED.
FOR EXAMPLE, COUNTING THE..NUMBER OF H
EADS AND THE NUMBER OF..TAILS WHEN A COI
N IS FLIPPED 100..TIMES. WE WOULD 'EXPE
CT' THE NUMBER..TO BE ABOUT 50-50. SINC
E BOTH HEADS..AND TAILS SHOULD THEORETIC
ALLY APPEAR..IN EQUAL NUMBERS, THIS DIST
RIBUTION..IS KNOWN AS UNIFORM... ROLLIN
G A FAIR DIE ALSO HAS A..UNIFORM DISTRIB
UTION. EACH OF THE..SIX NUMBERS ON THE
DIE IS EQUALLY..LIKELY AND IN THE LONG R
UN, SAY AFTER..600 TOSSES OF THE DIE, WE
WOULD..EXPECT ABOUT 100 OF EACH NUMBER
TO..HAVE APPEARED. FOR AN EXAMPLE OF A..
DISTRIBUTION WHICH IS NOT UNIFORM,..TAKE
A GIVEN HIGH SCHOOL AND COUNT..THE NUMB
ER OF 18 YEAR-OLD BOYS WHOSE..HEIGHTS FA
LL IN EACH INCH INTERVAL...AS YOU MIGHT
EXPECT, THE HEIGHTS WILL..CLUSTER AROUND
A VALUE OF ABOUT 68..INCHES, AND THEN T
APER OFF IN BOTH..DIRECTIONS - SHORTER A
ND TALLER. IF..ANY INDIVIDUAL IS PICKED
AT RANDOM,..THE CHANCES OF HIS HEIGHT B
EING 68..INCHES TALL ARE NOT THE SAME AS
HIS..HEIGHT BEING 80 INCHES TALL... SO
WHEN EACH VALUE HAS THE SAME..EXPECTATI
ON, THE DISTRIBUTION IS..CALLED UNIFORM.
NOT ALL DISTRIBUTIONS..ARE UNIFORM...
A RANDOM NUMBER GENERATOR SHOULD,..THEO
RETICALLY, PROVIDE US WITH A..UNIFORM DI
STRIBUTION. THAT IS, EACH..NUMBER BETWE
EN 0 AND 1 SHOULD HAVE AN..EQUAL CHANCE
OF APPEARING. SINCE THE..C-64'S RANDOM
NUMBER GENERATOR IS NOT..A TRUE RANDOM N
UMBER GENERATOR, IT..WILL BE JUDGED ON H
OW UNIFORM A..DISTRIBUTION IT GENERATES.
.. WE PROPOSE TO TEST THIS AS FOLLOWS:.
.BREAK THE INTERVAL FROM 0 TO 1 INTO N..
SUBINTERVALS WITH THE EQUAL LENGTH..1/N.
FOR EXAMPLE, IF WE DECIDE TO USE..TEN
SUBINTERVALS, THEN EACH WILL HAVE..LENGT
H 0.1 (ONE TENTH)... WE WILL THEN RUN T
HE RANDOM NUMBER..GENERATOR THROUGH SEVE
RAL HUNDRED..ITERATIONS AND THEN COUNT T
HE NUMBER..OF TIMES THE RANDOM NUMBER GE
NERATED..FALLS IN EACH SUBINTERVAL. IF
THE..RANDOM NUMBER GENERATOR IS IN FACT.
.UNIFORM, THE COUNTS FOR EACH OF THE..SU
BINTERVALS SHOULD BE ABOUT EQUAL... A S
TATISTICAL TEST WHICH TESTS THE..HYPOTHE
SIS THAT THE SUBINTERVALS FILL..UNIFORML
Y IS THE CHI-SQUARE..GOODNESS-OF-FIT TEX
T... RUN THE LOADSTAR CENTRAL LIMIT..PR
OGRAM WITH THE UNIFORM OPTION. A..HIGH
P-VALUE (CLOSE TO 1) MEANS THE..HYPOTHES
IS THAT THE DISTRIBUTION IS..UNIFORM IS
NOT REJECTED. A..PROBABILITY CLOSE TO 0
(SAY LESS THAN...05) CAN BE INTERPRETED
TO MEAN THAT..THE HYPOTHESIS THAT THE D
ISTRIBUTION..IS UNIFORM CAN BE REJECTED.
..----< CONTINUED IN NEXT ARTICLE >-----
.
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL