_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST3L4

FILE INFORMATION

FILENAME(S): DIST3L4

FILE TYPE(S): PRG

FILE SIZE: 7K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

85ad6fdf34740e5ff731fdf1f615f80b58f7862c7105a74a5a5a9671ae87f253

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST3L4 PRG Radd Maxx 8 0 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 34 26 64 28 31  | A @q{}@dg04&d(1|
00000010: 2C 55 2F 6D 65 61 73 29  26 63 28 32 2C 7B 7D 29  |,U/meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29  26 64 28 34 2C 54 6F 74  |&c(3,{})&d(4,Tot|
00000030: 2E 29 26 64 28 35 2C 52  61 74 65 29 26 64 28 31  |.)&d(5,Rate)&d(1|
00000040: 30 2C 54 69 6D 65 29 26  64 28 31 35 2C 44 69 73  |0,Time)&d(15,Dis|
00000050: 74 2E 29 40 72 52 45 41  44 40 70 52 65 61 64 20  |t.)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C  65 20 70 72 6F 62 6C 65  |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B  3A 20 57 68 61 74 20 61  |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66  61 63 74 73 3F 20 20 57  |re the facts?  W|
00000090: 68 61 74 20 69 73 20 62  65 69 6E 67 20 61 73 6B  |hat is being ask|
000000A0: 65 64 3F 20 28 50 72 65  73 73 20 61 6E 79 20 6B  |ed? (Press any k|
000000B0: 65 79 20 74 6F 20 63 6F  6E 74 69 6E 75 65 29 40  |ey to continue)@|
000000C0: 68 57 68 61 74 20 61 72  65 20 74 68 65 20 66 61  |hWhat are the fa|
000000D0: 63 74 73 3F 20 7B 7D 40  68 57 68 61 74 20 69 73  |cts? {}@hWhat is|
000000E0: 20 62 65 69 6E 67 20 61  73 6B 65 64 3F 20 26 68  | being asked? &h|
000000F0: 7B 7D 26 68 40 69 28 30  29 20 40 72 50 4C 41 4E  |{}&h@i(0) @rPLAN|
00000100: 40 70 4C 65 74 20 44 7B  7D 3D 7B 7D 20 64 69 73  |@pLet D{}={} dis|
00000110: 74 2E 20 61 6E 64 20 20  44 7B 7D 20 3D 20 7B 7D  |t. and  D{} = {}|
00000120: 20 64 69 73 74 2E 20 57  72 69 74 65 20 61 6E 20  | dist. Write an |
00000130: 65 71 75 61 74 69 6F 6E  20 74 6F 20 72 65 6C 61  |equation to rela|
00000140: 74 65 20 44 7B 7D 20 61  6E 64 20 44 7B 7D 20 74  |te D{} and D{} t|
00000150: 6F 20 74 68 65 20 54 6F  74 61 6C 20 64 69 73 74  |o the Total dist|
00000160: 61 6E 63 65 2E 40 68 54  68 65 79 20 68 65 61 64  |ance.@hThey head|
00000170: 65 64 20 69 6E 20 6F 70  70 6F 73 69 74 65 20 64  |ed in opposite d|
00000180: 69 72 65 63 74 69 6F 6E  73 2C 20 73 6F 20 74 68  |irections, so th|
00000190: 65 20 73 75 6D 20 6F 66  20 74 68 65 69 72 20 64  |e sum of their d|
000001A0: 69 73 74 61 6E 63 65 73  20 69 73 20 65 71 75 61  |istances is equa|
000001B0: 6C 20 74 6F 20 74 68 65  20 54 6F 74 61 6C 20 64  |l to the Total d|
000001C0: 69 73 74 61 6E 63 65 2E  40 68 60 7B 7D 27 20 73  |istance.@h`{}' s|
000001D0: 68 6F 77 73 20 74 68 61  74 20 74 68 65 20 73 75  |hows that the su|
000001E0: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
000001F0: 6E 63 65 73 20 69 73 20  65 71 75 61 6C 20 74 6F  |nces is equal to|
00000200: 20 74 68 65 20 54 6F 74  61 6C 20 64 69 73 74 61  | the Total dista|
00000210: 6E 63 65 2E 40 69 28 32  30 2C 63 30 2C 20 29 40  |nce.@i(20,c0, )@|
00000220: 70 4F 6E 65 20 61 6E 73  77 65 72 20 69 73 20 60  |pOne answer is `|
00000230: 7B 7D 27 2E 20 43 68 61  6E 67 65 20 79 6F 75 72  |{}'. Change your|
00000240: 20 61 6E 73 77 65 72 20  69 66 20 69 74 20 69 73  | answer if it is|
00000250: 20 6E 6F 74 20 65 71 75  69 76 61 6C 65 6E 74 2E  | not equivalent.|
00000260: 20 28 50 72 65 73 73 20  72 65 74 75 72 6E 29 2E  | (Press return).|
00000270: 40 68 54 68 65 79 20 68  65 61 64 20 69 6E 20 6F  |@hThey head in o|
00000280: 70 70 6F 73 69 74 65 20  64 69 72 65 63 74 69 6F  |pposite directio|
00000290: 6E 2C 20 73 6F 20 74 68  65 20 73 75 6D 20 6F 66  |n, so the sum of|
000002A0: 20 74 68 65 69 72 20 64  69 73 74 61 6E 63 65 73  | their distances|
000002B0: 20 69 73 20 65 71 75 61  6C 20 74 6F 20 74 68 65  | is equal to the|
000002C0: 20 54 6F 74 61 6C 20 64  69 73 74 61 6E 63 65 2E  | Total distance.|
000002D0: 40 68 60 7B 7D 27 20 73  68 6F 77 73 20 74 68 61  |@h`{}' shows tha|
000002E0: 74 20 74 68 65 20 73 75  6D 20 6F 66 20 74 68 65  |t the sum of the|
000002F0: 69 72 20 64 69 73 74 61  6E 63 65 73 20 69 73 20  |ir distances is |
00000300: 65 71 75 61 6C 20 74 6F  20 74 68 65 20 54 6F 74  |equal to the Tot|
00000310: 61 6C 20 64 69 73 74 61  6E 63 65 2E 40 69 28 32  |al distance.@i(2|
00000320: 30 2C 63 30 2C 20 29 40  72 44 41 54 41 20 45 4E  |0,c0, )@rDATA EN|
00000330: 54 52 59 40 70 46 69 6C  6C 20 69 6E 20 74 68 65  |TRY@pFill in the|
00000340: 20 75 6E 69 74 73 20 62  79 20 77 68 69 63 68 20  | units by which |
00000350: 72 61 74 65 2C 20 74 69  6D 65 20 61 6E 64 20 64  |rate, time and d|
00000360: 69 73 74 61 6E 63 65 20  61 72 65 20 6D 65 61 73  |istance are meas|
00000370: 75 72 65 64 2E 20 28 55  73 65 20 61 62 62 72 65  |ured. (Use abbre|
00000380: 76 69 61 74 65 64 20 66  6F 72 6D 2E 29 40 68 52  |viated form.)@hR|
00000390: 61 74 65 20 6F 66 20 73  70 65 65 64 20 69 73 20  |ate of speed is |
000003A0: 63 6F 6D 6D 6F 6E 6C 79  20 6D 65 61 73 75 72 65  |commonly measure|
000003B0: 64 20 69 6E 20 6D 69 6C  65 73 20 70 65 72 20 68  |d in miles per h|
000003C0: 6F 75 72 28 6D 69 2F 68  72 29 2C 20 6D 65 74 65  |our(mi/hr), mete|
000003D0: 72 73 20 70 65 72 20 6D  69 6E 75 74 65 28 6D 2F  |rs per minute(m/|
000003E0: 6D 69 6E 29 2C 20 65 74  63 2E 40 68 54 68 65 20  |min), etc.@hThe |
000003F0: 72 61 74 65 20 6F 66 20  73 70 65 65 64 20 69 6E  |rate of speed in|
00000400: 20 74 68 69 73 20 70 72  6F 62 6C 65 6D 2C 20 69  | this problem, i|
00000410: 73 20 6D 65 61 73 75 72  65 64 20 69 6E 20 7B 7D  |s measured in {}|
00000420: 2E 40 69 28 36 2C 63 7B  7D 2C 7B 7D 29 40 68 54  |.@i(6,c{},{})@hT|
00000430: 69 6D 65 20 69 73 20 63  6F 6D 6D 6F 6E 6C 79 20  |ime is commonly |
00000440: 6D 65 61 73 75 72 65 64  20 69 6E 20 73 65 63 6F  |measured in seco|
00000450: 6E 64 73 20 28 73 65 63  29 2C 20 6D 69 6E 75 74  |nds (sec), minut|
00000460: 65 73 20 28 6D 69 6E 29  2C 20 68 6F 75 72 73 20  |es (min), hours |
00000470: 28 68 72 29 2C 20 64 61  79 73 20 28 64 61 29 2C  |(hr), days (da),|
00000480: 20 65 74 63 2E 40 68 54  69 6D 65 20 69 6E 20 74  | etc.@hTime in t|
00000490: 68 69 73 20 70 72 6F 62  6C 65 6D 20 69 73 20 6D  |his problem is m|
000004A0: 65 61 73 75 72 65 64 20  69 6E 20 7B 7D 2E 40 69  |easured in {}.@i|
000004B0: 28 31 31 2C 63 7B 7D 2C  7B 7D 29 40 68 44 69 73  |(11,c{},{})@hDis|
000004C0: 74 61 6E 63 65 20 69 73  20 63 6F 6D 6D 6F 6E 6C  |tance is commonl|
000004D0: 79 20 6D 65 61 73 75 72  65 64 20 69 6E 20 66 65  |y measured in fe|
000004E0: 65 74 20 28 66 74 29 2C  20 79 61 72 64 73 20 28  |et (ft), yards (|
000004F0: 79 64 29 2C 20 6D 65 74  65 72 73 20 28 6D 29 2C  |yd), meters (m),|
00000500: 20 6D 69 6C 65 73 20 28  6D 69 29 2C 20 6B 69 6C  | miles (mi), kil|
00000510: 6F 6D 65 74 65 72 73 20  28 6B 6D 29 2C 20 65 74  |ometers (km), et|
00000520: 63 2E 40 68 44 69 73 74  61 6E 63 65 20 69 6E 20  |c.@hDistance in |
00000530: 74 68 69 73 20 70 72 6F  62 6C 65 6D 2C 20 69 73  |this problem, is|
00000540: 20 6D 65 61 73 75 72 65  64 20 69 6E 20 7B 7D 40  | measured in {}@|
00000550: 69 28 31 36 2C 63 7B 7D  2C 7B 7D 29 40 70 45 6E  |i(16,c{},{})@pEn|
00000560: 74 65 72 20 74 68 65 20  66 61 63 74 73 20 66 72  |ter the facts fr|
00000570: 6F 6D 20 74 68 65 20 70  72 6F 62 6C 65 6D 20 69  |om the problem i|
00000580: 6E 74 6F 20 74 68 65 20  67 72 69 64 2E 40 68 7B  |nto the grid.@h{|
00000590: 7D 40 68 54 68 65 20 74  69 6D 65 20 66 6F 72 20  |}@hThe time for |
000005A0: 7B 7D 40 69 28 31 32 2C  69 2C 7B 7D 29 40 68 7B  |{}@i(12,i,{})@h{|
000005B0: 7D 40 68 54 68 65 20 74  69 6D 65 20 66 6F 72 20  |}@hThe time for |
000005C0: 7B 7D 40 69 28 31 33 2C  69 2C 7B 7D 29 40 68 7B  |{}@i(13,i,{})@h{|
000005D0: 7D 40 68 54 68 65 20 74  6F 74 61 6C 20 64 69 73  |}@hThe total dis|
000005E0: 74 61 6E 63 65 20 62 65  74 77 65 65 6E 20 74 68  |tance between th|
000005F0: 65 6D 20 77 61 73 20 7B  7D 2E 40 69 28 31 39 2C  |em was {}.@i(19,|
00000600: 69 2C 7B 7D 29 40 70 55  73 65 20 61 20 76 61 72  |i,{})@pUse a var|
00000610: 69 61 62 6C 65 20 74 6F  20 72 65 70 72 65 73 65  |iable to represe|
00000620: 6E 74 20 74 68 65 20 72  61 74 65 20 6F 66 20 73  |nt the rate of s|
00000630: 70 65 65 64 20 66 6F 72  20 65 61 63 68 20 7B 7D  |peed for each {}|
00000640: 2E 40 68 55 73 65 20 61  20 76 61 72 69 61 62 6C  |.@hUse a variabl|
00000650: 65 20 74 6F 20 72 65 70  72 65 73 65 6E 74 20 74  |e to represent t|
00000660: 68 65 20 73 6C 6F 77 65  72 20 73 70 65 65 64 2E  |he slower speed.|
00000670: 20 49 6E 20 74 68 69 73  20 63 61 73 65 2C 20 7B  | In this case, {|
00000680: 7D 2E 40 68 55 73 65 20  61 20 76 61 72 69 61 62  |}.@hUse a variab|
00000690: 6C 65 20 73 75 63 68 20  61 73 20 60 7B 7D 27 20  |le such as `{}' |
000006A0: 74 6F 20 72 65 70 72 65  73 65 6E 74 20 7B 7D 20  |to represent {} |
000006B0: 72 61 74 65 20 6F 66 20  73 70 65 65 64 2E 40 69  |rate of speed.@i|
000006C0: 28 37 2C 69 2C 7B 7D 29  40 68 52 65 70 72 65 73  |(7,i,{})@hRepres|
000006D0: 65 6E 74 20 7B 7D 20 72  61 74 65 20 6F 66 20 73  |ent {} rate of s|
000006E0: 70 65 65 64 20 69 6E 20  74 65 72 6D 73 20 6F 66  |peed in terms of|
000006F0: 20 22 26 76 22 2C 20 7B  7D 20 72 61 74 65 2E 20  | "&v", {} rate. |
00000700: 7B 7D 40 68 7B 7D 20 73  68 6F 77 73 20 74 68 61  |{}@h{} shows tha|
00000710: 74 20 7B 7D 20 40 69 28  38 2C 69 2C 7B 7D 29 40  |t {} @i(8,i,{})@|
00000720: 72 50 41 52 54 53 40 70  57 72 69 74 65 20 61 6E  |rPARTS@pWrite an|
00000730: 20 65 78 70 72 65 73 73  69 6F 6E 20 74 6F 20 72  | expression to r|
00000740: 65 70 72 65 73 65 6E 74  20 74 62 65 20 64 69 73  |epresent tbe dis|
00000750: 74 61 6E 63 65 20 74 72  61 76 65 6C 6C 65 64 20  |tance travelled |
00000760: 62 79 20 65 61 63 68 20  7B 7D 2E 40 68 52 61 74  |by each {}.@hRat|
00000770: 65 2A 54 69 6D 65 20 3D  20 44 69 73 74 61 6E 63  |e*Time = Distanc|
00000780: 65 40 68 52 61 74 65 20  20 5C 66 30 37 2A 20 20  |e@hRate  \f07*  |
00000790: 5C 66 31 30 20 54 69 6D  65 20 5C 66 31 35 3D 20  |\f10 Time \f15= |
000007A0: 20 54 6F 74 61 6C 20 44  69 73 74 61 6E 63 65 20  | Total Distance |
000007B0: 5C 6E 20 7B 7D 20 44 69  73 74 61 6E 63 65 40 69  |\n {} Distance@i|
000007C0: 28 31 37 2C 69 2C 7B 7D  29 40 68 52 61 74 65 2A  |(17,i,{})@hRate*|
000007D0: 54 69 6D 65 20 3D 20 44  69 73 74 61 6E 63 65 40  |Time = Distance@|
000007E0: 68 52 61 74 65 20 5C 66  30 37 2A 20 20 5C 66 31  |hRate \f07*  \f1|
000007F0: 30 20 54 69 6D 65 20 20  20 20 20 5C 66 31 35 3D  |0 Time     \f15=|
00000800: 20 20 54 6F 74 61 6C 20  44 69 73 74 61 6E 63 65  |  Total Distance|
00000810: 20 5C 6E 60 7B 7D 5C 66  30 37 2A 20 20 5C 66 31  | \n`{}\f07*  \f1|
00000820: 30 20 7B 7D 27 20 5C 66  31 35 3D 20 20 7B 7D 20  |0 {}' \f15=  {} |
00000830: 44 69 73 74 61 6E 63 65  20 40 69 28 31 38 2C 69  |Distance @i(18,i|
00000840: 2C 7B 7D 29 40 72 57 48  4F 4C 45 26 64 28 32 30  |,{})@rWHOLE&d(20|
00000850: 2C 20 29 40 70 53 75 62  73 74 69 74 75 74 65 20  |, )@pSubstitute |
00000860: 79 6F 75 72 20 65 78 70  72 65 73 73 69 6F 6E 73  |your expressions|
00000870: 20 66 6F 72 20 44 7B 7D  2C 20 44 7B 7D 20 61 6E  | for D{}, D{} an|
00000880: 64 20 54 6F 74 61 6C 20  69 6E 20 74 68 65 20 65  |d Total in the e|
00000890: 71 75 61 74 69 6F 6E 3A  20 20 44 7B 7D 2B 44 7B  |quation:  D{}+D{|
000008A0: 7D 3D 20 54 6F 74 61 6C  40 68 44 7B 7D 3D 7B 7D  |}= Total@hD{}={}|
000008B0: 2C 20 44 7B 7D 3D 7B 7D  20 61 6E 64 20 54 6F 74  |, D{}={} and Tot|
000008C0: 61 6C 20 3D 20 7B 7D 40  68 7B 7D 40 69 28 32 30  |al = {}@h{}@i(20|
000008D0: 2C 69 2C 7B 7D 29 40 73  40 72 43 4F 4D 50 55 54  |,i,{})@s@rCOMPUT|
000008E0: 45 40 70 53 6F 6C 76 65  20 74 68 65 20 65 71 75  |E@pSolve the equ|
000008F0: 61 74 69 6F 6E 20 66 6F  72 20 22 26 76 22 2E 20  |ation for "&v". |
00000900: 55 73 65 20 70 61 70 65  72 20 61 6E 64 20 70 65  |Use paper and pe|
00000910: 6E 63 69 6C 20 61 6E 64  20 65 6E 74 65 72 20 74  |ncil and enter t|
00000920: 68 65 20 66 69 6E 61 6C  20 65 71 75 61 74 69 6F  |he final equatio|
00000930: 6E 2C 20 6F 72 20 75 73  65 20 74 68 65 20 43 61  |n, or use the Ca|
00000940: 6C 63 75 6C 61 74 6F 72  2E 40 68 49 73 6F 6C 61  |lculator.@hIsola|
00000950: 74 65 20 22 26 76 22 20  6F 6E 20 6F 6E 65 20 73  |te "&v" on one s|
00000960: 69 64 65 20 6F 66 20 74  68 65 20 65 71 75 61 74  |ide of the equat|
00000970: 69 6F 6E 2E 40 68 54 68  65 20 43 61 6C 63 75 6C  |ion.@hThe Calcul|
00000980: 61 74 6F 72 20 73 6F 6C  76 65 73 20 65 71 75 61  |ator solves equa|
00000990: 74 69 6F 6E 73 20 66 6F  72 20 79 6F 75 20 61 6E  |tions for you an|
000009A0: 64 20 64 69 73 70 6C 61  79 73 20 74 68 65 20 73  |d displays the s|
000009B0: 74 65 70 73 20 69 6E 20  74 68 65 20 73 6F 6C 75  |teps in the solu|
000009C0: 74 69 6F 6E 2E 40 69 28  32 30 2C 69 2C 26 76 3D  |tion.@i(20,i,&v=|
000009D0: 7B 7D 29 40 70 4E 6F 77  20 79 6F 75 20 61 72 65  |{})@pNow you are|
000009E0: 20 72 65 61 64 79 20 74  6F 20 65 6E 74 65 72 20  | ready to enter |
000009F0: 79 6F 75 72 20 61 6E 73  77 65 72 73 20 69 6E 20  |your answers in |
00000A00: 74 68 65 20 67 72 69 64  2E 20 52 65 6D 65 6D 62  |the grid. Rememb|
00000A10: 65 72 20 74 68 65 20 71  75 65 73 74 69 6F 6E 2E  |er the question.|
00000A20: 26 71 7B 7D 26 71 20 26  77 28 32 30 29 40 68 7B  |&q{}&q &w(20)@h{|
00000A30: 7D 20 72 65 70 72 65 73  65 6E 74 73 20 7B 7D 20  |} represents {} |
00000A40: 72 61 74 65 20 6F 66 20  73 70 65 65 64 2E 40 68  |rate of speed.@h|
00000A50: 22 26 76 22 20 3D 20 7B  7D 40 69 28 37 2C 69 2C  |"&v" = {}@i(7,i,|
00000A60: 7B 7D 29 40 73 40 68 7B  7D 20 72 65 70 72 65 73  |{})@s@h{} repres|
00000A70: 65 6E 74 73 20 7B 7D 20  72 61 74 65 20 6F 66 20  |ents {} rate of |
00000A80: 73 70 65 65 64 2E 40 68  26 76 20 3D 20 7B 7D 40  |speed.@h&v = {}@|
00000A90: 69 28 38 2C 69 2C 7B 7D  29 40 73 40 72 43 48 45  |i(8,i,{})@s@rCHE|
00000AA0: 43 4B 40 70 52 65 72 65  61 64 20 74 68 65 20 70  |CK@pReread the p|
00000AB0: 72 6F 62 6C 65 6D 2E 20  43 68 65 63 6B 20 79 6F  |roblem. Check yo|
00000AC0: 75 72 20 61 6E 73 77 65  72 73 2E 20 45 76 61 6C  |ur answers. Eval|
00000AD0: 75 61 74 65 20 74 68 65  20 72 65 6D 61 69 6E 69  |uate the remaini|
00000AE0: 6E 67 20 65 78 70 72 65  73 73 69 6F 6E 73 20 69  |ng expressions i|
00000AF0: 73 20 74 68 65 20 67 72  69 64 2E 40 68 53 75 62  |s the grid.@hSub|
00000B00: 73 74 69 74 75 74 65 20  66 6F 72 20 22 26 76 22  |stitute for "&v"|
00000B10: 20 69 6E 20 74 68 65 20  65 78 70 72 65 73 73 69  | in the expressi|
00000B20: 6F 6E 20 66 6F 72 20 7B  7D 20 64 69 73 74 61 6E  |on for {} distan|
00000B30: 63 65 2E 20 54 68 65 6E  20 63 61 6C 63 75 6C 61  |ce. Then calcula|
00000B40: 74 65 20 74 68 65 20 72  65 73 75 6C 74 2E 40 68  |te the result.@h|
00000B50: 7B 7D 2C 20 77 68 69 63  68 20 65 71 75 61 6C 73  |{}, which equals|
00000B60: 20 7B 7D 2E 40 69 28 31  37 2C 69 2C 7B 7D 29 40  | {}.@i(17,i,{})@|
00000B70: 68 53 75 62 73 74 69 74  75 74 65 20 66 6F 72 20  |hSubstitute for |
00000B80: 22 26 76 22 20 69 6E 20  74 68 65 20 65 78 70 72  |"&v" in the expr|
00000B90: 65 73 73 69 6F 6E 20 66  6F 72 20 7B 7D 20 64 69  |ession for {} di|
00000BA0: 73 74 61 6E 63 65 2E 20  54 68 65 6E 20 63 61 6C  |stance. Then cal|
00000BB0: 63 75 6C 61 74 65 20 74  68 65 20 72 65 73 75 6C  |culate the resul|
00000BC0: 74 2E 40 68 7B 7D 2C 20  77 68 69 63 68 20 65 71  |t.@h{}, which eq|
00000BD0: 75 61 6C 73 20 20 7B 7D  2E 40 69 28 31 38 2C 69  |uals  {}.@i(18,i|
00000BE0: 2C 7B 7D 29 26 64 28 30  2C 43 68 65 63 6B 20 79  |,{})&d(0,Check y|
00000BF0: 6F 75 72 20 77 6F 72 6B  2E 20 54 68 65 20 73 75  |our work. The su|
00000C00: 6D 20 6F 66 20 7B 7D 20  64 69 73 74 61 6E 63 65  |m of {} distance|
00000C10: 73 20 73 68 6F 75 6C 64  20 65 71 75 61 6C 20 7B  |s should equal {|
00000C20: 7D 2E 20 47 65 74 20 72  65 61 64 79 20 66 6F 72  |}. Get ready for|
00000C30: 20 61 20 6E 65 77 20 70  72 6F 62 6C 65 6D 2E 29  | a new problem.)|
00000C40: 40 66 42 72 69 61 6E 20  64 72 69 76 65 73 20 35  |@fBrian drives 5|
00000C50: 20 6D 69 2F 68 72 20 66  61 73 74 65 72 20 74 68  | mi/hr faster th|
00000C60: 61 6E 20 44 61 76 65 2E  20 54 68 65 79 20 6C 65  |an Dave. They le|
00000C70: 66 74 20 41 74 6C 61 6E  74 61 20 61 74 20 74 68  |ft Atlanta at th|
00000C80: 65 20 73 61 6D 65 20 74  69 6D 65 2C 20 64 72 6F  |e same time, dro|
00000C90: 76 65 20 69 6E 20 6F 70  70 6F 73 69 74 65 20 64  |ve in opposite d|
00000CA0: 69 72 65 63 74 69 6F 6E  73 2E 20 41 66 74 65 72  |irections. After|
00000CB0: 20 33 2E 35 20 68 6F 75  72 73 2C 20 74 68 65 79  | 3.5 hours, they|
00000CC0: 20 77 65 72 65 20 32 36  32 2E 35 20 6D 69 2E 20  | were 262.5 mi. |
00000CD0: 61 70 61 72 74 2E 20 48  6F 77 20 66 61 73 74 20  |apart. How fast |
00000CE0: 64 69 64 20 65 61 63 68  20 64 72 69 76 65 3F 00  |did each drive?.|
00000CF0: 44 61 76 65 00 42 72 69  61 6E 00 54 68 65 79 20  |Dave.Brian.They |
00000D00: 64 72 6F 76 65 20 69 6E  20 6F 70 70 6F 73 69 74  |drove in opposit|
00000D10: 65 20 64 69 72 65 63 74  69 6F 6E 73 20 61 74 20  |e directions at |
00000D20: 64 69 66 66 65 72 65 6E  74 20 72 61 74 65 73 20  |different rates |
00000D30: 75 6E 74 69 6C 20 74 68  65 79 20 77 65 72 65 20  |until they were |
00000D40: 32 36 32 2E 35 20 6D 69  20 61 70 61 72 74 2E 00  |262.5 mi apart..|
00000D50: 48 6F 77 20 66 61 73 74  20 64 69 64 20 65 61 63  |How fast did eac|
00000D60: 68 20 64 72 69 76 65 3F  00 62 00 42 72 69 61 6E  |h drive?.b.Brian|
00000D70: 27 73 00 64 00 44 61 76  65 27 73 00 62 00 64 00  |'s.d.Dave's.b.d.|
00000D80: 44 64 2B 44 62 20 3D 20  54 6F 74 61 6C 00 44 62  |Dd+Db = Total.Db|
00000D90: 2B 44 64 20 3D 20 54 6F  74 61 6C 00 44 64 2B 44  |+Dd = Total.Dd+D|
00000DA0: 62 3D 54 6F 74 61 6C 00  6D 69 6C 65 73 20 70 65  |b=Total.miles pe|
00000DB0: 72 20 68 6F 75 72 20 28  60 6D 69 2F 68 72 27 29  |r hour (`mi/hr')|
00000DC0: 00 35 00 6D 69 2F 68 72  00 68 6F 75 72 73 20 28  |.5.mi/hr.hours (|
00000DD0: 60 68 72 27 29 00 32 00  68 72 00 6D 69 6C 65 73  |`hr').2.hr.miles|
00000DE0: 20 28 60 6D 69 27 29 2E  00 32 00 6D 69 00 44 61  | (`mi')..2.mi.Da|
00000DF0: 76 65 20 64 72 6F 76 65  20 66 6F 72 20 26 68 33  |ve drove for &h3|
00000E00: 2E 35 20 68 6F 75 72 73  26 68 2E 00 44 61 76 65  |.5 hours&h..Dave|
00000E10: 20 77 61 73 20 60 33 2E  35 27 20 68 6F 75 72 73  | was `3.5' hours|
00000E20: 2E 00 33 2E 35 00 42 72  69 61 6E 27 73 20 74 69  |..3.5.Brian's ti|
00000E30: 6D 65 20 69 73 20 74 68  65 20 73 61 6D 65 20 61  |me is the same a|
00000E40: 73 20 44 61 76 65 27 73  2E 00 42 72 69 61 6E 20  |s Dave's..Brian |
00000E50: 77 61 73 20 60 33 2E 35  27 20 68 6F 75 72 73 2E  |was `3.5' hours.|
00000E60: 00 33 2E 35 00 26 68 41  66 74 65 72 20 33 2E 35  |.3.5.&hAfter 3.5|
00000E70: 20 68 6F 75 72 73 2C 20  74 68 65 79 20 77 65 72  | hours, they wer|
00000E80: 65 20 32 36 32 2E 35 20  6D 69 6C 65 73 20 61 70  |e 262.5 miles ap|
00000E90: 61 72 74 26 68 2E 00 32  36 32 2E 35 20 6D 69 6C  |art&h..262.5 mil|
00000EA0: 65 73 00 32 36 32 2E 35  00 62 6F 79 00 44 61 76  |es.262.5.boy.Dav|
00000EB0: 65 20 64 72 69 76 65 73  20 61 74 20 61 20 73 6C  |e drives at a sl|
00000EC0: 6F 77 65 72 20 72 61 74  65 20 74 68 61 6E 20 42  |ower rate than B|
00000ED0: 72 69 61 6E 00 64 00 44  61 76 65 27 73 00 26 76  |rian.d.Dave's.&v|
00000EE0: 00 42 72 69 61 6E 27 73  00 44 61 76 65 27 73 00  |.Brian's.Dave's.|
00000EF0: 26 71 42 72 69 61 6E 20  64 72 69 76 65 73 20 35  |&qBrian drives 5|
00000F00: 20 6D 69 2F 68 72 20 66  61 73 74 65 72 20 74 68  | mi/hr faster th|
00000F10: 61 6E 20 44 61 76 65 26  71 00 60 26 76 2B 35 27  |an Dave&q.`&v+5'|
00000F20: 00 42 72 69 61 6E 20 64  72 69 76 65 73 20 35 20  |.Brian drives 5 |
00000F30: 6D 69 2F 68 72 20 66 61  73 74 65 72 20 74 68 61  |mi/hr faster tha|
00000F40: 6E 20 44 61 76 65 2E 00  26 76 2B 35 00 62 6F 79  |n Dave..&v+5.boy|
00000F50: 00 60 26 76 20 20 5C 66  30 37 2A 20 20 5C 66 31  |.`&v  \f07*  \f1|
00000F60: 30 20 33 2E 35 27 20 5C  66 31 35 3D 20 44 61 76  |0 3.5' \f15= Dav|
00000F70: 65 27 73 00 33 2E 35 26  76 00 28 26 76 2B 35 29  |e's.3.5&v.(&v+5)|
00000F80: 00 33 2E 35 00 42 72 69  61 6E 27 73 00 33 2E 35  |.3.5.Brian's.3.5|
00000F90: 28 26 76 2B 35 29 00 62  00 64 00 64 00 62 00 64  |(&v+5).b.d.d.b.d|
00000FA0: 00 33 2E 35 26 76 00 62  00 33 2E 35 28 26 76 2B  |.3.5&v.b.3.5(&v+|
00000FB0: 35 29 00 32 36 32 2E 35  00 44 61 76 65 27 73 20  |5).262.5.Dave's |
00000FC0: 64 69 73 74 2E 20 5C 66  31 35 2B 20 42 72 69 61  |dist. \f15+ Bria|
00000FD0: 6E 27 73 20 64 69 73 74  2E 20 5C 66 33 30 3D 20  |n's dist. \f30= |
00000FE0: 54 6F 74 61 6C 20 5C 6E  20 20 60 33 2E 35 26 76  |Total \n  `3.5&v|
00000FF0: 20 20 20 20 20 20 5C 66  31 35 2B 20 20 20 33 2E  |      \f15+   3.|
00001000: 35 28 26 76 2B 35 29 20  20 20 5C 66 33 30 3D 20  |5(&v+5)   \f30= |
00001010: 32 36 32 2E 35 27 00 33  2E 35 26 76 2B 33 2E 35  |262.5'.3.5&v+3.5|
00001020: 28 26 76 2B 35 29 3D 32  36 32 2E 35 00 33 35 00  |(&v+5)=262.5.35.|
00001030: 48 6F 77 20 66 61 73 74  20 64 69 64 20 65 61 63  |How fast did eac|
00001040: 68 20 6F 66 20 74 68 65  6D 20 64 72 69 76 65 3F  |h of them drive?|
00001050: 00 22 26 76 22 00 44 61  76 65 27 73 00 60 33 35  |."&v".Dave's.`35|
00001060: 27 00 33 35 00 22 26 76  2B 35 22 00 42 72 69 61  |'.35."&v+5".Bria|
00001070: 6E 27 73 00 33 35 2C 20  61 6E 64 20 33 35 2B 35  |n's.35, and 35+5|
00001080: 2C 20 6F 72 20 60 34 30  27 20 69 73 20 42 72 69  |, or `40' is Bri|
00001090: 61 6E 27 73 20 72 61 74  65 2E 00 34 30 00 44 61  |an's rate..40.Da|
000010A0: 76 65 27 73 00 44 61 76  65 20 64 72 6F 76 65 20  |ve's.Dave drove |
000010B0: 66 6F 72 20 33 2E 35 26  76 20 6D 69 6C 65 73 00  |for 3.5&v miles.|
000010C0: 33 2E 35 2A 20 33 35 2C  20 6F 72 20 60 31 32 32  |3.5* 35, or `122|
000010D0: 2E 35 27 20 6D 69 6C 65  73 00 31 32 32 2E 35 00  |.5' miles.122.5.|
000010E0: 42 72 69 61 6E 27 73 00  42 72 69 61 6E 20 64 72  |Brian's.Brian dr|
000010F0: 6F 76 65 20 66 6F 72 20  33 2E 35 28 26 76 2B 35  |ove for 3.5(&v+5|
00001100: 29 20 6D 69 6C 65 73 00  33 2E 35 2A 34 30 2C 20  |) miles.3.5*40, |
00001110: 6F 72 20 60 31 34 30 27  20 6D 69 6C 65 73 00 31  |or `140' miles.1|
00001120: 34 30 00 44 61 76 65 20  61 6E 64 20 42 72 69 61  |40.Dave and Bria|
00001130: 6E 27 73 00 32 36 32 2E  35 20 6D 69 6C 65 73 00  |n's.262.5 miles.|
00001140: 40 66 41 74 20 38 20 41  4D 20 74 77 6F 20 63 61  |@fAt 8 AM two ca|
00001150: 72 73 20 6C 65 66 74 20  43 6C 65 76 65 6C 61 6E  |rs left Clevelan|
00001160: 64 20 68 65 61 64 69 6E  67 20 69 6E 20 6F 70 70  |d heading in opp|
00001170: 6F 73 69 74 65 20 64 69  72 65 63 74 69 6F 6E 73  |osite directions|
00001180: 2E 20 41 74 20 31 31 20  41 4D 20 74 68 65 79 20  |. At 11 AM they |
00001190: 77 65 72 65 20 32 37 39  20 6D 69 6C 65 73 20 61  |were 279 miles a|
000011A0: 70 61 72 74 2E 20 49 66  20 43 61 72 20 41 20 64  |part. If Car A d|
000011B0: 72 6F 76 65 20 37 20 6D  69 2F 68 72 20 73 6C 6F  |rove 7 mi/hr slo|
000011C0: 77 65 72 20 74 68 61 6E  20 43 61 72 20 42 2C 20  |wer than Car B, |
000011D0: 68 6F 77 20 66 61 73 74  20 64 69 64 20 65 61 63  |how fast did eac|
000011E0: 68 20 64 72 69 76 65 3F  00 43 61 72 20 41 00 43  |h drive?.Car A.C|
000011F0: 61 72 20 42 00 54 68 65  79 20 77 65 72 65 20 32  |ar B.They were 2|
00001200: 37 39 20 6D 69 6C 65 73  20 61 70 61 72 74 20 61  |79 miles apart a|
00001210: 66 74 65 72 20 64 72 69  76 69 6E 67 20 66 72 6F  |fter driving fro|
00001220: 6D 20 38 20 41 4D 20 75  6E 74 69 6C 20 31 31 20  |m 8 AM until 11 |
00001230: 41 4D 2E 00 48 6F 77 20  66 61 73 74 20 64 69 64  |AM..How fast did|
00001240: 20 65 61 63 68 20 64 72  69 76 65 3F 00 41 00 43  | each drive?.A.C|
00001250: 61 72 20 41 27 73 00 42  00 43 61 72 20 42 27 73  |ar A's.B.Car B's|
00001260: 00 41 00 42 00 44 41 2B  44 42 3D 20 54 6F 74 61  |.A.B.DA+DB= Tota|
00001270: 6C 00 44 41 2B 44 42 3D  54 6F 74 61 6C 00 44 41  |l.DA+DB=Total.DA|
00001280: 2B 44 42 3D 54 6F 74 61  6C 00 6D 69 6C 65 73 20  |+DB=Total.miles |
00001290: 70 65 72 20 68 6F 75 72  20 28 60 6D 69 2F 68 72  |per hour (`mi/hr|
000012A0: 27 29 00 34 00 6D 69 2F  68 72 00 68 6F 75 72 73  |').4.mi/hr.hours|
000012B0: 20 28 60 68 72 27 29 00  32 00 68 72 00 6D 69 6C  | (`hr').2.hr.mil|
000012C0: 65 73 20 28 60 6D 69 27  29 00 32 00 6D 69 00 42  |es (`mi').2.mi.B|
000012D0: 6F 74 68 20 6F 66 20 74  68 65 6D 20 73 74 61 72  |oth of them star|
000012E0: 74 65 64 20 61 74 20 38  20 41 4D 20 61 6E 64 20  |ted at 8 AM and |
000012F0: 73 74 6F 70 70 65 64 20  61 74 20 31 31 20 41 4D  |stopped at 11 AM|
00001300: 2E 00 43 61 72 20 41 20  69 73 20 60 33 27 20 68  |..Car A is `3' h|
00001310: 6F 75 72 73 20 73 69 6E  63 65 20 74 68 65 72 65  |ours since there|
00001320: 20 61 72 65 20 33 20 68  6F 75 72 73 20 66 72 6F  | are 3 hours fro|
00001330: 6D 20 38 20 74 6F 20 31  31 2E 00 33 00 54 68 65  |m 8 to 11..3.The|
00001340: 20 74 69 6D 65 20 69 73  20 74 68 65 20 73 61 6D  | time is the sam|
00001350: 65 20 66 6F 72 20 63 61  72 20 41 20 61 6E 64 20  |e for car A and |
00001360: 63 61 72 20 42 2E 00 43  61 72 20 42 20 69 73 20  |car B..Car B is |
00001370: 60 33 27 20 68 6F 75 72  73 2E 00 33 00 26 68 54  |`3' hours..3.&hT|
00001380: 68 65 79 20 77 65 72 65  20 32 37 39 20 6D 69 6C  |hey were 279 mil|
00001390: 65 73 20 61 70 61 72 74  26 68 2E 00 60 32 37 39  |es apart&h..`279|
000013A0: 27 20 6D 69 6C 65 73 00  32 37 39 00 63 61 72 00  |' miles.279.car.|
000013B0: 43 61 72 20 41 20 74 72  61 76 65 6C 6C 65 64 20  |Car A travelled |
000013C0: 73 6C 6F 77 65 72 20 74  68 61 6E 20 43 61 72 20  |slower than Car |
000013D0: 42 00 61 00 43 61 72 20  41 27 73 00 26 76 00 43  |B.a.Car A's.&v.C|
000013E0: 61 72 20 42 27 73 00 43  61 72 20 41 27 73 00 26  |ar B's.Car A's.&|
000013F0: 68 43 61 72 20 41 20 64  72 6F 76 65 20 37 20 6D  |hCar A drove 7 m|
00001400: 69 2F 68 72 20 73 6C 6F  77 65 72 20 74 68 61 6E  |i/hr slower than|
00001410: 20 43 61 72 20 42 26 68  2E 00 60 26 76 2B 37 27  | Car B&h..`&v+7'|
00001420: 00 43 61 72 20 42 20 77  65 6E 74 20 37 20 6D 69  |.Car B went 7 mi|
00001430: 2F 68 72 20 66 61 73 74  65 72 20 74 68 61 6E 20  |/hr faster than |
00001440: 43 61 72 20 42 2E 00 26  76 2B 37 00 63 61 72 00  |Car B..&v+7.car.|
00001450: 60 26 76 20 20 5C 66 30  37 2A 20 20 5C 66 31 30  |`&v  \f07*  \f10|
00001460: 20 33 27 20 20 5C 66 31  35 3D 20 20 43 61 72 20  | 3'  \f15=  Car |
00001470: 41 27 73 00 33 26 76 00  28 26 76 2B 37 29 00 33  |A's.3&v.(&v+7).3|
00001480: 00 43 61 72 20 42 27 73  00 33 28 26 76 2B 37 29  |.Car B's.3(&v+7)|
00001490: 00 41 00 42 00 41 00 42  00 41 00 33 26 76 00 42  |.A.B.A.B.A.3&v.B|
000014A0: 00 33 28 26 76 2B 37 29  00 32 37 30 20 6D 69 6C  |.3(&v+7).270 mil|
000014B0: 65 73 2E 00 43 61 72 20  41 27 73 20 44 69 73 74  |es..Car A's Dist|
000014C0: 20 5C 66 31 34 2B 20 20  43 61 72 20 42 27 73 20  | \f14+  Car B's |
000014D0: 44 69 73 74 20 20 5C 66  33 30 3D 20 54 6F 74 61  |Dist  \f30= Tota|
000014E0: 6C 20 5C 6E 20 20 60 33  26 76 20 20 5C 66 31 34  |l \n  `3&v  \f14|
000014F0: 2B 20 20 33 28 26 76 2B  37 29 20 20 5C 66 33 30  |+  3(&v+7)  \f30|
00001500: 3D 20 32 37 39 27 00 33  26 76 2B 33 28 26 76 2B  |= 279'.3&v+3(&v+|
00001510: 37 29 3D 32 37 39 00 34  33 00 48 6F 77 20 66 61  |7)=279.43.How fa|
00001520: 73 74 20 64 6F 65 73 20  65 61 63 68 20 64 72 69  |st does each dri|
00001530: 76 65 3F 00 22 26 76 22  00 43 61 72 20 41 27 73  |ve?."&v".Car A's|
00001540: 00 34 33 2C 20 43 61 72  20 41 27 73 20 72 61 74  |.43, Car A's rat|
00001550: 65 20 69 73 20 60 34 33  27 20 6D 69 2F 68 72 2E  |e is `43' mi/hr.|
00001560: 00 34 33 00 22 26 76 2B  37 22 00 43 61 72 20 42  |.43."&v+7".Car B|
00001570: 27 73 00 34 33 20 61 6E  64 20 26 76 2B 37 2C 20  |'s.43 and &v+7, |
00001580: 6F 72 20 60 35 30 27 20  72 65 70 72 65 73 65 6E  |or `50' represen|
00001590: 74 73 20 43 61 72 20 42  27 73 20 72 61 74 65 00  |ts Car B's rate.|
000015A0: 35 30 00 43 61 72 20 41  27 73 00 43 61 72 20 41  |50.Car A's.Car A|
000015B0: 27 73 20 64 69 73 74 61  6E 63 65 20 69 73 20 72  |'s distance is r|
000015C0: 65 70 72 65 73 65 6E 74  65 64 20 62 79 20 33 26  |epresented by 3&|
000015D0: 76 00 33 2A 34 33 2C 20  6F 72 20 60 31 32 39 27  |v.3*43, or `129'|
000015E0: 20 6D 69 6C 65 73 00 31  32 39 00 43 61 72 20 42  | miles.129.Car B|
000015F0: 27 73 00 43 61 72 20 42  27 73 20 64 69 73 74 61  |'s.Car B's dista|
00001600: 6E 63 65 20 69 73 20 72  65 70 72 65 73 65 6E 74  |nce is represent|
00001610: 65 64 20 62 79 20 33 28  26 76 2B 37 29 00 33 2A  |ed by 3(&v+7).3*|
00001620: 35 30 2C 20 6F 72 20 60  31 35 30 27 20 6D 69 6C  |50, or `150' mil|
00001630: 65 73 00 31 35 30 00 74  68 65 69 72 00 32 37 39  |es.150.their.279|
00001640: 20 6D 69 6C 65 73 00 40  66 54 68 65 20 42 6C 75  | miles.@fThe Blu|
00001650: 65 20 42 6F 6D 62 65 72  20 66 6C 69 65 73 20 33  |e Bomber flies 3|
00001660: 20 74 69 6D 65 73 20 61  73 20 66 61 73 74 20 61  | times as fast a|
00001670: 73 20 74 68 65 20 53 69  6C 76 65 72 20 53 6C 69  |s the Silver Sli|
00001680: 70 70 65 72 2E 20 49 66  20 74 68 65 79 20 66 6C  |pper. If they fl|
00001690: 79 20 69 6E 20 6F 70 70  6F 73 69 74 65 20 64 69  |y in opposite di|
000016A0: 72 65 63 74 69 6F 6E 73  20 61 6E 64 20 61 72 65  |rections and are|
000016B0: 20 31 2C 30 38 30 20 6D  69 6C 65 73 20 61 70 61  | 1,080 miles apa|
000016C0: 72 74 20 61 66 74 65 72  20 66 6C 79 69 6E 67 20  |rt after flying |
000016D0: 66 6F 72 20 35 20 68 6F  75 72 73 2C 20 68 6F 77  |for 5 hours, how|
000016E0: 20 66 61 73 74 20 64 6F  65 73 20 65 61 63 68 20  | fast does each |
000016F0: 70 6C 61 6E 65 20 66 6C  79 3F 00 53 69 6C 76 65  |plane fly?.Silve|
00001700: 72 00 42 6C 75 65 00 54  68 65 79 20 66 6C 79 20  |r.Blue.They fly |
00001710: 69 6E 20 6F 70 70 6F 73  69 74 65 20 64 69 72 65  |in opposite dire|
00001720: 63 74 69 6F 6E 73 20 66  6F 72 20 35 20 68 6F 75  |ctions for 5 hou|
00001730: 72 73 20 61 74 20 64 69  66 66 65 72 65 6E 74 20  |rs at different |
00001740: 72 61 74 65 73 2E 00 48  6F 77 20 66 61 73 74 20  |rates..How fast |
00001750: 64 6F 65 73 20 65 61 63  68 20 70 6C 61 6E 65 20  |does each plane |
00001760: 66 6C 79 3F 00 73 00 53  69 6C 76 65 72 27 73 00  |fly?.s.Silver's.|
00001770: 62 00 42 6C 75 65 27 73  00 73 00 62 00 44 73 2B  |b.Blue's.s.b.Ds+|
00001780: 44 62 3D 54 6F 74 61 6C  00 44 73 2B 44 62 3D 54  |Db=Total.Ds+Db=T|
00001790: 6F 74 61 6C 00 44 73 2B  44 62 3D 54 6F 74 61 6C  |otal.Ds+Db=Total|
000017A0: 00 6D 69 6C 65 73 20 70  65 72 20 68 6F 75 72 20  |.miles per hour |
000017B0: 28 60 6D 69 2F 68 72 27  29 00 34 00 6D 69 2F 68  |(`mi/hr').4.mi/h|
000017C0: 72 00 68 6F 75 72 73 20  28 60 68 72 27 29 00 32  |r.hours (`hr').2|
000017D0: 00 68 72 00 6D 69 6C 65  73 20 28 60 6D 69 27 29  |.hr.miles (`mi')|
000017E0: 2E 00 32 00 6D 69 00 42  6F 74 68 20 70 6C 61 6E  |..2.mi.Both plan|
000017F0: 65 73 20 66 6C 65 77 20  66 6F 72 20 26 68 35 20  |es flew for &h5 |
00001800: 68 6F 75 72 73 26 68 2E  00 74 68 65 20 53 69 6C  |hours&h..the Sil|
00001810: 76 65 72 20 53 6C 69 70  70 65 72 20 77 61 73 20  |ver Slipper was |
00001820: 60 35 27 20 68 6F 75 72  73 2E 00 35 00 54 68 65  |`5' hours..5.The|
00001830: 20 42 6C 75 65 20 42 6F  6D 62 65 72 20 66 6C 65  | Blue Bomber fle|
00001840: 77 20 66 6F 72 20 74 68  65 20 73 61 6D 65 20 61  |w for the same a|
00001850: 6D 6F 75 6E 74 20 6F 66  20 74 69 6D 65 20 61 73  |mount of time as|
00001860: 20 74 68 65 20 53 69 6C  76 65 72 20 53 6C 69 70  | the Silver Slip|
00001870: 70 65 72 2E 00 74 68 65  20 42 6C 75 65 20 42 6F  |per..the Blue Bo|
00001880: 6D 62 65 72 20 77 61 73  20 60 35 27 20 68 6F 75  |mber was `5' hou|
00001890: 72 73 2E 00 35 00 54 68  65 79 20 61 72 65 20 26  |rs..5.They are &|
000018A0: 68 31 2C 30 38 30 20 6D  69 6C 65 73 20 61 70 61  |h1,080 miles apa|
000018B0: 72 74 26 68 20 61 66 74  65 72 20 66 6C 79 69 6E  |rt&h after flyin|
000018C0: 67 20 66 6F 72 20 35 20  68 6F 75 72 73 2E 00 60  |g for 5 hours..`|
000018D0: 31 2C 30 38 30 27 20 6D  69 6C 65 73 00 31 30 38  |1,080' miles.108|
000018E0: 30 00 70 6C 61 6E 65 00  53 69 6C 76 65 72 20 69  |0.plane.Silver i|
000018F0: 73 20 73 6C 6F 77 65 72  20 74 68 61 6E 20 42 6C  |s slower than Bl|
00001900: 75 65 00 73 00 74 68 65  20 53 69 6C 76 65 72 20  |ue.s.the Silver |
00001910: 53 6C 69 70 70 65 72 27  73 00 26 76 00 42 6C 75  |Slipper's.&v.Blu|
00001920: 65 27 73 00 53 69 6C 76  65 72 27 73 00 26 71 54  |e's.Silver's.&qT|
00001930: 68 65 20 42 6C 75 65 20  42 6F 6D 62 65 72 20 66  |he Blue Bomber f|
00001940: 6C 69 65 73 20 33 20 74  69 6D 65 73 20 61 73 20  |lies 3 times as |
00001950: 66 61 73 74 20 61 73 20  74 68 65 20 53 69 6C 76  |fast as the Silv|
00001960: 65 72 20 53 6C 69 70 70  65 72 2E 26 71 00 22 33  |er Slipper.&q."3|
00001970: 26 76 22 00 42 6C 75 65  20 66 6C 69 65 73 20 33  |&v".Blue flies 3|
00001980: 20 74 69 6D 65 73 20 61  73 20 66 61 73 74 20 61  | times as fast a|
00001990: 73 20 53 69 6C 76 65 72  2E 00 33 26 76 00 70 6C  |s Silver..3&v.pl|
000019A0: 61 6E 65 00 20 60 26 76  20 5C 66 30 37 2A 20 20  |ane. `&v \f07*  |
000019B0: 5C 66 31 30 20 20 35 27  20 20 20 20 20 5C 66 31  |\f10  5'     \f1|
000019C0: 35 3D 20 20 53 69 6C 76  65 72 27 73 00 35 26 76  |5=  Silver's.5&v|
000019D0: 00 20 33 26 76 00 35 00  42 6C 75 65 27 73 00 31  |. 3&v.5.Blue's.1|
000019E0: 35 26 76 00 73 00 62 00  73 00 62 00 73 00 35 26  |5&v.s.b.s.b.s.5&|
000019F0: 76 00 62 00 31 35 26 76  00 31 30 38 30 00 53 69  |v.b.15&v.1080.Si|
00001A00: 6C 76 65 72 27 73 20 64  69 73 74 2E 20 5C 66 31  |lver's dist. \f1|
00001A10: 35 2B 20 20 42 6C 75 65  27 73 20 64 69 73 74 2E  |5+  Blue's dist.|
00001A20: 20 20 5C 66 33 30 3D 20  20 54 6F 74 61 6C 20 5C  |  \f30=  Total \|
00001A30: 6E 20 20 20 20 60 35 26  76 20 20 20 20 20 20 20  |n    `5&v       |
00001A40: 20 5C 66 31 35 2B 20 20  20 20 20 20 20 31 35 26  | \f15+       15&|
00001A50: 76 20 20 20 20 20 5C 66  33 30 3D 20 20 31 30 38  |v     \f30=  108|
00001A60: 30 27 20 20 00 35 26 76  2B 31 35 26 76 3D 31 30  |0'  .5&v+15&v=10|
00001A70: 38 30 00 35 34 00 48 6F  77 20 66 61 73 74 20 64  |80.54.How fast d|
00001A80: 6F 65 73 20 65 61 63 68  20 70 6C 61 6E 65 20 66  |oes each plane f|
00001A90: 6C 79 3F 00 22 26 76 22  00 74 68 65 20 53 69 6C  |ly?."&v".the Sil|
00001AA0: 76 65 72 20 53 6C 69 70  70 65 72 27 73 00 35 34  |ver Slipper's.54|
00001AB0: 2C 20 73 6F 20 53 69 6C  76 65 72 20 66 6C 69 65  |, so Silver flie|
00001AC0: 73 20 60 35 34 27 20 6D  69 2F 68 72 2E 00 35 34  |s `54' mi/hr..54|
00001AD0: 00 22 33 26 76 22 00 74  68 65 20 42 6C 75 65 20  |."3&v".the Blue |
00001AE0: 42 6F 6D 62 65 72 27 73  00 35 34 2C 20 73 6F 20  |Bomber's.54, so |
00001AF0: 42 6C 75 65 20 66 6C 69  65 73 20 33 2A 35 34 2C  |Blue flies 3*54,|
00001B00: 20 6F 72 20 60 31 36 32  27 20 6D 69 2F 68 72 2E  | or `162' mi/hr.|
00001B10: 00 31 36 32 00 53 69 6C  76 65 72 27 73 00 26 76  |.162.Silver's.&v|
00001B20: 3D 35 34 20 61 6E 64 20  35 26 76 20 72 65 70 72  |=54 and 5&v repr|
00001B30: 65 73 65 6E 74 73 20 53  69 6C 76 65 72 27 73 20  |esents Silver's |
00001B40: 64 69 73 74 61 6E 63 65  2C 20 73 6F 20 35 2A 35  |distance, so 5*5|
00001B50: 34 00 60 32 37 30 27 20  69 73 20 53 69 6C 76 65  |4.`270' is Silve|
00001B60: 72 27 73 20 64 69 73 74  61 6E 63 65 00 32 37 30  |r's distance.270|
00001B70: 00 42 6C 75 65 27 73 00  26 76 3D 35 34 20 61 6E  |.Blue's.&v=54 an|
00001B80: 64 20 31 35 26 76 20 72  65 70 72 65 73 65 6E 74  |d 15&v represent|
00001B90: 73 20 42 6C 75 65 27 73  20 64 69 73 74 61 6E 63  |s Blue's distanc|
00001BA0: 65 2C 20 73 6F 20 31 35  2A 35 34 00 60 38 31 30  |e, so 15*54.`810|
00001BB0: 27 20 69 73 20 42 6C 75  65 27 73 20 64 69 73 74  |' is Blue's dist|
00001BC0: 61 6E 63 65 00 38 31 30  00 74 68 65 69 72 00 31  |ance.810.their.1|
00001BD0: 30 38 30 00 7C 20                                 |080.|           |
 A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&D(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIS
T.)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS?  WHAT IS BEING ASK
ED? (PRESS ANY KEY TO CONTINUE)@HWHAT AR
E THE FACTS? {}@HWHAT IS BEING ASKED? &H
{}&H@I(0) @RPLAN@PLET D{}={} DIST. AND  
D{} = {} DIST. WRITE AN EQUATION TO RELA
TE D{} AND D{} TO THE TOTAL DISTANCE.@HT
HEY HEADED IN OPPOSITE DIRECTIONS, SO TH
E SUM OF THEIR DISTANCES IS EQUAL TO THE
 TOTAL DISTANCE.@H`{}' SHOWS THAT THE SU
M OF THEIR DISTANCES IS EQUAL TO THE TOT
AL DISTANCE.@I(20,C0, )@PONE ANSWER IS `
{}'. CHANGE YOUR ANSWER IF IT IS NOT EQU
IVALENT. (PRESS RETURN).@HTHEY HEAD IN O
PPOSITE DIRECTION, SO THE SUM OF THEIR D
ISTANCES IS EQUAL TO THE TOTAL DISTANCE.
@H`{}' SHOWS THAT THE SUM OF THEIR DISTA
NCES IS EQUAL TO THE TOTAL DISTANCE.@I(2
0,C0, )@RDATA ENTRY@PFILL IN THE UNITS B
Y WHICH RATE, TIME AND DISTANCE ARE MEAS
URED. (USE ABBREVIATED FORM.)@HRATE OF S
PEED IS COMMONLY MEASURED IN MILES PER H
OUR(MI/HR), METERS PER MINUTE(M/MIN), ET
C.@HTHE RATE OF SPEED IN THIS PROBLEM, I
S MEASURED IN {}.@I(6,C{},{})@HTIME IS C
OMMONLY MEASURED IN SECONDS (SEC), MINUT
ES (MIN), HOURS (HR), DAYS (DA), ETC.@HT
IME IN THIS PROBLEM IS MEASURED IN {}.@I
(11,C{},{})@HDISTANCE IS COMMONLY MEASUR
ED IN FEET (FT), YARDS (YD), METERS (M),
 MILES (MI), KILOMETERS (KM), ETC.@HDIST
ANCE IN THIS PROBLEM, IS MEASURED IN {}@
I(16,C{},{})@PENTER THE FACTS FROM THE P
ROBLEM INTO THE GRID.@H{}@HTHE TIME FOR 
{}@I(12,I,{})@H{}@HTHE TIME FOR {}@I(13,
I,{})@H{}@HTHE TOTAL DISTANCE BETWEEN TH
EM WAS {}.@I(19,I,{})@PUSE A VARIABLE TO
 REPRESENT THE RATE OF SPEED FOR EACH {}
.@HUSE A VARIABLE TO REPRESENT THE SLOWE
R SPEED. IN THIS CASE, {}.@HUSE A VARIAB
LE SUCH AS `{}' TO REPRESENT {} RATE OF 
SPEED.@I(7,I,{})@HREPRESENT {} RATE OF S
PEED IN TERMS OF "&V", {} RATE. {}@H{} S
HOWS THAT {} @I(8,I,{})@RPARTS@PWRITE AN
 EXPRESSION TO REPRESENT TBE DISTANCE TR
AVELLED BY EACH {}.@HRATE*TIME = DISTANC
E@HRATE  \F07*  \F10 TIME \F15=  TOTAL D
ISTANCE \N {} DISTANCE@I(17,I,{})@HRATE*
TIME = DISTANCE@HRATE \F07*  \F10 TIME  
   \F15=  TOTAL DISTANCE \N`{}\F07*  \F1
0 {}' \F15=  {} DISTANCE @I(18,I,{})@RWH
OLE&D(20, )@PSUBSTITUTE YOUR EXPRESSIONS
 FOR D{}, D{} AND TOTAL IN THE EQUATION:
  D{}+D{}= TOTAL@HD{}={}, D{}={} AND TOT
AL = {}@H{}@I(20,I,{})@S@RCOMPUTE@PSOLVE
 THE EQUATION FOR "&V". USE PAPER AND PE
NCIL AND ENTER THE FINAL EQUATION, OR US
E THE CALCULATOR.@HISOLATE "&V" ON ONE S
IDE OF THE EQUATION.@HTHE CALCULATOR SOL
VES EQUATIONS FOR YOU AND DISPLAYS THE S
TEPS IN THE SOLUTION.@I(20,I,&V={})@PNOW
 YOU ARE READY TO ENTER YOUR ANSWERS IN 
THE GRID. REMEMBER THE QUESTION.&Q{}&Q &
W(20)@H{} REPRESENTS {} RATE OF SPEED.@H
"&V" = {}@I(7,I,{})@S@H{} REPRESENTS {} 
RATE OF SPEED.@H&V = {}@I(8,I,{})@S@RCHE
CK@PREREAD THE PROBLEM. CHECK YOUR ANSWE
RS. EVALUATE THE REMAINING EXPRESSIONS I
S THE GRID.@HSUBSTITUTE FOR "&V" IN THE 
EXPRESSION FOR {} DISTANCE. THEN CALCULA
TE THE RESULT.@H{}, WHICH EQUALS {}.@I(1
7,I,{})@HSUBSTITUTE FOR "&V" IN THE EXPR
ESSION FOR {} DISTANCE. THEN CALCULATE T
HE RESULT.@H{}, WHICH EQUALS  {}.@I(18,I
,{})&D(0,CHECK YOUR WORK. THE SUM OF {} 
DISTANCES SHOULD EQUAL {}. GET READY FOR
 A NEW PROBLEM.)@FBRIAN DRIVES 5 MI/HR F
ASTER THAN DAVE. THEY LEFT ATLANTA AT TH
E SAME TIME, DROVE IN OPPOSITE DIRECTION
S. AFTER 3.5 HOURS, THEY WERE 262.5 MI. 
APART. HOW FAST DID EACH DRIVE?.DAVE.BRI
AN.THEY DROVE IN OPPOSITE DIRECTIONS AT 
DIFFERENT RATES UNTIL THEY WERE 262.5 MI
 APART..HOW FAST DID EACH DRIVE?.B.BRIAN
'S.D.DAVE'S.B.D.DD+DB = TOTAL.DB+DD = TO
TAL.DD+DB=TOTAL.MILES PER HOUR (`MI/HR')
.5.MI/HR.HOURS (`HR').2.HR.MILES (`MI').
.2.MI.DAVE DROVE FOR &H3.5 HOURS&H..DAVE
 WAS `3.5' HOURS..3.5.BRIAN'S TIME IS TH
E SAME AS DAVE'S..BRIAN WAS `3.5' HOURS.
.3.5.&HAFTER 3.5 HOURS, THEY WERE 262.5 
MILES APART&H..262.5 MILES.262.5.BOY.DAV
E DRIVES AT A SLOWER RATE THAN BRIAN.D.D
AVE'S.&V.BRIAN'S.DAVE'S.&QBRIAN DRIVES 5
 MI/HR FASTER THAN DAVE&Q.`&V+5'.BRIAN D
RIVES 5 MI/HR FASTER THAN DAVE..&V+5.BOY
.`&V  \F07*  \F10 3.5' \F15= DAVE'S.3.5&
V.(&V+5).3.5.BRIAN'S.3.5(&V+5).B.D.D.B.D
.3.5&V.B.3.5(&V+5).262.5.DAVE'S DIST. \F
15+ BRIAN'S DIST. \F30= TOTAL \N  `3.5&V
      \F15+   3.5(&V+5)   \F30= 262.5'.3
.5&V+3.5(&V+5)=262.5.35.HOW FAST DID EAC
H OF THEM DRIVE?."&V".DAVE'S.`35'.35."&V
+5".BRIAN'S.35, AND 35+5, OR `40' IS BRI
AN'S RATE..40.DAVE'S.DAVE DROVE FOR 3.5&
V MILES.3.5* 35, OR `122.5' MILES.122.5.
BRIAN'S.BRIAN DROVE FOR 3.5(&V+5) MILES.
3.5*40, OR `140' MILES.140.DAVE AND BRIA
N'S.262.5 MILES.@FAT 8 AM TWO CARS LEFT 
CLEVELAND HEADING IN OPPOSITE DIRECTIONS
. AT 11 AM THEY WERE 279 MILES APART. IF
 CAR A DROVE 7 MI/HR SLOWER THAN CAR B, 
HOW FAST DID EACH DRIVE?.CAR A.CAR B.THE
Y WERE 279 MILES APART AFTER DRIVING FRO
M 8 AM UNTIL 11 AM..HOW FAST DID EACH DR
IVE?.A.CAR A'S.B.CAR B'S.A.B.DA+DB= TOTA
L.DA+DB=TOTAL.DA+DB=TOTAL.MILES PER HOUR
 (`MI/HR').4.MI/HR.HOURS (`HR').2.HR.MIL
ES (`MI').2.MI.BOTH OF THEM STARTED AT 8
 AM AND STOPPED AT 11 AM..CAR A IS `3' H
OURS SINCE THERE ARE 3 HOURS FROM 8 TO 1
1..3.THE TIME IS THE SAME FOR CAR A AND 
CAR B..CAR B IS `3' HOURS..3.&HTHEY WERE
 279 MILES APART&H..`279' MILES.279.CAR.
CAR A TRAVELLED SLOWER THAN CAR B.A.CAR 
A'S.&V.CAR B'S.CAR A'S.&HCAR A DROVE 7 M
I/HR SLOWER THAN CAR B&H..`&V+7'.CAR B W
ENT 7 MI/HR FASTER THAN CAR B..&V+7.CAR.
`&V  \F07*  \F10 3'  \F15=  CAR A'S.3&V.
(&V+7).3.CAR B'S.3(&V+7).A.B.A.B.A.3&V.B
.3(&V+7).270 MILES..CAR A'S DIST \F14+  
CAR B'S DIST  \F30= TOTAL \N  `3&V  \F14
+  3(&V+7)  \F30= 279'.3&V+3(&V+7)=279.4
3.HOW FAST DOES EACH DRIVE?."&V".CAR A'S
.43, CAR A'S RATE IS `43' MI/HR..43."&V+
7".CAR B'S.43 AND &V+7, OR `50' REPRESEN
TS CAR B'S RATE.50.CAR A'S.CAR A'S DISTA
NCE IS REPRESENTED BY 3&V.3*43, OR `129'
 MILES.129.CAR B'S.CAR B'S DISTANCE IS R
EPRESENTED BY 3(&V+7).3*50, OR `150' MIL
ES.150.THEIR.279 MILES.@FTHE BLUE BOMBER
 FLIES 3 TIMES AS FAST AS THE SILVER SLI
PPER. IF THEY FLY IN OPPOSITE DIRECTIONS
 AND ARE 1,080 MILES APART AFTER FLYING 
FOR 5 HOURS, HOW FAST DOES EACH PLANE FL
Y?.SILVER.BLUE.THEY FLY IN OPPOSITE DIRE
CTIONS FOR 5 HOURS AT DIFFERENT RATES..H
OW FAST DOES EACH PLANE FLY?.S.SILVER'S.
B.BLUE'S.S.B.DS+DB=TOTAL.DS+DB=TOTAL.DS+
DB=TOTAL.MILES PER HOUR (`MI/HR').4.MI/H
R.HOURS (`HR').2.HR.MILES (`MI')..2.MI.B
OTH PLANES FLEW FOR &H5 HOURS&H..THE SIL
VER SLIPPER WAS `5' HOURS..5.THE BLUE BO
MBER FLEW FOR THE SAME AMOUNT OF TIME AS
 THE SILVER SLIPPER..THE BLUE BOMBER WAS
 `5' HOURS..5.THEY ARE &H1,080 MILES APA
RT&H AFTER FLYING FOR 5 HOURS..`1,080' M
ILES.1080.PLANE.SILVER IS SLOWER THAN BL
UE.S.THE SILVER SLIPPER'S.&V.BLUE'S.SILV
ER'S.&QTHE BLUE BOMBER FLIES 3 TIMES AS 
FAST AS THE SILVER SLIPPER.&Q."3&V".BLUE
 FLIES 3 TIMES AS FAST AS SILVER..3&V.PL
ANE. `&V \F07*  \F10  5'     \F15=  SILV
ER'S.5&V. 3&V.5.BLUE'S.15&V.S.B.S.B.S.5&
V.B.15&V.1080.SILVER'S DIST. \F15+  BLUE
'S DIST.  \F30=  TOTAL \N    `5&V       
 \F15+       15&V     \F30=  1080'  .5&V
+15&V=1080.54.HOW FAST DOES EACH PLANE F
LY?."&V".THE SILVER SLIPPER'S.54, SO SIL
VER FLIES `54' MI/HR..54."3&V".THE BLUE 
BOMBER'S.54, SO BLUE FLIES 3*54, OR `162
' MI/HR..162.SILVER'S.&V=54 AND 5&V REPR
ESENTS SILVER'S DISTANCE, SO 5*54.`270' 
IS SILVER'S DISTANCE.270.BLUE'S.&V=54 AN
D 15&V REPRESENTS BLUE'S DISTANCE, SO 15
*54.`810' IS BLUE'S DISTANCE.810.THEIR.1
080.| 
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL