COIN1L4
FILE INFORMATION
FILENAME(S): COIN1L4
FILE TYPE(S): PRG
FILE SIZE: 5.1K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
7a03da7c1bda2b6c1fdc2c8fe684c7faf12ac119886ec27e7b0131ad63549f10
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | COIN1L4 | PRG | Radd Maxx | 24 | 4 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 3F 40 64 67 30 32 26 64 28 31 | A@q{}?@dg02&d(1|
00000010: 2C 7B 7D 29 26 64 28 32 2C 7B 7D 29 26 64 28 33 |,{})&d(2,{})&d(3|
00000020: 2C 54 6F 74 61 6C 29 26 64 28 34 2C 50 72 69 63 |,Total)&d(4,Pric|
00000030: 65 2F 75 6E 69 74 29 26 64 28 38 2C 23 20 6F 66 |e/unit)&d(8,# of|
00000040: 20 63 6F 69 6E 73 29 26 64 28 31 32 2C 56 61 6C | coins)&d(12,Val|
00000050: 75 65 29 40 72 52 45 41 44 40 70 52 65 61 64 20 |ue)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66 61 63 74 73 3F 20 57 68 |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 |y to continue.)@|
000000C0: 68 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 |hWhat are the fa|
000000D0: 63 74 73 3F 20 26 68 7B 7D 26 68 2E 40 68 57 68 |cts? &h{}&h.@hWh|
000000E0: 61 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 |at is being aske|
000000F0: 64 3F 20 26 68 7B 7D 3F 26 68 40 69 28 30 29 40 |d? &h{}?&h@i(0)@|
00000100: 72 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 6C |rDATA ENTRY@pFil|
00000110: 6C 20 69 6E 20 74 68 65 20 67 72 69 64 20 2D 20 |l in the grid - |
00000120: 73 74 61 72 74 20 77 69 74 68 20 74 68 65 20 63 |start with the c|
00000130: 6F 6D 6D 6F 6E 20 75 6E 69 74 2E 20 28 45 78 70 |ommon unit. (Exp|
00000140: 72 65 73 73 20 61 6C 6C 20 76 61 6C 75 65 73 20 |ress all values |
00000150: 69 6E 20 63 65 6E 74 73 29 2E 40 68 57 68 61 74 |in cents).@hWhat|
00000160: 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 | is the value of|
00000170: 20 61 20 7B 7D 3F 40 68 54 68 65 20 76 61 6C 75 | a {}?@hThe valu|
00000180: 65 20 6F 66 20 61 20 7B 7D 2E 40 69 28 35 2C 69 |e of a {}.@i(5,i|
00000190: 2C 7B 7D 29 26 64 28 35 2C 7B 7D 29 40 68 57 68 |,{})&d(5,{})@hWh|
000001A0: 61 74 20 69 73 20 74 68 65 20 76 61 6C 75 65 20 |at is the value |
000001B0: 6F 66 20 61 20 7B 7D 3F 40 68 54 68 65 20 76 61 |of a {}?@hThe va|
000001C0: 6C 75 65 20 6F 66 20 61 20 7B 7D 2E 40 69 28 36 |lue of a {}.@i(6|
000001D0: 2C 69 2C 7B 7D 29 26 64 28 36 2C 7B 7D 20 63 65 |,i,{})&d(6,{} ce|
000001E0: 6E 74 73 29 40 70 45 6E 74 65 72 20 74 68 65 20 |nts)@pEnter the |
000001F0: 66 61 63 74 73 20 66 72 6F 6D 20 74 68 65 20 70 |facts from the p|
00000200: 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 20 |roblem into the |
00000210: 67 72 69 64 2E 20 28 45 78 70 72 65 73 73 20 61 |grid. (Express a|
00000220: 6C 6C 20 76 61 6C 75 65 73 20 69 6E 20 63 65 6E |ll values in cen|
00000230: 74 73 29 2E 40 68 7B 7D 2E 40 68 7B 7D 2E 40 69 |ts).@h{}.@h{}.@i|
00000240: 28 31 35 2C 69 2C 7B 7D 29 40 68 7B 7D 2E 40 68 |(15,i,{})@h{}.@h|
00000250: 7B 7D 2E 40 69 28 31 31 2C 69 2C 7B 7D 29 40 70 |{}.@i(11,i,{})@p|
00000260: 52 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E 75 |Represent the nu|
00000270: 6D 62 65 72 20 6F 66 20 65 61 63 68 20 74 79 70 |mber of each typ|
00000280: 65 20 6F 66 20 63 6F 69 6E 2E 40 68 43 68 6F 6F |e of coin.@hChoo|
00000290: 73 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 6F |se a variable to|
000002A0: 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E | represent the n|
000002B0: 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 68 43 68 |umber of {}.@hCh|
000002C0: 6F 6F 73 65 20 61 6E 79 20 6C 65 74 74 65 72 2C |oose any letter,|
000002D0: 20 73 75 63 68 20 61 73 20 60 7B 7D 27 2C 20 74 | such as `{}', t|
000002E0: 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 |o represent the |
000002F0: 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 69 28 |number of {}.@i(|
00000300: 7B 7D 2C 69 2C 26 76 29 40 68 52 65 70 72 65 73 |{},i,&v)@hRepres|
00000310: 65 6E 74 20 74 68 65 20 6E 75 6D 62 65 72 20 6F |ent the number o|
00000320: 66 20 7B 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 |f {} in terms of|
00000330: 20 22 26 76 22 20 28 74 68 65 20 6E 75 6D 62 65 | "&v" (the numbe|
00000340: 72 20 6F 66 20 7B 7D 29 2E 40 68 7B 7D 40 69 28 |r of {}).@h{}@i(|
00000350: 7B 7D 2C 69 2C 7B 7D 29 40 72 50 41 52 54 53 40 |{},i,{})@rPARTS@|
00000360: 70 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 |pWrite an expres|
00000370: 73 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E |sion to represen|
00000380: 74 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 65 |t the value of e|
00000390: 61 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E |ach type of coin|
000003A0: 2E 40 68 4D 75 6C 74 69 70 6C 79 20 74 68 65 20 |.@hMultiply the |
000003B0: 70 72 69 63 65 2F 75 6E 69 74 20 62 79 20 74 68 |price/unit by th|
000003C0: 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 |e number of {}.@|
000003D0: 68 50 72 69 63 65 2F 75 6E 69 74 20 5C 66 31 32 |hPrice/unit \f12|
000003E0: 2A 20 23 20 7B 7D 20 5C 66 32 35 3D 20 7B 7D 20 |* # {} \f25= {} |
000003F0: 76 61 6C 2E 20 5C 6E 20 60 7B 7D 20 20 20 20 20 |val. \n `{} |
00000400: 5C 66 31 32 2A 20 20 7B 7D 27 20 20 5C 66 32 35 |\f12* {}' \f25|
00000410: 3D 20 7B 7D 20 76 61 6C 2E 40 69 28 7B 7D 2C 69 |= {} val.@i({},i|
00000420: 2C 7B 7D 29 40 68 4E 6F 77 20 6D 75 6C 74 69 70 |,{})@hNow multip|
00000430: 6C 79 20 74 68 65 20 70 72 69 63 65 2F 75 6E 69 |ly the price/uni|
00000440: 74 20 62 79 20 74 68 65 20 6E 75 6D 62 65 72 20 |t by the number |
00000450: 6F 66 20 7B 7D 2E 40 68 50 72 69 63 65 2F 75 6E |of {}.@hPrice/un|
00000460: 69 74 20 5C 66 31 32 2A 20 23 20 7B 7D 20 5C 66 |it \f12* # {} \f|
00000470: 32 35 3D 20 7B 7D 20 76 61 6C 2E 20 5C 6E 20 20 |25= {} val. \n |
00000480: 60 7B 7D 20 20 20 20 20 5C 66 31 32 2A 20 7B 7D |`{} \f12* {}|
00000490: 27 20 20 5C 66 32 35 3D 20 7B 7D 20 76 61 6C 2E |' \f25= {} val.|
000004A0: 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 72 57 48 4F |@i({},i,{})@rWHO|
000004B0: 4C 45 40 70 55 73 65 20 74 68 65 20 74 61 62 6C |LE@pUse the tabl|
000004C0: 65 20 74 6F 20 77 72 69 74 65 20 61 6E 20 65 71 |e to write an eq|
000004D0: 75 61 74 69 6F 6E 20 74 6F 20 72 65 6C 61 74 65 |uation to relate|
000004E0: 20 74 68 65 20 70 61 72 74 73 20 28 7B 7D 29 20 | the parts ({}) |
000004F0: 74 6F 20 74 68 65 20 77 68 6F 6C 65 20 28 54 6F |to the whole (To|
00000500: 74 61 6C 29 2E 40 68 28 7B 7D 20 76 61 6C 29 20 |tal).@h({} val) |
00000510: 5C 66 31 34 2B 20 28 7B 7D 20 76 61 6C 29 5C 66 |\f14+ ({} val)\f|
00000520: 32 39 3D 20 54 6F 74 61 6C 20 76 61 6C 40 68 28 |29= Total val@h(|
00000530: 7B 7D 20 76 61 6C 29 20 5C 66 31 34 2B 20 28 7B |{} val) \f14+ ({|
00000540: 7D 20 76 61 6C 29 5C 66 32 39 3D 20 54 6F 74 61 |} val)\f29= Tota|
00000550: 6C 20 76 61 6C 20 5C 6E 7B 7D 40 69 28 31 36 2C |l val \n{}@i(16,|
00000560: 69 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 54 45 |i,{})@s@rCOMPUTE|
00000570: 40 70 53 6F 6C 76 65 20 74 68 65 20 65 71 75 61 |@pSolve the equa|
00000580: 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 28 7B 7D |tion for "&v"({}|
00000590: 29 2E 20 55 73 65 20 70 65 6E 63 69 6C 20 61 6E |). Use pencil an|
000005A0: 64 20 70 61 70 65 72 2C 20 6F 72 20 75 73 65 20 |d paper, or use |
000005B0: 74 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 |the Calculator.@|
000005C0: 68 49 73 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E |hIsolate "&v" on|
000005D0: 20 6F 6E 65 20 73 69 64 65 20 6F 66 20 74 68 65 | one side of the|
000005E0: 20 65 71 75 61 74 69 6F 6E 2E 40 68 54 68 65 20 | equation.@hThe |
000005F0: 43 61 6C 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 |Calculator solve|
00000600: 73 20 65 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 |s equations for |
00000610: 79 6F 75 20 61 6E 64 20 64 69 73 70 6C 61 79 73 |you and displays|
00000620: 20 74 68 65 20 73 74 65 70 73 20 69 6E 20 74 68 | the steps in th|
00000630: 65 20 73 6F 6C 75 74 69 6F 6E 2E 40 69 28 31 36 |e solution.@i(16|
00000640: 2C 69 2C 7B 7D 29 40 70 4E 6F 77 20 66 69 6C 6C |,i,{})@pNow fill|
00000650: 20 69 6E 20 74 68 65 20 61 6E 73 77 65 72 28 73 | in the answer(s|
00000660: 29 20 74 6F 20 74 68 65 20 70 72 6F 62 6C 65 6D |) to the problem|
00000670: 2E 20 52 65 6D 65 6D 62 65 72 20 74 68 65 20 71 |. Remember the q|
00000680: 75 65 73 74 69 6F 6E 2E 20 26 71 7B 7D 3F 26 71 |uestion. &q{}?&q|
00000690: 26 77 28 31 36 29 40 68 54 68 65 20 6E 75 6D 62 |&w(16)@hThe numb|
000006A0: 65 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 20 |er of {} is the |
000006B0: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
000006C0: 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 73 40 |{}@i({},i,{})@s@|
000006D0: 68 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B |hThe number of {|
000006E0: 7D 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |}.@h{}@i({},i,{}|
000006F0: 29 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 64 |)@rCHECK@pReread|
00000700: 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 68 | the problem. Ch|
00000710: 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 73 |eck your answers|
00000720: 2E 20 52 65 70 6C 61 63 65 20 61 6C 6C 20 76 61 |. Replace all va|
00000730: 72 69 61 62 6C 65 73 20 69 6E 20 74 68 65 20 67 |riables in the g|
00000740: 72 69 64 2E 40 68 53 75 62 73 74 69 74 75 74 65 |rid.@hSubstitute|
00000750: 20 66 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 | for "&v" in the|
00000760: 20 65 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 | expression for |
00000770: 74 68 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 |the value of the|
00000780: 20 7B 7D 2E 20 4E 6F 77 20 63 61 6C 63 75 6C 61 | {}. Now calcula|
00000790: 74 65 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B |te.@h{}@i({},i,{|
000007A0: 7D 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 |})@hSubstitute f|
000007B0: 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 |or "&v" in the e|
000007C0: 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 74 68 |xpression for th|
000007D0: 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 20 7B |e value of the {|
000007E0: 7D 2E 20 20 4E 6F 77 20 63 61 6C 63 75 6C 61 74 |}. Now calculat|
000007F0: 65 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D |e.@h{}@i({},i,{}|
00000800: 29 26 64 28 30 2C 43 68 65 63 6B 20 79 6F 75 72 |)&d(0,Check your|
00000810: 20 77 6F 72 6B 2E 20 54 68 65 20 7B 7D 20 73 68 | work. The {} sh|
00000820: 6F 75 6C 64 20 65 71 75 61 6C 20 74 68 65 20 74 |ould equal the t|
00000830: 6F 74 61 6C 20 76 61 6C 75 65 2E 20 4F 6E 20 74 |otal value. On t|
00000840: 6F 20 61 20 6E 65 77 20 70 72 6F 62 6C 65 6D 2E |o a new problem.|
00000850: 29 40 66 52 6F 62 69 6E 20 68 61 73 20 66 6F 75 |)@fRobin has fou|
00000860: 72 74 65 65 6E 20 63 6F 69 6E 73 20 77 6F 72 74 |rteen coins wort|
00000870: 68 20 24 32 2E 39 30 2E 20 53 6F 6D 65 20 6F 66 |h $2.90. Some of|
00000880: 20 74 68 65 20 63 6F 69 6E 73 20 61 72 65 20 71 | the coins are q|
00000890: 75 61 72 74 65 72 73 20 61 6E 64 20 74 68 65 20 |uarters and the |
000008A0: 72 65 73 74 20 61 72 65 20 64 69 6D 65 73 2E 20 |rest are dimes. |
000008B0: 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 |How many of each|
000008C0: 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 64 6F | type of coin do|
000008D0: 65 73 20 73 68 65 20 68 61 76 65 00 44 69 6D 65 |es she have.Dime|
000008E0: 73 00 51 75 61 72 74 65 72 73 00 52 6F 62 69 6E |s.Quarters.Robin|
000008F0: 20 68 61 73 20 66 6F 75 72 74 65 65 6E 20 63 6F | has fourteen co|
00000900: 69 6E 73 20 77 6F 72 74 68 20 24 32 2E 39 30 00 |ins worth $2.90.|
00000910: 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 |How many of each|
00000920: 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 64 6F | type of coin do|
00000930: 65 73 20 73 68 65 20 68 61 76 65 00 64 69 6D 65 |es she have.dime|
00000940: 00 64 69 6D 65 20 69 73 20 60 31 30 27 20 63 65 |.dime is `10' ce|
00000950: 6E 74 73 00 31 30 00 31 30 20 63 65 6E 74 73 00 |nts.10.10 cents.|
00000960: 71 75 61 72 74 65 72 00 71 75 61 72 74 65 72 20 |quarter.quarter |
00000970: 69 73 20 60 32 35 27 20 63 65 6E 74 73 00 32 35 |is `25' cents.25|
00000980: 00 32 35 00 26 68 63 6F 69 6E 73 20 77 6F 72 74 |.25.&hcoins wort|
00000990: 68 20 24 32 2E 39 30 26 68 00 54 68 65 20 63 6F |h $2.90&h.The co|
000009A0: 69 6E 73 20 61 72 65 20 77 6F 72 74 68 20 60 32 |ins are worth `2|
000009B0: 39 30 27 20 63 65 6E 74 73 00 32 39 30 00 53 68 |90' cents.290.Sh|
000009C0: 65 20 68 61 73 20 61 20 74 6F 74 61 6C 20 6F 66 |e has a total of|
000009D0: 20 31 34 20 63 6F 69 6E 73 00 54 68 65 20 74 6F | 14 coins.The to|
000009E0: 74 61 6C 20 6E 75 6D 62 65 72 20 6F 66 20 63 6F |tal number of co|
000009F0: 69 6E 73 20 69 73 20 60 31 34 27 00 31 34 00 64 |ins is `14'.14.d|
00000A00: 69 6D 65 73 00 64 00 64 69 6D 65 73 00 39 00 71 |imes.d.dimes.9.q|
00000A10: 75 61 72 74 65 72 73 00 64 69 6D 65 73 00 53 68 |uarters.dimes.Sh|
00000A20: 65 20 68 61 73 20 61 20 74 6F 74 61 6C 20 6F 66 |e has a total of|
00000A30: 20 31 34 20 63 6F 69 6E 73 2E 20 49 66 20 22 26 | 14 coins. If "&|
00000A40: 76 22 20 69 73 20 74 68 65 20 23 20 6F 66 20 64 |v" is the # of d|
00000A50: 69 6D 65 73 2C 20 60 31 34 2D 26 76 27 20 72 65 |imes, `14-&v' re|
00000A60: 70 72 65 73 65 6E 74 73 20 74 68 65 20 6E 75 6D |presents the num|
00000A70: 62 65 72 20 6F 66 20 71 75 61 72 74 65 72 73 00 |ber of quarters.|
00000A80: 31 30 00 31 34 2D 26 76 00 64 69 6D 65 73 00 64 |10.14-&v.dimes.d|
00000A90: 69 6D 65 73 00 64 69 6D 65 00 31 30 00 26 76 00 |imes.dime.10.&v.|
00000AA0: 64 69 6D 65 00 31 33 00 31 30 2A 26 76 00 71 75 |dime.13.10*&v.qu|
00000AB0: 61 72 74 65 72 73 00 71 75 61 72 74 65 72 73 00 |arters.quarters.|
00000AC0: 71 75 61 72 74 65 72 00 32 35 00 28 31 34 2D 26 |quarter.25.(14-&|
00000AD0: 76 29 00 71 75 61 72 74 65 72 00 31 34 00 32 35 |v).quarter.14.25|
00000AE0: 28 31 34 2D 26 76 29 00 64 69 6D 65 73 20 61 6E |(14-&v).dimes an|
00000AF0: 64 20 71 75 61 72 74 65 72 73 00 64 69 6D 65 00 |d quarters.dime.|
00000B00: 71 75 61 72 74 65 72 00 64 69 6D 65 00 71 75 61 |quarter.dime.qua|
00000B10: 72 74 65 72 00 60 20 31 30 26 76 20 20 20 20 20 |rter.` 10&v |
00000B20: 5C 66 31 34 2B 20 32 35 28 31 34 2D 26 76 29 20 |\f14+ 25(14-&v) |
00000B30: 20 20 20 20 20 5C 66 32 39 3D 20 32 39 30 27 00 | \f29= 290'.|
00000B40: 31 30 2A 26 76 20 2B 20 32 35 28 31 34 2D 26 76 |10*&v + 25(14-&v|
00000B50: 29 20 3D 20 32 39 30 00 74 68 65 20 6E 75 6D 62 |) = 290.the numb|
00000B60: 65 72 20 6F 66 20 64 69 6D 65 73 00 26 76 3D 34 |er of dimes.&v=4|
00000B70: 00 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 |.How many of eac|
00000B80: 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 64 |h type of coin d|
00000B90: 6F 65 73 20 73 68 65 20 68 61 76 65 00 64 69 6D |oes she have.dim|
00000BA0: 65 73 00 26 76 20 3D 20 60 34 27 00 39 00 34 00 |es.&v = `4'.9.4.|
00000BB0: 71 75 61 72 74 65 72 73 20 69 73 20 74 68 65 20 |quarters is the |
00000BC0: 76 61 6C 75 65 20 6F 66 20 60 31 34 2D 26 76 27 |value of `14-&v'|
00000BD0: 00 31 34 2D 26 76 20 3D 20 60 31 30 27 00 31 30 |.14-&v = `10'.10|
00000BE0: 00 31 30 00 64 69 6D 65 73 00 31 30 2A 26 76 20 |.10.dimes.10*&v |
00000BF0: 3D 20 31 30 2A 34 20 3D 20 60 34 30 27 20 63 65 |= 10*4 = `40' ce|
00000C00: 6E 74 73 00 31 33 00 34 30 00 71 75 61 72 74 65 |nts.13.40.quarte|
00000C10: 72 73 00 32 35 28 31 34 2D 26 76 29 20 3D 20 32 |rs.25(14-&v) = 2|
00000C20: 35 2A 31 30 20 3D 20 60 32 35 30 27 20 63 65 6E |5*10 = `250' cen|
00000C30: 74 73 00 31 34 00 32 35 30 00 73 75 6D 20 6F 66 |ts.14.250.sum of|
00000C40: 20 74 68 65 20 6E 69 63 6B 65 6C 20 61 6E 64 20 | the nickel and |
00000C50: 64 69 6D 65 20 76 61 6C 75 65 73 00 40 66 44 65 |dime values.@fDe|
00000C60: 62 62 69 65 20 68 61 73 20 31 37 20 63 6F 69 6E |bbie has 17 coin|
00000C70: 73 20 77 6F 72 74 68 20 24 33 2E 35 30 2E 20 53 |s worth $3.50. S|
00000C80: 6F 6D 65 20 6F 66 20 74 68 65 20 63 6F 69 6E 73 |ome of the coins|
00000C90: 20 61 72 65 20 71 75 61 72 74 65 72 73 2C 20 61 | are quarters, a|
00000CA0: 6E 64 20 74 68 65 20 72 65 73 74 20 61 72 65 20 |nd the rest are |
00000CB0: 64 69 6D 65 73 2E 20 48 6F 77 20 6D 61 6E 79 20 |dimes. How many |
00000CC0: 6F 66 20 65 61 63 68 20 74 79 70 65 20 6F 66 20 |of each type of |
00000CD0: 63 6F 69 6E 20 61 72 65 20 74 68 65 72 65 00 44 |coin are there.D|
00000CE0: 69 6D 65 73 00 51 75 61 72 74 65 72 73 00 31 37 |imes.Quarters.17|
00000CF0: 20 63 6F 69 6E 73 20 77 6F 72 74 68 20 24 33 2E | coins worth $3.|
00000D00: 35 30 2E 00 48 6F 77 20 6D 61 6E 79 20 6F 66 20 |50..How many of |
00000D10: 65 61 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 |each type of coi|
00000D20: 6E 20 61 72 65 20 74 68 65 72 65 00 64 69 6D 65 |n are there.dime|
00000D30: 00 64 69 6D 65 20 69 73 20 60 31 30 27 20 63 65 |.dime is `10' ce|
00000D40: 6E 74 73 00 31 30 00 31 30 20 63 65 6E 74 73 00 |nts.10.10 cents.|
00000D50: 71 75 61 72 74 65 72 00 71 75 61 72 74 65 72 20 |quarter.quarter |
00000D60: 69 73 20 60 32 35 27 20 63 65 6E 74 73 00 32 35 |is `25' cents.25|
00000D70: 00 32 35 00 53 68 65 20 68 61 73 20 63 6F 69 6E |.25.She has coin|
00000D80: 73 20 77 6F 72 74 68 20 24 33 2E 35 30 00 54 68 |s worth $3.50.Th|
00000D90: 65 20 63 6F 69 6E 73 20 61 72 65 20 77 6F 72 74 |e coins are wort|
00000DA0: 68 20 60 33 35 30 27 20 63 65 6E 74 73 00 33 35 |h `350' cents.35|
00000DB0: 30 00 53 68 65 20 68 61 73 20 61 20 74 6F 74 61 |0.She has a tota|
00000DC0: 6C 20 6F 66 20 31 37 20 63 6F 69 6E 73 00 54 68 |l of 17 coins.Th|
00000DD0: 65 20 74 6F 74 61 6C 20 6E 75 6D 62 65 72 20 6F |e total number o|
00000DE0: 66 20 63 6F 69 6E 73 20 69 73 20 60 31 37 27 00 |f coins is `17'.|
00000DF0: 31 37 00 64 69 6D 65 73 00 64 00 64 69 6D 65 73 |17.dimes.d.dimes|
00000E00: 00 39 00 71 75 61 72 74 65 72 73 00 64 69 6D 65 |.9.quarters.dime|
00000E10: 73 00 53 68 65 20 68 61 73 20 31 37 20 63 6F 69 |s.She has 17 coi|
00000E20: 6E 73 2E 20 49 66 20 22 26 76 22 20 65 71 75 61 |ns. If "&v" equa|
00000E30: 6C 73 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 |ls the number of|
00000E40: 20 64 69 6D 65 73 2C 20 60 31 37 2D 26 76 27 20 | dimes, `17-&v' |
00000E50: 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 20 6E |represents the n|
00000E60: 75 6D 62 65 72 20 6F 66 20 71 75 61 72 74 65 72 |umber of quarter|
00000E70: 73 00 31 30 00 31 37 2D 26 76 00 64 69 6D 65 73 |s.10.17-&v.dimes|
00000E80: 00 64 69 6D 65 73 00 64 69 6D 65 00 31 30 00 26 |.dimes.dime.10.&|
00000E90: 76 00 64 69 6D 65 00 31 33 00 31 30 2A 26 76 00 |v.dime.13.10*&v.|
00000EA0: 71 75 61 72 74 65 72 73 00 71 75 61 72 74 65 72 |quarters.quarter|
00000EB0: 73 00 71 75 61 72 74 65 72 00 32 35 00 28 31 37 |s.quarter.25.(17|
00000EC0: 2D 26 76 29 00 71 75 61 72 74 65 72 00 31 34 00 |-&v).quarter.14.|
00000ED0: 32 35 2A 28 31 37 2D 26 76 29 00 64 69 6D 65 73 |25*(17-&v).dimes|
00000EE0: 20 61 6E 64 20 71 75 61 72 74 65 72 73 00 64 69 | and quarters.di|
00000EF0: 6D 65 00 71 75 61 72 74 65 72 00 64 69 6D 65 00 |me.quarter.dime.|
00000F00: 71 75 61 72 74 65 72 00 60 31 30 2A 26 76 20 20 |quarter.`10*&v |
00000F10: 20 20 20 20 5C 66 31 34 2B 20 20 32 35 2A 28 31 | \f14+ 25*(1|
00000F20: 37 2D 26 76 29 20 20 20 20 5C 66 32 39 3D 20 20 |7-&v) \f29= |
00000F30: 20 33 35 30 27 00 31 30 2A 26 76 2B 32 35 2A 28 | 350'.10*&v+25*(|
00000F40: 31 37 2D 26 76 29 3D 33 35 30 00 74 68 65 20 6E |17-&v)=350.the n|
00000F50: 75 6D 62 65 72 20 6F 66 20 64 69 6D 65 73 00 26 |umber of dimes.&|
00000F60: 76 3D 35 00 48 6F 77 20 6D 61 6E 79 20 6F 66 20 |v=5.How many of |
00000F70: 65 61 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 |each type of coi|
00000F80: 6E 20 61 72 65 20 74 68 65 72 65 00 64 69 6D 65 |n are there.dime|
00000F90: 73 00 26 76 20 3D 20 60 35 27 00 39 00 35 00 71 |s.&v = `5'.9.5.q|
00000FA0: 75 61 72 74 65 72 73 20 69 73 20 74 68 65 20 76 |uarters is the v|
00000FB0: 61 6C 75 65 20 6F 66 20 60 31 37 2D 26 76 27 00 |alue of `17-&v'.|
00000FC0: 31 37 2D 26 76 20 3D 20 31 32 00 31 30 00 31 32 |17-&v = 12.10.12|
00000FD0: 00 64 69 6D 65 73 00 31 30 2A 26 76 20 3D 20 31 |.dimes.10*&v = 1|
00000FE0: 30 2A 35 20 3D 20 60 35 30 27 20 63 65 6E 74 73 |0*5 = `50' cents|
00000FF0: 00 31 33 00 35 30 00 71 75 61 72 74 65 72 73 00 |.13.50.quarters.|
00001000: 32 35 2A 28 31 37 2D 26 76 29 20 3D 20 32 35 2A |25*(17-&v) = 25*|
00001010: 31 32 20 3D 20 60 33 30 30 27 20 63 65 6E 74 73 |12 = `300' cents|
00001020: 00 31 34 00 33 30 30 00 73 75 6D 20 6F 66 20 74 |.14.300.sum of t|
00001030: 68 65 20 64 69 6D 65 73 20 61 6E 64 20 71 75 61 |he dimes and qua|
00001040: 72 74 65 72 73 00 40 66 4A 61 73 6F 6E 20 68 61 |rters.@fJason ha|
00001050: 73 20 66 69 66 74 65 65 6E 20 63 6F 69 6E 73 20 |s fifteen coins |
00001060: 77 6F 72 74 68 20 33 35 20 63 65 6E 74 73 2E 20 |worth 35 cents. |
00001070: 53 6F 6D 65 20 61 72 65 20 6E 69 63 6B 65 6C 73 |Some are nickels|
00001080: 20 61 6E 64 20 74 68 65 20 72 65 73 74 20 61 72 | and the rest ar|
00001090: 65 20 70 65 6E 6E 69 65 73 2E 20 48 6F 77 20 6D |e pennies. How m|
000010A0: 61 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 |any of each type|
000010B0: 20 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 65 | of coin are the|
000010C0: 72 65 00 50 65 6E 6E 69 65 73 00 4E 69 63 6B 65 |re.Pennies.Nicke|
000010D0: 6C 73 00 4A 61 73 6F 6E 20 68 61 73 20 66 69 66 |ls.Jason has fif|
000010E0: 74 65 65 6E 20 63 6F 69 6E 73 20 77 6F 72 74 68 |teen coins worth|
000010F0: 20 33 35 20 63 65 6E 74 73 00 48 6F 77 20 6D 61 | 35 cents.How ma|
00001100: 6E 79 20 6F 66 20 65 61 63 68 20 74 79 70 65 20 |ny of each type |
00001110: 6F 66 20 63 6F 69 6E 20 61 72 65 20 74 68 65 72 |of coin are ther|
00001120: 65 00 70 65 6E 6E 79 00 70 65 6E 6E 79 20 69 73 |e.penny.penny is|
00001130: 20 60 31 27 20 63 65 6E 74 00 31 00 31 20 63 65 | `1' cent.1.1 ce|
00001140: 6E 74 00 6E 69 63 6B 65 6C 00 6E 69 63 6B 65 6C |nt.nickel.nickel|
00001150: 20 69 73 20 60 35 27 20 63 65 6E 74 73 00 35 00 | is `5' cents.5.|
00001160: 35 00 26 68 43 6F 69 6E 73 20 61 72 65 20 77 6F |5.&hCoins are wo|
00001170: 72 74 68 20 33 35 20 63 65 6E 74 73 26 68 00 54 |rth 35 cents&h.T|
00001180: 68 65 20 63 6F 69 6E 73 20 61 72 65 20 77 6F 72 |he coins are wor|
00001190: 74 68 20 60 33 35 27 20 63 65 6E 74 73 00 33 35 |th `35' cents.35|
000011A0: 00 26 68 4A 61 73 6F 6E 20 68 61 73 20 31 35 20 |.&hJason has 15 |
000011B0: 63 6F 69 6E 73 26 68 00 54 68 65 20 74 6F 74 61 |coins&h.The tota|
000011C0: 6C 20 6E 75 6D 62 65 72 20 6F 66 20 63 6F 69 6E |l number of coin|
000011D0: 73 20 69 73 20 60 31 35 27 00 31 35 00 70 65 6E |s is `15'.15.pen|
000011E0: 6E 69 65 73 00 70 00 70 65 6E 6E 69 65 73 00 39 |nies.p.pennies.9|
000011F0: 00 6E 69 63 6B 65 6C 73 00 70 65 6E 6E 69 65 73 |.nickels.pennies|
00001200: 00 48 65 20 68 61 73 20 61 20 74 6F 74 61 6C 20 |.He has a total |
00001210: 6F 66 20 31 35 20 63 6F 69 6E 73 2E 20 49 66 20 |of 15 coins. If |
00001220: 22 26 76 22 20 65 71 75 61 6C 73 20 74 68 65 20 |"&v" equals the |
00001230: 23 20 6F 66 20 70 65 6E 6E 69 65 73 2C 20 60 31 |# of pennies, `1|
00001240: 35 2D 26 76 27 20 72 65 70 72 65 73 65 6E 74 73 |5-&v' represents|
00001250: 20 74 68 65 20 23 20 6F 66 20 6E 69 63 6B 65 6C | the # of nickel|
00001260: 73 2E 00 31 30 00 31 35 2D 26 76 00 70 65 6E 6E |s..10.15-&v.penn|
00001270: 69 65 73 00 70 65 6E 6E 69 65 73 00 70 65 6E 6E |ies.pennies.penn|
00001280: 79 00 31 00 26 76 00 70 65 6E 6E 79 00 31 33 00 |y.1.&v.penny.13.|
00001290: 31 2A 26 76 00 6E 69 63 6B 65 6C 73 00 6E 69 63 |1*&v.nickels.nic|
000012A0: 6B 65 6C 73 00 6E 69 63 6B 65 6C 00 35 00 28 31 |kels.nickel.5.(1|
000012B0: 35 2D 26 76 29 00 6E 69 63 6B 65 6C 00 31 34 00 |5-&v).nickel.14.|
000012C0: 35 2A 28 31 35 2D 26 76 29 00 70 65 6E 6E 69 65 |5*(15-&v).pennie|
000012D0: 73 20 61 6E 64 20 6E 69 63 6B 65 6C 73 00 70 65 |s and nickels.pe|
000012E0: 6E 6E 79 00 6E 69 63 6B 65 6C 00 70 65 6E 6E 79 |nny.nickel.penny|
000012F0: 00 6E 69 63 6B 65 6C 00 60 20 20 31 2A 26 76 20 |.nickel.` 1*&v |
00001300: 20 20 20 20 20 5C 66 31 34 2B 20 35 2A 28 31 35 | \f14+ 5*(15|
00001310: 2D 26 76 29 20 20 20 20 20 5C 66 32 39 3D 20 20 |-&v) \f29= |
00001320: 20 33 35 27 00 31 2A 26 76 20 2B 20 35 2A 28 31 | 35'.1*&v + 5*(1|
00001330: 35 2D 26 76 29 20 3D 20 33 35 00 74 68 65 20 6E |5-&v) = 35.the n|
00001340: 75 6D 62 65 72 20 6F 66 20 70 65 6E 6E 69 65 73 |umber of pennies|
00001350: 00 26 76 3D 31 30 00 48 6F 77 20 6D 61 6E 79 20 |.&v=10.How many |
00001360: 6F 66 20 65 61 63 68 20 74 79 70 65 20 6F 66 20 |of each type of |
00001370: 63 6F 69 6E 20 61 72 65 20 74 68 65 72 65 00 70 |coin are there.p|
00001380: 65 6E 6E 69 65 73 00 26 76 20 3D 20 60 31 30 27 |ennies.&v = `10'|
00001390: 00 39 00 31 30 00 6E 69 63 6B 65 6C 73 20 69 73 |.9.10.nickels is|
000013A0: 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 60 31 | the value of `1|
000013B0: 35 2D 26 76 27 00 31 35 2D 26 76 20 3D 20 60 35 |5-&v'.15-&v = `5|
000013C0: 27 00 31 30 00 35 00 70 65 6E 6E 69 65 73 00 31 |'.10.5.pennies.1|
000013D0: 2A 26 76 20 3D 20 60 31 30 27 20 63 65 6E 74 73 |*&v = `10' cents|
000013E0: 00 31 33 00 31 30 00 6E 69 63 6B 65 6C 73 00 35 |.13.10.nickels.5|
000013F0: 2A 28 31 35 2D 26 76 29 20 3D 20 35 2A 35 20 3D |*(15-&v) = 5*5 =|
00001400: 20 60 32 35 27 20 63 65 6E 74 73 00 31 34 00 32 | `25' cents.14.2|
00001410: 35 00 73 75 6D 20 6F 66 20 74 68 65 20 70 65 6E |5.sum of the pen|
00001420: 6E 79 20 61 6E 64 20 6E 69 63 6B 65 6C 20 76 61 |ny and nickel va|
00001430: 6C 75 65 73 00 7C 38 |lues.|8 |
A@Q{}?@DG02&D(1,{})&D(2,{})&D(3,TOTAL)&
D(4,PRICE/UNIT)&D(8,# OF COINS)&D(12,VAL
UE)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE.)@HWHAT AR
E THE FACTS? &H{}&H.@HWHAT IS BEING ASKE
D? &H{}?&H@I(0)@RDATA ENTRY@PFILL IN THE
GRID - START WITH THE COMMON UNIT. (EXP
RESS ALL VALUES IN CENTS).@HWHAT IS THE
VALUE OF A {}?@HTHE VALUE OF A {}.@I(5,I
,{})&D(5,{})@HWHAT IS THE VALUE OF A {}?
@HTHE VALUE OF A {}.@I(6,I,{})&D(6,{} CE
NTS)@PENTER THE FACTS FROM THE PROBLEM I
NTO THE GRID. (EXPRESS ALL VALUES IN CEN
TS).@H{}.@H{}.@I(15,I,{})@H{}.@H{}.@I(11
,I,{})@PREPRESENT THE NUMBER OF EACH TYP
E OF COIN.@HCHOOSE A VARIABLE TO REPRESE
NT THE NUMBER OF {}.@HCHOOSE ANY LETTER,
SUCH AS `{}', TO REPRESENT THE NUMBER O
F {}.@I({},I,&V)@HREPRESENT THE NUMBER O
F {} IN TERMS OF "&V" (THE NUMBER OF {})
.@H{}@I({},I,{})@RPARTS@PWRITE AN EXPRES
SION TO REPRESENT THE VALUE OF EACH TYPE
OF COIN.@HMULTIPLY THE PRICE/UNIT BY TH
E NUMBER OF {}.@HPRICE/UNIT \F12* # {} \
F25= {} VAL. \N `{} \F12* {}' \F25
= {} VAL.@I({},I,{})@HNOW MULTIPLY THE P
RICE/UNIT BY THE NUMBER OF {}.@HPRICE/UN
IT \F12* # {} \F25= {} VAL. \N `{}
\F12* {}' \F25= {} VAL.@I({},I,{})@RWHO
LE@PUSE THE TABLE TO WRITE AN EQUATION T
O RELATE THE PARTS ({}) TO THE WHOLE (TO
TAL).@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL@H({} VAL) \F14+ ({} VAL)\F29= TOTA
L VAL \N{}@I(16,I,{})@S@RCOMPUTE@PSOLVE
THE EQUATION FOR "&V"({}). USE PENCIL AN
D PAPER, OR USE THE CALCULATOR.@HISOLATE
"&V" ON ONE SIDE OF THE EQUATION.@HTHE
CALCULATOR SOLVES EQUATIONS FOR YOU AND
DISPLAYS THE STEPS IN THE SOLUTION.@I(16
,I,{})@PNOW FILL IN THE ANSWER(S) TO THE
PROBLEM. REMEMBER THE QUESTION. &Q{}?&Q
&W(16)@HTHE NUMBER OF {} IS THE VALUE OF
"&V".@H{}@I({},I,{})@S@HTHE NUMBER OF {
}.@H{}@I({},I,{})@RCHECK@PREREAD THE PRO
BLEM. CHECK YOUR ANSWERS. REPLACE ALL VA
RIABLES IN THE GRID.@HSUBSTITUTE FOR "&V
" IN THE EXPRESSION FOR THE VALUE OF THE
{}. NOW CALCULATE.@H{}@I({},I,{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION FOR TH
E VALUE OF THE {}. NOW CALCULATE.@H{}@I
({},I,{})&D(0,CHECK YOUR WORK. THE {} SH
OULD EQUAL THE TOTAL VALUE. ON TO A NEW
PROBLEM.)@FROBIN HAS FOURTEEN COINS WORT
H $2.90. SOME OF THE COINS ARE QUARTERS
AND THE REST ARE DIMES. HOW MANY OF EACH
TYPE OF COIN DOES SHE HAVE.DIMES.QUARTE
RS.ROBIN HAS FOURTEEN COINS WORTH $2.90.
HOW MANY OF EACH TYPE OF COIN DOES SHE H
AVE.DIME.DIME IS `10' CENTS.10.10 CENTS.
QUARTER.QUARTER IS `25' CENTS.25.25.&HCO
INS WORTH $2.90&H.THE COINS ARE WORTH `2
90' CENTS.290.SHE HAS A TOTAL OF 14 COIN
S.THE TOTAL NUMBER OF COINS IS `14'.14.D
IMES.D.DIMES.9.QUARTERS.DIMES.SHE HAS A
TOTAL OF 14 COINS. IF "&V" IS THE # OF D
IMES, `14-&V' REPRESENTS THE NUMBER OF Q
UARTERS.10.14-&V.DIMES.DIMES.DIME.10.&V.
DIME.13.10*&V.QUARTERS.QUARTERS.QUARTER.
25.(14-&V).QUARTER.14.25(14-&V).DIMES AN
D QUARTERS.DIME.QUARTER.DIME.QUARTER.` 1
0&V \F14+ 25(14-&V) \F29= 290'.
10*&V + 25(14-&V) = 290.THE NUMBER OF DI
MES.&V=4.HOW MANY OF EACH TYPE OF COIN D
OES SHE HAVE.DIMES.&V = `4'.9.4.QUARTERS
IS THE VALUE OF `14-&V'.14-&V = `10'.10
.10.DIMES.10*&V = 10*4 = `40' CENTS.13.4
0.QUARTERS.25(14-&V) = 25*10 = `250' CEN
TS.14.250.SUM OF THE NICKEL AND DIME VAL
UES.@FDEBBIE HAS 17 COINS WORTH $3.50. S
OME OF THE COINS ARE QUARTERS, AND THE R
EST ARE DIMES. HOW MANY OF EACH TYPE OF
COIN ARE THERE.DIMES.QUARTERS.17 COINS W
ORTH $3.50..HOW MANY OF EACH TYPE OF COI
N ARE THERE.DIME.DIME IS `10' CENTS.10.1
0 CENTS.QUARTER.QUARTER IS `25' CENTS.25
.25.SHE HAS COINS WORTH $3.50.THE COINS
ARE WORTH `350' CENTS.350.SHE HAS A TOTA
L OF 17 COINS.THE TOTAL NUMBER OF COINS
IS `17'.17.DIMES.D.DIMES.9.QUARTERS.DIME
S.SHE HAS 17 COINS. IF "&V" EQUALS THE N
UMBER OF DIMES, `17-&V' REPRESENTS THE N
UMBER OF QUARTERS.10.17-&V.DIMES.DIMES.D
IME.10.&V.DIME.13.10*&V.QUARTERS.QUARTER
S.QUARTER.25.(17-&V).QUARTER.14.25*(17-&
V).DIMES AND QUARTERS.DIME.QUARTER.DIME.
QUARTER.`10*&V \F14+ 25*(17-&V)
\F29= 350'.10*&V+25*(17-&V)=350.THE N
UMBER OF DIMES.&V=5.HOW MANY OF EACH TYP
E OF COIN ARE THERE.DIMES.&V = `5'.9.5.Q
UARTERS IS THE VALUE OF `17-&V'.17-&V =
12.10.12.DIMES.10*&V = 10*5 = `50' CENTS
.13.50.QUARTERS.25*(17-&V) = 25*12 = `30
0' CENTS.14.300.SUM OF THE DIMES AND QUA
RTERS.@FJASON HAS FIFTEEN COINS WORTH 35
CENTS. SOME ARE NICKELS AND THE REST AR
E PENNIES. HOW MANY OF EACH TYPE OF COIN
ARE THERE.PENNIES.NICKELS.JASON HAS FIF
TEEN COINS WORTH 35 CENTS.HOW MANY OF EA
CH TYPE OF COIN ARE THERE.PENNY.PENNY IS
`1' CENT.1.1 CENT.NICKEL.NICKEL IS `5'
CENTS.5.5.&HCOINS ARE WORTH 35 CENTS&H.T
HE COINS ARE WORTH `35' CENTS.35.&HJASON
HAS 15 COINS&H.THE TOTAL NUMBER OF COIN
S IS `15'.15.PENNIES.P.PENNIES.9.NICKELS
.PENNIES.HE HAS A TOTAL OF 15 COINS. IF
"&V" EQUALS THE # OF PENNIES, `15-&V' RE
PRESENTS THE # OF NICKELS..10.15-&V.PENN
IES.PENNIES.PENNY.1.&V.PENNY.13.1*&V.NIC
KELS.NICKELS.NICKEL.5.(15-&V).NICKEL.14.
5*(15-&V).PENNIES AND NICKELS.PENNY.NICK
EL.PENNY.NICKEL.` 1*&V \F14+ 5*(15
-&V) \F29= 35'.1*&V + 5*(15-&V) =
35.THE NUMBER OF PENNIES.&V=10.HOW MANY
OF EACH TYPE OF COIN ARE THERE.PENNIES.&
V = `10'.9.10.NICKELS IS THE VALUE OF `1
5-&V'.15-&V = `5'.10.5.PENNIES.1*&V = `1
0' CENTS.13.10.NICKELS.5*(15-&V) = 5*5 =
`25' CENTS.14.25.SUM OF THE PENNY AND N
ICKEL VALUES.|8
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL