_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

COIN3L2

FILE INFORMATION

FILENAME(S): COIN3L2

FILE TYPE(S): PRG

FILE SIZE: 5.9K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

82848261e45fcabf38f6806dd94aca800efb2dc7209ee87e33ad496f754622c3

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 44S1 COIN3L2 PRG Radd Maxx 21 14 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 31 26 64 28 31  | A @q{}@dg01&d(1|
00000010: 2C 7B 7D 29 26 64 28 32  2C 7B 7D 29 26 64 28 33  |,{})&d(2,{})&d(3|
00000020: 2C 7B 7D 29 26 64 28 34  2C 54 6F 74 2E 29 26 64  |,{})&d(4,Tot.)&d|
00000030: 28 35 2C 56 61 6C 2F 75  6E 69 74 29 26 64 28 31  |(5,Val/unit)&d(1|
00000040: 30 2C 23 20 63 6F 69 6E  73 29 26 64 28 31 35 2C  |0,# coins)&d(15,|
00000050: 56 61 6C 75 65 29 40 72  52 45 41 44 26 64 28 30  |Value)@rREAD&d(0|
00000060: 2C 52 65 61 64 20 74 68  65 20 77 68 6F 6C 65 20  |,Read the whole |
00000070: 70 72 6F 62 6C 65 6D 2E  20 54 68 69 6E 6B 3A 20  |problem. Think: |
00000080: 57 68 61 74 20 61 72 65  20 74 68 65 20 66 61 63  |What are the fac|
00000090: 74 73 3F 20 57 68 61 74  20 69 73 20 62 65 69 6E  |ts? What is bein|
000000A0: 67 20 61 73 6B 65 64 3F  29 40 72 44 41 54 41 20  |g asked?)@rDATA |
000000B0: 45 4E 54 52 59 40 70 53  74 61 72 74 20 66 69 6C  |ENTRY@pStart fil|
000000C0: 6C 69 6E 67 20 69 6E 20  69 6E 66 6F 72 6D 61 74  |ling in informat|
000000D0: 69 6F 6E 20 6F 6E 20 74  68 65 20 63 68 61 72 74  |ion on the chart|
000000E0: 2E 20 54 68 65 20 63 75  72 73 6F 72 20 77 69 6C  |. The cursor wil|
000000F0: 6C 20 73 68 6F 77 20 79  6F 75 20 77 68 69 63 68  |l show you which|
00000100: 20 62 6F 78 20 20 74 6F  20 77 6F 72 6B 20 6F 6E  | box  to work on|
00000110: 2E 40 68 57 68 61 74 20  69 73 20 74 68 65 20 76  |.@hWhat is the v|
00000120: 61 6C 75 65 20 70 65 72  20 75 6E 69 74 20 6F 66  |alue per unit of|
00000130: 20 61 20 7B 7D 3F 40 68  54 68 65 20 76 61 6C 75  | a {}?@hThe valu|
00000140: 65 20 6F 66 20 61 20 7B  7D 20 69 6E 20 63 65 6E  |e of a {} in cen|
00000150: 74 73 2C 20 69 73 20 27  7B 7D 27 2E 40 69 28 7B  |ts, is '{}'.@i({|
00000160: 7D 2C 7B 7D 2C 7B 7D 29  26 64 28 7B 7D 2C 7B 7D  |},{},{})&d({},{}|
00000170: 20 63 65 6E 74 73 29 40  68 57 68 61 74 20 69 73  | cents)@hWhat is|
00000180: 20 74 68 65 20 76 61 6C  75 65 20 70 65 72 20 75  | the value per u|
00000190: 6E 69 74 20 6F 66 20 61  20 7B 7D 3F 40 68 54 68  |nit of a {}?@hTh|
000001A0: 65 20 76 61 6C 75 65 20  6F 66 20 61 20 7B 7D 20  |e value of a {} |
000001B0: 69 6E 20 63 65 6E 74 73  2C 20 69 73 20 27 7B 7D  |in cents, is '{}|
000001C0: 27 2E 40 69 28 7B 7D 2C  7B 7D 2C 7B 7D 29 26 64  |'.@i({},{},{})&d|
000001D0: 28 7B 7D 2C 7B 7D 20 63  65 6E 74 73 29 40 68 57  |({},{} cents)@hW|
000001E0: 68 61 74 20 69 73 20 74  68 65 20 76 61 6C 75 65  |hat is the value|
000001F0: 20 70 65 72 20 75 6E 69  74 20 6F 66 20 61 20 7B  | per unit of a {|
00000200: 7D 3F 40 68 54 68 65 20  76 61 6C 75 65 20 6F 66  |}?@hThe value of|
00000210: 20 61 20 7B 7D 20 69 6E  20 63 65 6E 74 73 2C 20  | a {} in cents, |
00000220: 69 73 20 27 7B 7D 27 2E  40 69 28 7B 7D 2C 7B 7D  |is '{}'.@i({},{}|
00000230: 2C 7B 7D 29 26 64 28 7B  7D 2C 7B 7D 20 63 65 6E  |,{})&d({},{} cen|
00000240: 74 73 29 40 68 43 68 6F  6F 73 65 20 61 20 76 61  |ts)@hChoose a va|
00000250: 72 69 61 62 6C 65 20 74  6F 20 72 65 70 72 65 73  |riable to repres|
00000260: 65 6E 74 20 74 68 65 20  6E 75 6D 62 65 72 20 6F  |ent the number o|
00000270: 66 20 7B 7D 2E 40 68 43  68 6F 6F 73 65 20 61 20  |f {}.@hChoose a |
00000280: 73 69 6E 67 6C 65 20 6C  65 74 74 65 72 2C 20 73  |single letter, s|
00000290: 75 63 68 20 61 73 20 27  7B 7D 27 2C 20 74 6F 20  |uch as '{}', to |
000002A0: 72 65 70 72 65 73 65 6E  74 20 74 68 65 20 6E 75  |represent the nu|
000002B0: 6D 62 65 72 20 6F 66 20  7B 7D 2E 40 69 28 7B 7D  |mber of {}.@i({}|
000002C0: 2C 69 2C 26 76 29 40 68  52 65 70 72 65 73 65 6E  |,i,&v)@hRepresen|
000002D0: 74 20 74 68 65 20 6E 75  6D 62 65 72 20 6F 66 20  |t the number of |
000002E0: 7B 7D 20 69 6E 20 74 65  72 6D 73 20 6F 66 20 22  |{} in terms of "|
000002F0: 26 76 22 20 28 74 68 65  20 6E 75 6D 62 65 72 20  |&v" (the number |
00000300: 6F 66 20 7B 7D 29 2E 40  68 53 69 6E 63 65 20 7B  |of {}).@hSince {|
00000310: 7D 2E 40 69 28 7B 7D 2C  69 2C 7B 7D 29 40 68 52  |}.@i({},i,{})@hR|
00000320: 65 70 72 65 73 65 6E 74  20 74 68 65 20 6E 75 6D  |epresent the num|
00000330: 62 65 72 20 6F 66 20 7B  7D 20 69 6E 20 74 65 72  |ber of {} in ter|
00000340: 6D 73 20 6F 66 20 22 26  76 22 20 28 74 68 65 20  |ms of "&v" (the |
00000350: 6E 75 6D 62 65 72 20 6F  66 20 7B 7D 29 2E 40 68  |number of {}).@h|
00000360: 53 69 6E 63 65 20 7B 7D  2E 40 69 28 7B 7D 2C 69  |Since {}.@i({},i|
00000370: 2C 7B 7D 29 40 68 52 65  70 72 65 73 65 6E 74 20  |,{})@hRepresent |
00000380: 74 68 65 20 74 6F 74 61  6C 20 76 61 6C 75 65 20  |the total value |
00000390: 69 6E 20 63 65 6E 74 73  2C 20 6F 66 20 61 6C 6C  |in cents, of all|
000003A0: 20 74 68 65 20 63 6F 69  6E 73 2E 40 68 7B 7D 2E  | the coins.@h{}.|
000003B0: 40 69 28 31 39 2C 7B 7D  2C 7B 7D 29 40 72 50 41  |@i(19,{},{})@rPA|
000003C0: 52 54 53 40 70 46 69 6C  6C 20 69 6E 20 74 68 65  |RTS@pFill in the|
000003D0: 20 69 6E 66 6F 72 6D 61  74 69 6F 6E 20 79 6F 75  | information you|
000003E0: 20 6E 65 65 64 20 74 6F  20 77 72 69 74 65 20 79  | need to write y|
000003F0: 6F 75 72 20 65 71 75 61  74 69 6F 6E 2E 40 68 57  |our equation.@hW|
00000400: 72 69 74 65 20 61 6E 20  65 78 70 72 65 73 73 69  |rite an expressi|
00000410: 6F 6E 20 74 6F 20 72 65  70 72 65 73 65 6E 74 20  |on to represent |
00000420: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 74 68 65  |the value of the|
00000430: 20 7B 7D 2E 40 68 76 61  6C 2F 75 6E 69 74 20 5C  | {}.@hval/unit \|
00000440: 66 30 39 2A 20 23 20 6F  66 20 7B 7D 5C 66 32 33  |f09* # of {}\f23|
00000450: 3D 7B 7D 27 20 76 61 6C  2E 20 5C 6E 20 20 60 35  |={}' val. \n  `5|
00000460: 20 20 20 20 20 5C 66 30  39 2A 20 20 20 20 20 7B  |     \f09*     {|
00000470: 7D 27 20 5C 66 32 33 3D  7B 7D 27 20 76 61 6C 2E  |}' \f23={}' val.|
00000480: 40 69 28 31 36 2C 69 2C  7B 7D 29 40 68 57 72 69  |@i(16,i,{})@hWri|
00000490: 74 65 20 61 6E 20 65 78  70 72 65 73 73 69 6F 6E  |te an expression|
000004A0: 20 74 6F 20 72 65 70 72  65 73 65 6E 74 20 74 68  | to represent th|
000004B0: 65 20 76 61 6C 75 65 20  6F 66 20 74 68 65 20 7B  |e value of the {|
000004C0: 7D 2E 40 68 76 61 6C 2F  75 6E 69 74 20 5C 66 30  |}.@hval/unit \f0|
000004D0: 39 2A 20 23 20 6F 66 20  7B 7D 20 5C 66 32 34 3D  |9* # of {} \f24=|
000004E0: 20 7B 7D 27 20 76 61 6C  75 65 2E 20 5C 6E 20 60  | {}' value. \n `|
000004F0: 31 30 20 20 20 20 20 5C  66 30 39 2A 20 20 20 20  |10     \f09*    |
00000500: 20 7B 7D 27 20 20 20 20  5C 66 32 34 3D 20 7B 7D  | {}'    \f24= {}|
00000510: 27 20 76 61 6C 75 65 2E  40 69 28 31 37 2C 69 2C  |' value.@i(17,i,|
00000520: 7B 7D 29 40 68 57 72 69  74 65 20 61 6E 20 65 78  |{})@hWrite an ex|
00000530: 70 72 65 73 73 69 6F 6E  20 74 6F 20 72 65 70 72  |pression to repr|
00000540: 65 73 65 6E 74 20 74 68  65 20 76 61 6C 75 65 20  |esent the value |
00000550: 6F 66 20 74 68 65 20 7B  7D 2E 40 68 76 61 6C 2F  |of the {}.@hval/|
00000560: 75 6E 69 74 20 5C 66 30  39 2A 20 23 20 7B 7D 20  |unit \f09* # {} |
00000570: 5C 66 32 33 3D 7B 7D 27  20 76 61 6C 2E 20 5C 6E  |\f23={}' val. \n|
00000580: 20 60 32 35 20 20 20 20  20 5C 66 30 39 2A 20 20  | `25     \f09*  |
00000590: 20 7B 7D 27 5C 66 32 33  3D 7B 7D 27 20 76 61 6C  | {}'\f23={}' val|
000005A0: 2E 40 69 28 31 38 2C 69  2C 7B 7D 29 40 72 57 48  |.@i(18,i,{})@rWH|
000005B0: 4F 4C 45 40 70 57 72 69  74 65 20 61 6E 20 65 71  |OLE@pWrite an eq|
000005C0: 75 61 74 69 6F 6E 20 74  6F 20 73 68 6F 77 20 74  |uation to show t|
000005D0: 68 65 20 72 65 6C 61 74  69 6F 6E 20 6F 66 20 74  |he relation of t|
000005E0: 68 65 20 70 61 72 74 73  20 28 7B 7D 29 20 74 6F  |he parts ({}) to|
000005F0: 20 74 68 65 20 77 68 6F  6C 65 20 28 54 6F 74 61  | the whole (Tota|
00000600: 6C 29 2E 40 68 55 73 65  20 74 68 65 20 62 6F 74  |l).@hUse the bot|
00000610: 74 6F 6D 20 6C 69 6E 65  20 6F 66 20 74 68 65 20  |tom line of the |
00000620: 63 68 61 72 74 20 74 6F  20 66 6F 72 6D 20 74 68  |chart to form th|
00000630: 65 20 65 71 75 61 74 69  6F 6E 2E 40 68 28 7B 7D  |e equation.@h({}|
00000640: 20 76 61 6C 75 65 29 20  2B 20 28 7B 7D 20 76 61  | value) + ({} va|
00000650: 6C 75 65 29 20 2B 20 28  7B 7D 20 76 61 6C 75 65  |lue) + ({} value|
00000660: 29 20 3D 20 54 6F 74 61  6C 20 76 61 6C 75 65 2C  |) = Total value,|
00000670: 20 73 6F 20 60 7B 7D 27  40 69 28 7B 7D 2C 69 2C  | so `{}'@i({},i,|
00000680: 7B 7D 29 40 73 40 72 43  4F 4D 50 55 54 45 40 70  |{})@s@rCOMPUTE@p|
00000690: 53 6F 6C 76 65 20 74 68  65 20 65 71 75 61 74 69  |Solve the equati|
000006A0: 6F 6E 20 66 6F 72 20 22  26 76 22 2E 20 55 73 65  |on for "&v". Use|
000006B0: 20 70 65 6E 63 69 6C 20  61 6E 64 20 70 61 70 65  | pencil and pape|
000006C0: 72 2C 20 6F 72 20 75 73  65 20 74 68 65 20 63 61  |r, or use the ca|
000006D0: 6C 63 75 6C 61 74 6F 72  2E 40 68 52 65 6D 65 6D  |lculator.@hRemem|
000006E0: 62 65 72 20 74 6F 20 63  6F 6D 62 69 6E 65 20 6C  |ber to combine l|
000006F0: 69 6B 65 20 74 65 72 6D  73 20 61 6E 64 20 64 69  |ike terms and di|
00000700: 73 74 72 69 62 75 74 65  20 69 66 20 6E 65 63 65  |stribute if nece|
00000710: 73 73 61 72 79 2E 20 49  73 6F 6C 61 74 65 20 22  |ssary. Isolate "|
00000720: 26 76 22 20 6F 6E 20 6F  6E 65 20 73 69 64 65 20  |&v" on one side |
00000730: 6F 66 20 74 68 65 20 65  71 75 61 74 69 6F 6E 2E  |of the equation.|
00000740: 40 68 54 68 65 20 43 61  6C 63 75 6C 61 74 6F 72  |@hThe Calculator|
00000750: 20 73 6F 6C 76 65 73 20  65 71 75 61 74 69 6F 6E  | solves equation|
00000760: 73 20 66 6F 72 20 79 6F  75 20 61 6E 64 20 64 69  |s for you and di|
00000770: 73 70 6C 61 79 73 20 74  68 65 20 73 74 65 70 73  |splays the steps|
00000780: 20 69 6E 20 74 68 65 20  73 6F 6C 75 74 69 6F 6E  | in the solution|
00000790: 2E 40 69 28 7B 7D 2C 69  2C 7B 7D 29 40 70 4E 6F  |.@i({},i,{})@pNo|
000007A0: 77 20 65 6E 74 65 72 20  79 6F 75 72 20 61 6E 73  |w enter your ans|
000007B0: 77 65 72 73 2E 20 52 65  6D 65 6D 62 65 72 20 77  |wers. Remember w|
000007C0: 68 61 74 20 69 73 20 62  65 69 6E 67 20 61 73 6B  |hat is being ask|
000007D0: 65 64 2E 20 26 71 7B 7D  26 71 40 68 54 68 65 20  |ed. &q{}&q@hThe |
000007E0: 6E 75 6D 62 65 72 20 6F  66 20 7B 7D 20 69 73 20  |number of {} is |
000007F0: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 7B 7D 2E  |the value of {}.|
00000800: 40 68 54 68 65 20 6E 75  6D 62 65 72 20 6F 66 20  |@hThe number of |
00000810: 7B 7D 20 69 73 20 74 68  65 20 76 61 6C 75 65 20  |{} is the value |
00000820: 6F 66 20 7B 7D 40 69 28  7B 7D 2C 69 2C 7B 7D 29  |of {}@i({},i,{})|
00000830: 40 73 40 68 54 68 65 20  6E 75 6D 62 65 72 20 6F  |@s@hThe number o|
00000840: 66 20 7B 7D 20 69 73 20  74 68 65 20 76 61 6C 75  |f {} is the valu|
00000850: 65 20 6F 66 20 7B 7D 2E  40 68 54 68 65 20 6E 75  |e of {}.@hThe nu|
00000860: 6D 62 65 72 20 6F 66 20  7B 7D 20 69 73 20 74 68  |mber of {} is th|
00000870: 65 20 76 61 6C 75 65 20  6F 66 20 7B 7D 2E 20 7B  |e value of {}. {|
00000880: 7D 40 69 28 7B 7D 2C 69  2C 7B 7D 29 40 68 54 68  |}@i({},i,{})@hTh|
00000890: 65 20 6E 75 6D 62 65 72  20 6F 66 20 7B 7D 20 69  |e number of {} i|
000008A0: 73 20 74 68 65 20 76 61  6C 75 65 20 6F 66 20 74  |s the value of t|
000008B0: 68 65 20 65 78 70 72 65  73 73 69 6F 6E 20 7B 7D  |he expression {}|
000008C0: 2E 40 68 54 68 65 20 6E  75 6D 62 65 72 20 6F 66  |.@hThe number of|
000008D0: 20 7B 7D 20 69 73 20 74  68 65 20 76 61 6C 75 65  | {} is the value|
000008E0: 20 6F 66 20 74 68 65 20  65 78 70 72 65 73 73 69  | of the expressi|
000008F0: 6F 6E 20 7B 7D 40 69 28  7B 7D 2C 69 2C 7B 7D 29  |on {}@i({},i,{})|
00000900: 40 72 43 48 45 43 4B 40  70 52 65 72 65 61 64 20  |@rCHECK@pReread |
00000910: 74 68 65 20 70 72 6F 62  6C 65 6D 2E 20 43 68 65  |the problem. Che|
00000920: 63 6B 20 79 6F 75 72 20  61 6E 73 77 65 72 73 2E  |ck your answers.|
00000930: 20 45 76 61 6C 75 61 74  65 20 74 68 65 20 72 65  | Evaluate the re|
00000940: 6D 61 69 6E 69 6E 67 20  65 78 70 72 65 73 73 69  |maining expressi|
00000950: 6F 6E 73 20 69 6E 20 74  68 65 20 63 68 61 72 74  |ons in the chart|
00000960: 2E 40 68 53 75 62 73 74  69 74 75 74 65 20 66 6F  |.@hSubstitute fo|
00000970: 72 20 22 26 76 22 20 69  6E 20 74 68 65 20 65 78  |r "&v" in the ex|
00000980: 70 72 65 73 73 69 6F 6E  2E 20 54 68 65 6E 20 63  |pression. Then c|
00000990: 61 6C 63 75 6C 61 74 65  20 74 68 65 20 72 65 73  |alculate the res|
000009A0: 75 6C 74 2E 40 68 7B 7D  2E 40 69 28 7B 7D 2C 69  |ult.@h{}.@i({},i|
000009B0: 2C 7B 7D 29 40 68 53 75  62 73 74 69 74 75 74 65  |,{})@hSubstitute|
000009C0: 20 66 6F 72 20 22 26 76  22 20 69 6E 20 74 68 65  | for "&v" in the|
000009D0: 20 65 78 70 72 65 73 73  69 6F 6E 2E 20 54 68 65  | expression. The|
000009E0: 6E 20 63 61 6C 63 75 6C  61 74 65 20 74 68 65 20  |n calculate the |
000009F0: 72 65 73 75 6C 74 2E 40  68 7B 7D 2E 40 69 28 7B  |result.@h{}.@i({|
00000A00: 7D 2C 69 2C 7B 7D 29 40  68 53 75 62 73 74 69 74  |},i,{})@hSubstit|
00000A10: 75 74 65 20 66 6F 72 20  22 26 76 22 20 69 6E 20  |ute for "&v" in |
00000A20: 74 68 65 20 65 78 70 72  65 73 73 69 6F 6E 2E 20  |the expression. |
00000A30: 54 68 65 6E 20 63 61 6C  63 75 6C 61 74 65 20 74  |Then calculate t|
00000A40: 68 65 20 72 65 73 75 6C  74 2E 40 68 7B 7D 2E 40  |he result.@h{}.@|
00000A50: 69 28 7B 7D 2C 69 2C 7B  7D 29 26 64 28 30 2C 43  |i({},i,{})&d(0,C|
00000A60: 68 65 63 6B 20 79 6F 75  72 20 77 6F 72 6B 2E 20  |heck your work. |
00000A70: 41 64 64 20 74 68 65 20  76 61 6C 75 65 73 20 6F  |Add the values o|
00000A80: 66 20 61 6C 6C 20 74 68  65 20 63 6F 69 6E 73 2E  |f all the coins.|
00000A90: 20 44 6F 65 73 20 74 68  65 20 73 75 6D 20 65 71  | Does the sum eq|
00000AA0: 75 61 6C 20 74 68 65 20  54 6F 74 61 6C 20 76 61  |ual the Total va|
00000AB0: 6C 75 65 3F 20 4E 6F 77  20 66 6F 72 20 61 20 6E  |lue? Now for a n|
00000AC0: 65 77 20 70 72 6F 62 6C  65 6D 2E 29 40 66 43 6C  |ew problem.)@fCl|
00000AD0: 61 72 6B 20 68 61 73 20  73 6F 6D 65 20 6E 69 63  |ark has some nic|
00000AE0: 6B 65 6C 73 2C 20 64 69  6D 65 73 20 61 6E 64 20  |kels, dimes and |
00000AF0: 71 75 61 72 74 65 72 73  20 77 6F 72 74 68 20 24  |quarters worth $|
00000B00: 31 2E 35 30 2E 20 49 66  20 68 65 20 68 61 73 20  |1.50. If he has |
00000B10: 66 6F 75 72 20 74 69 6D  65 73 20 61 73 20 6D 61  |four times as ma|
00000B20: 6E 79 20 6E 69 63 6B 65  6C 73 20 61 73 20 71 75  |ny nickels as qu|
00000B30: 61 72 74 65 72 73 20 61  6E 64 20 74 68 72 65 65  |arters and three|
00000B40: 20 74 69 6D 65 73 20 61  73 20 6D 61 6E 79 20 64  | times as many d|
00000B50: 69 6D 65 73 20 61 73 20  71 75 61 72 74 65 72 73  |imes as quarters|
00000B60: 2C 20 68 6F 77 20 6D 61  6E 79 20 6F 66 20 65 61  |, how many of ea|
00000B70: 63 68 20 63 6F 69 6E 20  64 6F 65 73 20 68 65 20  |ch coin does he |
00000B80: 68 61 76 65 3F 00 4E 69  63 6B 65 6C 73 00 44 69  |have?.Nickels.Di|
00000B90: 6D 65 73 00 51 75 61 72  74 65 72 73 00 6E 69 63  |mes.Quarters.nic|
00000BA0: 6B 65 6C 00 6E 69 63 6B  65 6C 00 35 00 36 00 63  |kel.nickel.5.6.c|
00000BB0: 31 00 35 00 36 00 35 00  64 69 6D 65 00 64 69 6D  |1.5.6.5.dime.dim|
00000BC0: 65 00 31 30 00 37 00 63  32 00 31 30 00 37 00 31  |e.10.7.c2.10.7.1|
00000BD0: 30 00 71 75 61 72 74 65  72 00 71 75 61 72 74 65  |0.quarter.quarte|
00000BE0: 72 00 32 35 00 38 00 63  32 00 32 35 00 38 00 32  |r.25.8.c2.25.8.2|
00000BF0: 35 00 71 75 61 72 74 65  72 73 00 71 00 71 75 61  |5.quarters.q.qua|
00000C00: 72 74 65 72 73 00 31 33  00 6E 69 63 6B 65 6C 73  |rters.13.nickels|
00000C10: 00 71 75 61 72 74 65 72  73 00 26 68 68 65 20 68  |.quarters.&hhe h|
00000C20: 61 73 20 66 6F 75 72 20  74 69 6D 65 73 20 61 73  |as four times as|
00000C30: 20 6D 61 6E 79 20 6E 69  63 6B 65 6C 73 20 61 73  | many nickels as|
00000C40: 20 71 75 61 72 74 65 72  73 26 68 2C 20 74 68 65  | quarters&h, the|
00000C50: 20 6E 75 6D 62 65 72 20  6F 66 20 6E 69 63 6B 65  | number of nicke|
00000C60: 6C 73 20 3D 20 60 34 26  76 27 00 31 31 00 34 26  |ls = `4&v'.11.4&|
00000C70: 76 00 64 69 6D 65 73 00  71 75 61 72 74 65 72 73  |v.dimes.quarters|
00000C80: 00 74 68 65 72 65 20 61  72 65 20 26 68 74 68 72  |.there are &hthr|
00000C90: 65 65 20 74 69 6D 65 73  20 61 73 20 6D 61 6E 79  |ee times as many|
00000CA0: 20 64 69 6D 65 73 20 61  73 20 71 75 61 72 74 65  | dimes as quarte|
00000CB0: 72 73 26 68 2C 20 74 68  65 20 6E 75 6D 62 65 72  |rs&h, the number|
00000CC0: 20 6F 66 20 64 69 6D 65  73 20 3D 20 60 33 26 76  | of dimes = `3&v|
00000CD0: 27 00 31 32 00 33 26 76  00 26 68 43 6C 61 72 6B  |'.12.3&v.&hClark|
00000CE0: 20 68 61 73 20 73 6F 6D  65 20 6E 69 63 6B 65 6C  | has some nickel|
00000CF0: 73 2C 20 64 69 6D 65 73  20 61 6E 64 20 71 75 61  |s, dimes and qua|
00000D00: 72 74 65 72 73 20 77 6F  72 74 68 20 24 31 2E 35  |rters worth $1.5|
00000D10: 30 26 68 2C 20 77 68 69  63 68 20 69 73 20 60 31  |0&h, which is `1|
00000D20: 35 30 27 20 63 65 6E 74  73 00 69 00 31 35 30 00  |50' cents.i.150.|
00000D30: 6E 69 63 6B 65 6C 73 00  6E 69 63 6B 65 6C 73 00  |nickels.nickels.|
00000D40: 6E 69 63 6B 65 6C 73 00  34 26 76 00 6E 69 63 6B  |nickels.4&v.nick|
00000D50: 65 6C 73 00 35 28 34 26  76 29 00 64 69 6D 65 73  |els.5(4&v).dimes|
00000D60: 00 64 69 6D 65 73 00 64  69 6D 65 73 00 33 26 76  |.dimes.dimes.3&v|
00000D70: 00 64 69 6D 65 73 00 33  30 26 76 00 71 75 61 72  |.dimes.30&v.quar|
00000D80: 74 65 72 73 00 71 75 61  72 74 65 72 73 00 71 75  |ters.quarters.qu|
00000D90: 61 72 74 65 72 73 00 26  76 00 71 75 61 72 74 65  |arters.&v.quarte|
00000DA0: 72 73 00 32 35 26 76 00  6E 69 63 6B 65 6C 73 2C  |rs.25&v.nickels,|
00000DB0: 20 64 69 6D 65 73 20 61  6E 64 20 71 75 61 72 74  | dimes and quart|
00000DC0: 65 72 73 00 6E 69 63 6B  65 6C 27 73 00 64 69 6D  |ers.nickel's.dim|
00000DD0: 65 27 73 00 71 75 61 72  74 65 72 27 73 00 32 30  |e's.quarter's.20|
00000DE0: 26 76 2B 33 30 26 76 2B  32 35 26 76 20 3D 20 31  |&v+30&v+25&v = 1|
00000DF0: 35 30 00 32 30 00 32 30  26 76 2B 33 30 26 76 2B  |50.20.20&v+30&v+|
00000E00: 32 35 26 76 20 3D 20 31  35 30 00 32 30 00 26 76  |25&v = 150.20.&v|
00000E10: 3D 32 00 48 6F 77 20 6D  61 6E 79 20 6F 66 20 65  |=2.How many of e|
00000E20: 61 63 68 20 63 6F 69 6E  20 64 6F 65 73 20 68 65  |ach coin does he|
00000E30: 20 68 61 76 65 3F 00 71  75 61 72 74 65 72 73 00  | have?.quarters.|
00000E40: 26 76 00 71 75 61 72 74  65 72 73 00 26 76 2E 20  |&v.quarters.&v. |
00000E50: 26 76 20 3D 20 60 32 27  00 31 33 00 32 00 6E 69  |&v = `2'.13.2.ni|
00000E60: 63 6B 65 6C 73 00 34 26  76 00 6E 69 63 6B 65 6C  |ckels.4&v.nickel|
00000E70: 73 00 34 26 76 00 34 26  76 20 3D 20 60 38 27 00  |s.4&v.4&v = `8'.|
00000E80: 31 31 00 38 00 64 69 6D  65 73 00 33 26 76 00 64  |11.8.dimes.3&v.d|
00000E90: 69 6D 65 73 00 33 26 76  2E 20 33 26 76 20 3D 20  |imes.3&v. 3&v = |
00000EA0: 60 36 27 00 31 32 00 36  00 35 28 34 26 76 29 20  |`6'.12.6.5(4&v) |
00000EB0: 3D 20 35 2A 38 20 3D 20  60 34 30 27 20 63 65 6E  |= 5*8 = `40' cen|
00000EC0: 74 73 00 31 36 00 34 30  00 31 30 2A 33 26 76 20  |ts.16.40.10*3&v |
00000ED0: 3D 20 31 30 2A 36 20 3D  20 60 36 30 27 20 63 65  |= 10*6 = `60' ce|
00000EE0: 6E 74 73 00 31 37 00 36  30 00 32 35 2A 26 76 20  |nts.17.60.25*&v |
00000EF0: 3D 20 32 35 2A 32 20 3D  20 60 35 30 27 20 63 65  |= 25*2 = `50' ce|
00000F00: 6E 74 73 00 31 38 00 35  30 00 40 66 53 61 6D 20  |nts.18.50.@fSam |
00000F10: 69 73 20 73 61 76 69 6E  67 20 74 6F 20 62 75 79  |is saving to buy|
00000F20: 20 61 20 62 61 73 65 62  61 6C 6C 20 67 6C 6F 76  | a baseball glov|
00000F30: 65 2E 20 49 6E 20 68 69  73 20 34 20 64 6F 6C 6C  |e. In his 4 doll|
00000F40: 61 72 20 63 6F 69 6E 20  63 6F 6C 6C 65 63 74 69  |ar coin collecti|
00000F50: 6F 6E 20 68 65 20 68 61  73 20 74 77 69 63 65 20  |on he has twice |
00000F60: 61 73 20 6D 61 6E 79 20  71 75 61 72 74 65 72 73  |as many quarters|
00000F70: 20 61 73 20 64 69 6D 65  73 20 61 6E 64 20 74 77  | as dimes and tw|
00000F80: 6F 20 6D 6F 72 65 20 6E  69 63 6B 65 6C 73 20 74  |o more nickels t|
00000F90: 68 61 6E 20 64 69 6D 65  73 2E 20 48 6F 77 20 6D  |han dimes. How m|
00000FA0: 61 6E 79 20 6F 66 20 65  61 63 68 20 74 79 70 65  |any of each type|
00000FB0: 20 6F 66 20 63 6F 69 6E  20 64 6F 65 73 20 68 65  | of coin does he|
00000FC0: 20 68 61 76 65 3F 00 4E  69 63 6B 65 6C 73 00 44  | have?.Nickels.D|
00000FD0: 69 6D 65 73 00 51 75 61  72 74 65 72 73 00 6E 69  |imes.Quarters.ni|
00000FE0: 63 6B 65 6C 00 6E 69 63  6B 65 6C 00 35 00 36 00  |ckel.nickel.5.6.|
00000FF0: 63 31 00 35 00 36 00 35  00 64 69 6D 65 00 64 69  |c1.5.6.5.dime.di|
00001000: 6D 65 00 31 30 00 37 00  63 32 00 31 30 00 37 00  |me.10.7.c2.10.7.|
00001010: 31 30 00 71 75 61 72 74  65 72 00 71 75 61 72 74  |10.quarter.quart|
00001020: 65 72 00 32 35 00 38 00  63 32 00 32 35 00 38 00  |er.25.8.c2.25.8.|
00001030: 32 35 00 64 69 6D 65 73  00 64 00 64 69 6D 65 73  |25.dimes.d.dimes|
00001040: 00 31 32 00 71 75 61 72  74 65 72 73 00 64 69 6D  |.12.quarters.dim|
00001050: 65 73 00 26 68 68 65 20  68 61 73 20 74 77 69 63  |es.&hhe has twic|
00001060: 65 20 61 73 20 6D 61 6E  79 20 71 75 61 72 74 65  |e as many quarte|
00001070: 72 73 20 61 73 20 64 69  6D 65 73 26 68 2C 20 74  |rs as dimes&h, t|
00001080: 68 65 20 6E 75 6D 62 65  72 20 6F 66 20 71 75 61  |he number of qua|
00001090: 72 74 65 72 73 20 3D 20  60 32 26 76 27 00 31 33  |rters = `2&v'.13|
000010A0: 00 32 26 76 00 6E 69 63  6B 65 6C 73 00 64 69 6D  |.2&v.nickels.dim|
000010B0: 65 73 00 26 68 74 68 65  72 65 20 61 72 65 20 74  |es.&hthere are t|
000010C0: 77 6F 20 6D 6F 72 65 20  6E 69 63 6B 65 6C 73 20  |wo more nickels |
000010D0: 74 68 61 6E 20 64 69 6D  65 73 26 68 2C 20 74 68  |than dimes&h, th|
000010E0: 65 20 6E 75 6D 62 65 72  20 6F 66 20 6E 69 63 6B  |e number of nick|
000010F0: 65 6C 73 20 3D 20 60 26  76 2B 32 27 00 31 31 00  |els = `&v+2'.11.|
00001100: 26 76 2B 32 00 54 68 65  20 74 6F 74 61 6C 20 76  |&v+2.The total v|
00001110: 61 6C 75 65 20 6F 66 20  74 68 65 20 26 68 34 20  |alue of the &h4 |
00001120: 64 6F 6C 6C 61 72 20 63  6F 69 6E 20 63 6F 6C 6C  |dollar coin coll|
00001130: 65 63 74 69 6F 6E 26 68  20 69 73 20 60 34 30 30  |ection&h is `400|
00001140: 27 20 63 65 6E 74 73 00  69 00 34 30 30 00 6E 69  |' cents.i.400.ni|
00001150: 63 6B 65 6C 73 00 6E 69  63 6B 65 6C 73 00 6E 69  |ckels.nickels.ni|
00001160: 63 6B 65 6C 73 00 28 26  76 2B 32 29 00 6E 69 63  |ckels.(&v+2).nic|
00001170: 6B 65 6C 73 00 35 28 26  76 2B 32 29 00 64 69 6D  |kels.5(&v+2).dim|
00001180: 65 73 00 64 69 6D 65 73  00 64 69 6D 65 73 00 26  |es.dimes.dimes.&|
00001190: 76 00 64 69 6D 65 73 00  31 30 26 76 00 71 75 61  |v.dimes.10&v.qua|
000011A0: 72 74 65 72 73 00 71 75  61 72 74 65 72 73 00 71  |rters.quarters.q|
000011B0: 75 61 72 74 65 72 73 00  32 26 76 00 71 75 61 72  |uarters.2&v.quar|
000011C0: 74 65 72 73 00 32 35 28  32 26 76 29 00 6E 69 63  |ters.25(2&v).nic|
000011D0: 6B 65 6C 73 2C 20 64 69  6D 65 73 20 61 6E 64 20  |kels, dimes and |
000011E0: 71 75 61 72 74 65 72 73  00 6E 69 63 6B 65 6C 73  |quarters.nickels|
000011F0: 00 64 69 6D 65 73 00 71  75 61 72 74 65 72 73 00  |.dimes.quarters.|
00001200: 35 28 26 76 2B 32 29 2B  31 30 26 76 2B 32 35 28  |5(&v+2)+10&v+25(|
00001210: 32 26 76 29 20 3D 20 34  30 30 00 32 30 00 35 28  |2&v) = 400.20.5(|
00001220: 26 76 2B 32 29 2B 31 30  26 76 2B 32 35 28 32 26  |&v+2)+10&v+25(2&|
00001230: 76 29 20 3D 20 34 30 30  00 32 30 00 26 76 3D 36  |v) = 400.20.&v=6|
00001240: 00 48 6F 77 20 6D 61 6E  79 20 6F 66 20 65 61 63  |.How many of eac|
00001250: 68 20 74 79 70 65 20 6F  66 20 63 6F 69 6E 20 64  |h type of coin d|
00001260: 6F 65 73 20 68 65 20 68  61 76 65 3F 00 64 69 6D  |oes he have?.dim|
00001270: 65 73 00 26 76 00 64 69  6D 65 73 00 26 76 2E 20  |es.&v.dimes.&v. |
00001280: 20 26 76 20 3D 20 60 36  27 00 31 32 00 36 00 6E  | &v = `6'.12.6.n|
00001290: 69 63 6B 65 6C 73 00 26  76 2B 32 00 6E 69 63 6B  |ickels.&v+2.nick|
000012A0: 65 6C 73 00 26 76 2B 32  00 26 76 2B 32 20 3D 20  |els.&v+2.&v+2 = |
000012B0: 60 38 27 00 31 31 00 38  00 71 75 61 72 74 65 72  |`8'.11.8.quarter|
000012C0: 73 00 32 26 76 00 71 75  61 72 74 65 72 73 00 32  |s.2&v.quarters.2|
000012D0: 26 76 2E 20 32 26 76 20  3D 20 60 31 32 27 00 31  |&v. 2&v = `12'.1|
000012E0: 33 00 31 32 00 35 28 26  76 2B 32 29 20 3D 20 35  |3.12.5(&v+2) = 5|
000012F0: 2A 38 20 3D 20 60 34 30  27 20 63 65 6E 74 73 00  |*8 = `40' cents.|
00001300: 31 36 00 34 30 00 31 30  2A 26 76 20 3D 20 31 30  |16.40.10*&v = 10|
00001310: 2A 36 20 3D 20 60 36 30  27 20 63 65 6E 74 73 00  |*6 = `60' cents.|
00001320: 31 37 00 36 30 00 32 35  2A 28 32 26 76 29 20 3D  |17.60.25*(2&v) =|
00001330: 20 32 35 2A 31 32 20 3D  20 60 33 30 30 27 20 63  | 25*12 = `300' c|
00001340: 65 6E 74 73 00 31 38 00  33 30 30 00 40 66 43 68  |ents.18.300.@fCh|
00001350: 72 69 73 74 69 6E 65 20  68 61 73 20 74 77 69 63  |ristine has twic|
00001360: 65 20 61 73 20 6D 61 6E  79 20 6E 69 63 6B 65 6C  |e as many nickel|
00001370: 73 20 61 73 20 71 75 61  72 74 65 72 73 20 61 6E  |s as quarters an|
00001380: 64 20 74 68 72 65 65 20  6C 65 73 73 20 64 69 6D  |d three less dim|
00001390: 65 73 20 74 68 61 6E 20  6E 69 63 6B 65 6C 73 2E  |es than nickels.|
000013A0: 20 48 6F 77 20 6D 61 6E  79 20 6F 66 20 65 61 63  | How many of eac|
000013B0: 68 20 63 6F 69 6E 20 64  6F 65 73 20 73 68 65 20  |h coin does she |
000013C0: 68 61 76 65 20 69 66 20  74 68 65 20 74 6F 74 61  |have if the tota|
000013D0: 6C 20 76 61 6C 75 65 20  6F 66 20 74 68 65 20 63  |l value of the c|
000013E0: 6F 6C 6C 65 63 74 69 6F  6E 20 69 73 20 24 32 2E  |ollection is $2.|
000013F0: 34 35 3F 00 4E 69 63 6B  65 6C 73 00 44 69 6D 65  |45?.Nickels.Dime|
00001400: 73 00 51 75 61 72 74 65  72 73 00 6E 69 63 6B 65  |s.Quarters.nicke|
00001410: 6C 00 6E 69 63 6B 65 6C  00 35 00 36 00 69 00 35  |l.nickel.5.6.i.5|
00001420: 00 36 00 35 00 64 69 6D  65 00 64 69 6D 65 00 31  |.6.5.dime.dime.1|
00001430: 30 00 37 00 69 00 31 30  00 37 00 31 30 00 71 75  |0.7.i.10.7.10.qu|
00001440: 61 72 74 65 72 00 71 75  61 72 74 65 72 00 32 35  |arter.quarter.25|
00001450: 00 38 00 69 00 32 35 00  38 00 32 35 00 71 75 61  |.8.i.25.8.25.qua|
00001460: 72 74 65 72 73 00 71 00  71 75 61 72 74 65 72 73  |rters.q.quarters|
00001470: 00 31 33 00 6E 69 63 6B  65 6C 73 00 71 75 61 72  |.13.nickels.quar|
00001480: 74 65 72 73 00 26 68 43  68 72 69 73 74 69 6E 65  |ters.&hChristine|
00001490: 20 68 61 73 20 74 77 69  63 65 20 61 73 20 6D 61  | has twice as ma|
000014A0: 6E 79 20 6E 69 63 6B 65  6C 73 20 61 73 20 71 75  |ny nickels as qu|
000014B0: 61 72 74 65 72 73 26 68  2C 20 74 68 65 20 6E 75  |arters&h, the nu|
000014C0: 6D 62 65 72 20 6F 66 20  6E 69 63 6B 65 6C 73 20  |mber of nickels |
000014D0: 3D 20 60 32 26 76 27 00  31 31 00 32 26 76 00 64  |= `2&v'.11.2&v.d|
000014E0: 69 6D 65 73 00 6E 69 63  6B 65 6C 73 00 26 68 74  |imes.nickels.&ht|
000014F0: 68 65 72 65 20 61 72 65  20 74 68 72 65 65 20 6C  |here are three l|
00001500: 65 73 73 20 64 69 6D 65  73 20 74 68 61 6E 20 6E  |ess dimes than n|
00001510: 69 63 6B 65 6C 73 26 68  2C 20 74 68 65 20 6E 75  |ickels&h, the nu|
00001520: 6D 62 65 72 20 6F 66 20  6E 69 63 6B 65 6C 73 20  |mber of nickels |
00001530: 3D 20 60 32 26 76 2D 33  27 00 31 32 00 32 26 76  |= `2&v-3'.12.2&v|
00001540: 2D 33 00 26 68 54 68 65  20 74 6F 74 61 6C 20 76  |-3.&hThe total v|
00001550: 61 6C 75 65 20 6F 66 20  74 68 65 20 63 6F 6C 6C  |alue of the coll|
00001560: 65 63 74 69 6F 6E 20 3D  20 24 32 2E 34 35 26 68  |ection = $2.45&h|
00001570: 2C 20 77 68 69 63 68 20  69 73 20 60 32 34 35 27  |, which is `245'|
00001580: 20 63 65 6E 74 73 00 69  00 32 34 35 00 6E 69 63  | cents.i.245.nic|
00001590: 6B 65 6C 73 00 6E 69 63  6B 65 6C 73 00 6E 69 63  |kels.nickels.nic|
000015A0: 6B 65 6C 73 00 32 26 76  00 6E 69 63 6B 65 6C 73  |kels.2&v.nickels|
000015B0: 00 31 30 26 76 00 64 69  6D 65 73 00 64 69 6D 65  |.10&v.dimes.dime|
000015C0: 73 00 64 69 6D 65 73 00  28 32 26 76 2D 33 29 00  |s.dimes.(2&v-3).|
000015D0: 64 69 6D 65 73 00 31 30  28 32 26 76 2D 33 29 00  |dimes.10(2&v-3).|
000015E0: 71 75 61 72 74 65 72 73  00 71 75 61 72 74 65 72  |quarters.quarter|
000015F0: 73 00 71 75 61 72 74 65  72 73 00 26 76 00 71 75  |s.quarters.&v.qu|
00001600: 61 72 74 65 72 73 00 32  35 26 76 00 6E 69 63 6B  |arters.25&v.nick|
00001610: 65 6C 73 2C 20 64 69 6D  65 73 20 61 6E 64 20 71  |els, dimes and q|
00001620: 75 61 72 74 65 72 73 00  6E 69 63 6B 65 6C 73 00  |uarters.nickels.|
00001630: 64 69 6D 65 73 00 71 75  61 72 74 65 72 73 00 31  |dimes.quarters.1|
00001640: 30 26 76 2B 31 30 28 32  26 76 2D 33 29 2B 32 35  |0&v+10(2&v-3)+25|
00001650: 26 76 20 3D 20 32 34 35  00 32 30 00 31 30 26 76  |&v = 245.20.10&v|
00001660: 2B 31 30 28 32 26 76 2D  33 29 2B 32 35 26 76 20  |+10(2&v-3)+25&v |
00001670: 3D 20 32 34 35 00 32 30  00 26 76 3D 35 00 48 6F  |= 245.20.&v=5.Ho|
00001680: 77 20 6D 61 6E 79 20 6F  66 20 65 61 63 68 20 63  |w many of each c|
00001690: 6F 69 6E 20 64 6F 65 73  20 73 68 65 20 68 61 76  |oin does she hav|
000016A0: 65 3F 00 71 75 61 72 74  65 72 73 00 26 76 00 71  |e?.quarters.&v.q|
000016B0: 75 61 72 74 65 72 73 00  26 76 2E 20 26 76 20 3D  |uarters.&v. &v =|
000016C0: 20 60 35 27 00 31 33 00  35 00 6E 69 63 6B 65 6C  | `5'.13.5.nickel|
000016D0: 73 00 32 26 76 00 6E 69  63 6B 65 6C 73 00 32 26  |s.2&v.nickels.2&|
000016E0: 76 00 32 26 76 2E 20 32  26 76 20 3D 20 60 31 30  |v.2&v. 2&v = `10|
000016F0: 27 00 31 31 00 31 30 00  64 69 6D 65 73 00 32 26  |'.11.10.dimes.2&|
00001700: 76 2D 33 00 64 69 6D 65  73 00 32 26 76 2D 33 2E  |v-3.dimes.2&v-3.|
00001710: 20 32 26 76 2D 33 20 3D  20 60 37 27 00 31 32 00  | 2&v-3 = `7'.12.|
00001720: 37 00 35 28 32 26 76 29  20 3D 20 35 2A 31 30 20  |7.5(2&v) = 5*10 |
00001730: 3D 20 60 35 30 27 20 63  65 6E 74 73 00 31 36 00  |= `50' cents.16.|
00001740: 35 30 00 31 30 2A 28 32  26 76 2D 33 29 20 3D 20  |50.10*(2&v-3) = |
00001750: 31 30 2A 37 20 3D 20 60  37 30 27 20 63 65 6E 74  |10*7 = `70' cent|
00001760: 73 00 31 37 00 37 30 00  32 35 2A 26 76 20 3D 20  |s.17.70.25*&v = |
00001770: 32 35 2A 35 20 3D 20 60  31 32 35 27 20 63 65 6E  |25*5 = `125' cen|
00001780: 74 73 00 31 38 00 31 32  35 00 7C 37              |ts.18.125.|7    |
 A @Q{}@DG01&D(1,{})&D(2,{})&D(3,{})&D(4
,TOT.)&D(5,VAL/UNIT)&D(10,# COINS)&D(15,
VALUE)@RREAD&D(0,READ THE WHOLE PROBLEM.
 THINK: WHAT ARE THE FACTS? WHAT IS BEIN
G ASKED?)@RDATA ENTRY@PSTART FILLING IN 
INFORMATION ON THE CHART. THE CURSOR WIL
L SHOW YOU WHICH BOX  TO WORK ON.@HWHAT 
IS THE VALUE PER UNIT OF A {}?@HTHE VALU
E OF A {} IN CENTS, IS '{}'.@I({},{},{})
&D({},{} CENTS)@HWHAT IS THE VALUE PER U
NIT OF A {}?@HTHE VALUE OF A {} IN CENTS
, IS '{}'.@I({},{},{})&D({},{} CENTS)@HW
HAT IS THE VALUE PER UNIT OF A {}?@HTHE 
VALUE OF A {} IN CENTS, IS '{}'.@I({},{}
,{})&D({},{} CENTS)@HCHOOSE A VARIABLE T
O REPRESENT THE NUMBER OF {}.@HCHOOSE A 
SINGLE LETTER, SUCH AS '{}', TO REPRESEN
T THE NUMBER OF {}.@I({},I,&V)@HREPRESEN
T THE NUMBER OF {} IN TERMS OF "&V" (THE
 NUMBER OF {}).@HSINCE {}.@I({},I,{})@HR
EPRESENT THE NUMBER OF {} IN TERMS OF "&
V" (THE NUMBER OF {}).@HSINCE {}.@I({},I
,{})@HREPRESENT THE TOTAL VALUE IN CENTS
, OF ALL THE COINS.@H{}.@I(19,{},{})@RPA
RTS@PFILL IN THE INFORMATION YOU NEED TO
 WRITE YOUR EQUATION.@HWRITE AN EXPRESSI
ON TO REPRESENT THE VALUE OF THE {}.@HVA
L/UNIT \F09* # OF {}\F23={}' VAL. \N  `5
     \F09*     {}' \F23={}' VAL.@I(16,I,
{})@HWRITE AN EXPRESSION TO REPRESENT TH
E VALUE OF THE {}.@HVAL/UNIT \F09* # OF 
{} \F24= {}' VALUE. \N `10     \F09*    
 {}'    \F24= {}' VALUE.@I(17,I,{})@HWRI
TE AN EXPRESSION TO REPRESENT THE VALUE 
OF THE {}.@HVAL/UNIT \F09* # {} \F23={}'
 VAL. \N `25     \F09*   {}'\F23={}' VAL
.@I(18,I,{})@RWHOLE@PWRITE AN EQUATION T
O SHOW THE RELATION OF THE PARTS ({}) TO
 THE WHOLE (TOTAL).@HUSE THE BOTTOM LINE
 OF THE CHART TO FORM THE EQUATION.@H({}
 VALUE) + ({} VALUE) + ({} VALUE) = TOTA
L VALUE, SO `{}'@I({},I,{})@S@RCOMPUTE@P
SOLVE THE EQUATION FOR "&V". USE PENCIL 
AND PAPER, OR USE THE CALCULATOR.@HREMEM
BER TO COMBINE LIKE TERMS AND DISTRIBUTE
 IF NECESSARY. ISOLATE "&V" ON ONE SIDE 
OF THE EQUATION.@HTHE CALCULATOR SOLVES 
EQUATIONS FOR YOU AND DISPLAYS THE STEPS
 IN THE SOLUTION.@I({},I,{})@PNOW ENTER 
YOUR ANSWERS. REMEMBER WHAT IS BEING ASK
ED. &Q{}&Q@HTHE NUMBER OF {} IS THE VALU
E OF {}.@HTHE NUMBER OF {} IS THE VALUE 
OF {}@I({},I,{})@S@HTHE NUMBER OF {} IS 
THE VALUE OF {}.@HTHE NUMBER OF {} IS TH
E VALUE OF {}. {}@I({},I,{})@HTHE NUMBER
 OF {} IS THE VALUE OF THE EXPRESSION {}
.@HTHE NUMBER OF {} IS THE VALUE OF THE 
EXPRESSION {}@I({},I,{})@RCHECK@PREREAD 
THE PROBLEM. CHECK YOUR ANSWERS. EVALUAT
E THE REMAINING EXPRESSIONS IN THE CHART
.@HSUBSTITUTE FOR "&V" IN THE EXPRESSION
. THEN CALCULATE THE RESULT.@H{}.@I({},I
,{})@HSUBSTITUTE FOR "&V" IN THE EXPRESS
ION. THEN CALCULATE THE RESULT.@H{}.@I({
},I,{})@HSUBSTITUTE FOR "&V" IN THE EXPR
ESSION. THEN CALCULATE THE RESULT.@H{}.@
I({},I,{})&D(0,CHECK YOUR WORK. ADD THE 
VALUES OF ALL THE COINS. DOES THE SUM EQ
UAL THE TOTAL VALUE? NOW FOR A NEW PROBL
EM.)@FCLARK HAS SOME NICKELS, DIMES AND 
QUARTERS WORTH $1.50. IF HE HAS FOUR TIM
ES AS MANY NICKELS AS QUARTERS AND THREE
 TIMES AS MANY DIMES AS QUARTERS, HOW MA
NY OF EACH COIN DOES HE HAVE?.NICKELS.DI
MES.QUARTERS.NICKEL.NICKEL.5.6.C1.5.6.5.
DIME.DIME.10.7.C2.10.7.10.QUARTER.QUARTE
R.25.8.C2.25.8.25.QUARTERS.Q.QUARTERS.13
.NICKELS.QUARTERS.&HHE HAS FOUR TIMES AS
 MANY NICKELS AS QUARTERS&H, THE NUMBER 
OF NICKELS = `4&V'.11.4&V.DIMES.QUARTERS
.THERE ARE &HTHREE TIMES AS MANY DIMES A
S QUARTERS&H, THE NUMBER OF DIMES = `3&V
'.12.3&V.&HCLARK HAS SOME NICKELS, DIMES
 AND QUARTERS WORTH $1.50&H, WHICH IS `1
50' CENTS.I.150.NICKELS.NICKELS.NICKELS.
4&V.NICKELS.5(4&V).DIMES.DIMES.DIMES.3&V
.DIMES.30&V.QUARTERS.QUARTERS.QUARTERS.&
V.QUARTERS.25&V.NICKELS, DIMES AND QUART
ERS.NICKEL'S.DIME'S.QUARTER'S.20&V+30&V+
25&V = 150.20.20&V+30&V+25&V = 150.20.&V
=2.HOW MANY OF EACH COIN DOES HE HAVE?.Q
UARTERS.&V.QUARTERS.&V. &V = `2'.13.2.NI
CKELS.4&V.NICKELS.4&V.4&V = `8'.11.8.DIM
ES.3&V.DIMES.3&V. 3&V = `6'.12.6.5(4&V) 
= 5*8 = `40' CENTS.16.40.10*3&V = 10*6 =
 `60' CENTS.17.60.25*&V = 25*2 = `50' CE
NTS.18.50.@FSAM IS SAVING TO BUY A BASEB
ALL GLOVE. IN HIS 4 DOLLAR COIN COLLECTI
ON HE HAS TWICE AS MANY QUARTERS AS DIME
S AND TWO MORE NICKELS THAN DIMES. HOW M
ANY OF EACH TYPE OF COIN DOES HE HAVE?.N
ICKELS.DIMES.QUARTERS.NICKEL.NICKEL.5.6.
C1.5.6.5.DIME.DIME.10.7.C2.10.7.10.QUART
ER.QUARTER.25.8.C2.25.8.25.DIMES.D.DIMES
.12.QUARTERS.DIMES.&HHE HAS TWICE AS MAN
Y QUARTERS AS DIMES&H, THE NUMBER OF QUA
RTERS = `2&V'.13.2&V.NICKELS.DIMES.&HTHE
RE ARE TWO MORE NICKELS THAN DIMES&H, TH
E NUMBER OF NICKELS = `&V+2'.11.&V+2.THE
 TOTAL VALUE OF THE &H4 DOLLAR COIN COLL
ECTION&H IS `400' CENTS.I.400.NICKELS.NI
CKELS.NICKELS.(&V+2).NICKELS.5(&V+2).DIM
ES.DIMES.DIMES.&V.DIMES.10&V.QUARTERS.QU
ARTERS.QUARTERS.2&V.QUARTERS.25(2&V).NIC
KELS, DIMES AND QUARTERS.NICKELS.DIMES.Q
UARTERS.5(&V+2)+10&V+25(2&V) = 400.20.5(
&V+2)+10&V+25(2&V) = 400.20.&V=6.HOW MAN
Y OF EACH TYPE OF COIN DOES HE HAVE?.DIM
ES.&V.DIMES.&V.  &V = `6'.12.6.NICKELS.&
V+2.NICKELS.&V+2.&V+2 = `8'.11.8.QUARTER
S.2&V.QUARTERS.2&V. 2&V = `12'.13.12.5(&
V+2) = 5*8 = `40' CENTS.16.40.10*&V = 10
*6 = `60' CENTS.17.60.25*(2&V) = 25*12 =
 `300' CENTS.18.300.@FCHRISTINE HAS TWIC
E AS MANY NICKELS AS QUARTERS AND THREE 
LESS DIMES THAN NICKELS. HOW MANY OF EAC
H COIN DOES SHE HAVE IF THE TOTAL VALUE 
OF THE COLLECTION IS $2.45?.NICKELS.DIME
S.QUARTERS.NICKEL.NICKEL.5.6.I.5.6.5.DIM
E.DIME.10.7.I.10.7.10.QUARTER.QUARTER.25
.8.I.25.8.25.QUARTERS.Q.QUARTERS.13.NICK
ELS.QUARTERS.&HCHRISTINE HAS TWICE AS MA
NY NICKELS AS QUARTERS&H, THE NUMBER OF 
NICKELS = `2&V'.11.2&V.DIMES.NICKELS.&HT
HERE ARE THREE LESS DIMES THAN NICKELS&H
, THE NUMBER OF NICKELS = `2&V-3'.12.2&V
-3.&HTHE TOTAL VALUE OF THE COLLECTION =
 $2.45&H, WHICH IS `245' CENTS.I.245.NIC
KELS.NICKELS.NICKELS.2&V.NICKELS.10&V.DI
MES.DIMES.DIMES.(2&V-3).DIMES.10(2&V-3).
QUARTERS.QUARTERS.QUARTERS.&V.QUARTERS.2
5&V.NICKELS, DIMES AND QUARTERS.NICKELS.
DIMES.QUARTERS.10&V+10(2&V-3)+25&V = 245
.20.10&V+10(2&V-3)+25&V = 245.20.&V=5.HO
W MANY OF EACH COIN DOES SHE HAVE?.QUART
ERS.&V.QUARTERS.&V. &V = `5'.13.5.NICKEL
S.2&V.NICKELS.2&V.2&V. 2&V = `10'.11.10.
DIMES.2&V-3.DIMES.2&V-3. 2&V-3 = `7'.12.
7.5(2&V) = 5*10 = `50' CENTS.16.50.10*(2
&V-3) = 10*7 = `70' CENTS.17.70.25*&V = 
25*5 = `125' CENTS.18.125.|7
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL