COIN1L2
FILE INFORMATION
FILENAME(S): COIN1L2
FILE TYPE(S): PRG
FILE SIZE: 4.6K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
89ed48d47c86ee57638c2b3b569a9343b0ffdded5878376706847a9a63ddba08
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | COIN1L2 | PRG | Radd Maxx | 20 | 15 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 40 71 7B 7D 40 64 67 30 32 26 63 28 31 | A @q{}@dg02&c(1|
00000010: 2C 4E 69 63 6B 65 6C 73 29 26 63 28 32 2C 44 69 |,Nickels)&c(2,Di|
00000020: 6D 65 73 29 26 63 28 33 2C 54 6F 74 61 6C 29 26 |mes)&c(3,Total)&|
00000030: 64 28 34 2C 56 61 6C 75 65 2F 55 6E 69 74 29 26 |d(4,Value/Unit)&|
00000040: 64 28 38 2C 23 20 6F 66 20 63 6F 69 6E 73 29 26 |d(8,# of coins)&|
00000050: 64 28 31 32 2C 56 61 6C 75 65 29 40 72 52 45 41 |d(12,Value)@rREA|
00000060: 44 40 70 52 65 61 64 20 74 68 65 20 77 68 6F 6C |D@pRead the whol|
00000070: 65 20 70 72 6F 62 6C 65 6D 2E 20 54 68 69 6E 6B |e problem. Think|
00000080: 3A 20 57 68 61 74 20 61 72 65 20 74 68 65 20 66 |: What are the f|
00000090: 61 63 74 73 3F 20 57 68 61 74 20 69 73 20 62 65 |acts? What is be|
000000A0: 69 6E 67 20 61 73 6B 65 64 3F 20 28 50 72 65 73 |ing asked? (Pres|
000000B0: 73 20 61 6E 79 20 6B 65 79 20 74 6F 20 63 6F 6E |s any key to con|
000000C0: 74 69 6E 75 65 2E 29 40 68 57 68 61 74 20 61 72 |tinue.)@hWhat ar|
000000D0: 65 20 74 68 65 20 66 61 63 74 73 3F 20 7B 7D 40 |e the facts? {}@|
000000E0: 68 57 68 61 74 20 69 73 20 62 65 69 6E 67 20 61 |hWhat is being a|
000000F0: 73 6B 65 64 3F 20 7B 7D 40 69 28 30 29 20 20 40 |sked? {}@i(0) @|
00000100: 72 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 6C |rDATA ENTRY@pFil|
00000110: 6C 20 69 6E 20 74 68 65 20 76 61 6C 75 65 20 6F |l in the value o|
00000120: 66 20 65 61 63 68 20 74 79 70 65 20 6F 66 20 63 |f each type of c|
00000130: 6F 69 6E 20 69 6E 20 74 65 72 6D 73 20 6F 66 20 |oin in terms of |
00000140: 63 65 6E 74 73 20 28 74 68 65 20 63 6F 6D 6D 6F |cents (the commo|
00000150: 6E 20 75 6E 69 74 29 2E 40 68 45 78 70 72 65 73 |n unit).@hExpres|
00000160: 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 61 |s the value of a|
00000170: 20 7B 7D 20 69 6E 20 63 65 6E 74 73 2E 20 4E 6F | {} in cents. No|
00000180: 74 65 3A 20 49 6E 20 61 20 63 6F 69 6E 20 70 72 |te: In a coin pr|
00000190: 6F 62 6C 65 6D 20 69 74 20 68 65 6C 70 73 20 74 |oblem it helps t|
000001A0: 6F 20 65 78 70 72 65 73 73 20 61 6C 6C 20 76 61 |o express all va|
000001B0: 6C 75 65 73 20 69 6E 20 63 65 6E 74 73 2E 40 68 |lues in cents.@h|
000001C0: 54 68 65 20 76 61 6C 75 65 2C 20 69 6E 20 63 65 |The value, in ce|
000001D0: 6E 74 73 2C 20 6F 66 20 61 20 7B 7D 20 69 73 20 |nts, of a {} is |
000001E0: 27 35 20 63 65 6E 74 73 27 2E 40 69 28 7B 7D 2C |'5 cents'.@i({},|
000001F0: 7B 7D 2C 7B 7D 29 26 64 28 7B 7D 2C 7B 7D 20 63 |{},{})&d({},{} c|
00000200: 65 6E 74 73 29 40 68 45 78 70 72 65 73 73 20 74 |ents)@hExpress t|
00000210: 68 65 20 76 61 6C 75 65 20 6F 66 20 61 20 7B 7D |he value of a {}|
00000220: 20 69 6E 20 63 65 6E 74 73 2E 40 68 54 68 65 20 | in cents.@hThe |
00000230: 76 61 6C 75 65 2C 20 69 6E 20 63 65 6E 74 73 2C |value, in cents,|
00000240: 20 6F 66 20 61 20 7B 7D 20 69 73 20 27 31 30 20 | of a {} is '10 |
00000250: 63 65 6E 74 73 27 2E 40 69 28 7B 7D 2C 7B 7D 2C |cents'.@i({},{},|
00000260: 7B 7D 29 26 64 28 7B 7D 2C 7B 7D 20 63 65 6E 74 |{})&d({},{} cent|
00000270: 73 29 40 70 45 6E 74 65 72 20 74 68 65 20 66 61 |s)@pEnter the fa|
00000280: 63 74 73 20 66 72 6F 6D 20 74 68 65 20 70 72 6F |cts from the pro|
00000290: 62 6C 65 6D 20 69 6E 74 6F 20 74 68 65 20 63 68 |blem into the ch|
000002A0: 61 72 74 2E 20 42 65 67 69 6E 20 77 69 74 68 20 |art. Begin with |
000002B0: 74 68 65 20 66 69 72 73 74 20 66 61 63 74 20 69 |the first fact i|
000002C0: 6E 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 40 68 |n the problem.@h|
000002D0: 7B 7D 2E 20 4E 6F 74 65 3A 20 49 6E 20 61 20 63 |{}. Note: In a c|
000002E0: 6F 69 6E 20 70 72 6F 62 6C 65 6D 20 69 74 20 68 |oin problem it h|
000002F0: 65 6C 70 73 20 74 6F 20 65 78 70 72 65 73 73 20 |elps to express |
00000300: 61 6C 6C 20 76 61 6C 75 65 73 20 69 6E 20 63 65 |all values in ce|
00000310: 6E 74 73 2E 40 68 7B 7D 20 69 73 20 72 65 70 72 |nts.@h{} is repr|
00000320: 65 73 65 6E 74 65 64 20 69 6E 20 63 65 6E 74 73 |esented in cents|
00000330: 20 61 73 20 7B 7D 2E 40 69 28 7B 7D 2C 7B 7D 2C | as {}.@i({},{},|
00000340: 7B 7D 29 20 40 70 52 65 70 72 65 73 65 6E 74 20 |{}) @pRepresent |
00000350: 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 65 61 |the number of ea|
00000360: 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 2E |ch type of coin.|
00000370: 40 68 43 68 6F 6F 73 65 20 61 20 76 61 72 69 61 |@hChoose a varia|
00000380: 62 6C 65 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |ble to represent|
00000390: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B | the number of {|
000003A0: 7D 2E 40 68 43 68 6F 6F 73 65 20 61 6E 79 20 6C |}.@hChoose any l|
000003B0: 65 74 74 65 72 2C 20 73 75 63 68 20 61 73 20 60 |etter, such as `|
000003C0: 64 27 2C 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |d', to represent|
000003D0: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B | the number of {|
000003E0: 7D 2E 40 69 28 7B 7D 2C 7B 7D 2C 26 76 29 40 68 |}.@i({},{},&v)@h|
000003F0: 52 65 70 72 65 73 65 6E 74 20 74 68 65 20 6E 75 |Represent the nu|
00000400: 6D 62 65 72 20 6F 66 20 7B 7D 20 69 6E 20 74 65 |mber of {} in te|
00000410: 72 6D 73 20 6F 66 20 22 26 76 22 20 28 74 68 65 |rms of "&v" (the|
00000420: 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 29 2E 20 | number of {}). |
00000430: 7B 7D 2E 40 68 7B 7D 2E 20 54 68 65 20 6E 75 6D |{}.@h{}. The num|
00000440: 62 65 72 20 6F 66 20 7B 7D 2E 40 69 28 7B 7D 2C |ber of {}.@i({},|
00000450: 7B 7D 2C 7B 7D 29 20 40 72 50 41 52 54 53 40 70 |{},{}) @rPARTS@p|
00000460: 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 73 73 |Write an express|
00000470: 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |ion to represent|
00000480: 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 65 61 | the value of ea|
00000490: 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 2E |ch type of coin.|
000004A0: 40 68 4D 75 6C 74 69 70 6C 79 20 74 68 65 20 76 |@hMultiply the v|
000004B0: 61 6C 75 65 2F 75 6E 69 74 20 62 79 20 74 68 65 |alue/unit by the|
000004C0: 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 68 | number of {}.@h|
000004D0: 7B 7D 40 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 68 |{}@i({},{},{})@h|
000004E0: 4E 6F 77 20 6D 75 6C 74 69 70 6C 79 20 74 68 65 |Now multiply the|
000004F0: 20 76 61 6C 75 65 2F 75 6E 69 74 20 62 79 20 74 | value/unit by t|
00000500: 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E |he number of {}.|
00000510: 40 68 7B 7D 40 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 |@h{}@i({},{},{})|
00000520: 20 40 72 57 48 4F 4C 45 40 70 57 72 69 74 65 20 | @rWHOLE@pWrite |
00000530: 61 6E 20 65 71 75 61 74 69 6F 6E 20 74 6F 20 72 |an equation to r|
00000540: 65 70 72 65 73 65 6E 74 20 74 68 65 20 72 65 6C |epresent the rel|
00000550: 61 74 69 6F 6E 20 62 65 74 77 65 65 6E 20 74 68 |ation between th|
00000560: 65 20 70 61 72 74 73 20 28 7B 7D 29 20 61 6E 64 |e parts ({}) and|
00000570: 20 74 68 65 20 77 68 6F 6C 65 20 28 54 6F 74 61 | the whole (Tota|
00000580: 6C 29 2E 40 68 55 73 65 20 74 68 65 20 62 6F 74 |l).@hUse the bot|
00000590: 74 6F 6D 20 6C 69 6E 65 20 6F 66 20 74 68 65 20 |tom line of the |
000005A0: 63 68 61 72 74 20 74 6F 20 66 6F 72 6D 20 74 68 |chart to form th|
000005B0: 65 20 65 71 75 61 74 69 6F 6E 2E 40 68 7B 7D 40 |e equation.@h{}@|
000005C0: 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 73 20 40 72 |i({},{},{})@s @r|
000005D0: 43 4F 4D 50 55 54 45 40 70 53 6F 6C 76 65 20 74 |COMPUTE@pSolve t|
000005E0: 68 65 20 65 71 75 61 74 69 6F 6E 20 66 6F 72 20 |he equation for |
000005F0: 22 26 76 22 2E 20 55 73 65 20 70 65 6E 63 69 6C |"&v". Use pencil|
00000600: 20 61 6E 64 20 70 61 70 65 72 2C 20 6F 72 20 75 | and paper, or u|
00000610: 73 65 20 74 68 65 20 43 61 6C 63 75 6C 61 74 6F |se the Calculato|
00000620: 72 2E 40 68 52 65 6D 65 6D 62 65 72 20 74 6F 20 |r.@hRemember to |
00000630: 7B 7D 2E 20 49 73 6F 6C 61 74 65 20 22 26 76 22 |{}. Isolate "&v"|
00000640: 20 6F 6E 20 6F 6E 65 20 73 69 64 65 20 6F 66 20 | on one side of |
00000650: 74 68 65 20 65 71 75 61 74 69 6F 6E 2E 40 68 54 |the equation.@hT|
00000660: 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 20 73 6F |he Calculator so|
00000670: 6C 76 65 73 20 65 71 75 61 74 69 6F 6E 73 20 66 |lves equations f|
00000680: 6F 72 20 79 6F 75 20 61 6E 64 20 64 69 73 70 6C |or you and displ|
00000690: 61 79 73 20 74 68 65 20 73 74 65 70 73 20 69 6E |ays the steps in|
000006A0: 20 74 68 65 20 73 6F 6C 75 74 69 6F 6E 2E 40 69 | the solution.@i|
000006B0: 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 70 45 6E 74 65 |({},{},{})@pEnte|
000006C0: 72 20 79 6F 75 72 20 61 6E 73 77 65 72 73 20 74 |r your answers t|
000006D0: 6F 20 74 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E |o the problem in|
000006E0: 20 74 68 65 20 63 68 61 72 74 2E 20 52 65 6D 65 | the chart. Reme|
000006F0: 6D 62 65 72 20 77 68 61 74 20 69 73 20 62 65 69 |mber what is bei|
00000700: 6E 67 20 61 73 6B 65 64 2E 26 71 7B 7D 26 71 26 |ng asked.&q{}&q&|
00000710: 77 28 31 36 29 40 68 54 68 65 20 6E 75 6D 62 65 |w(16)@hThe numbe|
00000720: 72 20 6F 66 20 7B 7D 20 69 73 20 74 68 65 20 76 |r of {} is the v|
00000730: 61 6C 75 65 20 6F 66 20 74 68 65 20 65 78 70 72 |alue of the expr|
00000740: 65 73 73 69 6F 6E 20 22 7B 7D 22 2E 40 68 54 68 |ession "{}".@hTh|
00000750: 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 20 69 |e number of {} i|
00000760: 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 74 |s the value of t|
00000770: 68 65 20 65 78 70 72 65 73 73 69 6F 6E 20 7B 7D |he expression {}|
00000780: 2E 40 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 73 40 |.@i({},{},{})@s@|
00000790: 68 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 64 |hThe number of d|
000007A0: 69 6D 65 73 20 69 73 20 74 68 65 20 76 61 6C 75 |imes is the valu|
000007B0: 65 20 6F 66 20 74 68 65 20 65 78 70 72 65 73 73 |e of the express|
000007C0: 69 6F 6E 20 22 7B 7D 22 2E 40 68 7B 7D 2E 40 69 |ion "{}".@h{}.@i|
000007D0: 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 73 20 40 72 43 |({},{},{})@s @rC|
000007E0: 48 45 43 4B 40 70 52 65 72 65 61 64 20 74 68 65 |HECK@pReread the|
000007F0: 20 70 72 6F 62 6C 65 6D 2E 20 43 68 65 63 6B 20 | problem. Check |
00000800: 79 6F 75 72 20 61 6E 73 77 65 72 73 2E 20 45 76 |your answers. Ev|
00000810: 61 6C 75 61 74 65 20 74 68 65 20 72 65 6D 61 69 |aluate the remai|
00000820: 6E 69 6E 67 20 65 78 70 72 65 73 73 69 6F 6E 73 |ning expressions|
00000830: 20 69 6E 20 74 68 65 20 63 68 61 72 74 2E 40 68 | in the chart.@h|
00000840: 53 75 62 73 74 69 74 75 74 65 20 66 6F 72 20 22 |Substitute for "|
00000850: 26 76 22 20 69 6E 20 74 68 65 20 65 78 70 72 65 |&v" in the expre|
00000860: 73 73 69 6F 6E 2E 20 54 68 65 6E 20 63 61 6C 63 |ssion. Then calc|
00000870: 75 6C 61 74 65 20 74 68 65 20 72 65 73 75 6C 74 |ulate the result|
00000880: 2E 40 68 7B 7D 2E 40 69 28 7B 7D 2C 7B 7D 2C 7B |.@h{}.@i({},{},{|
00000890: 7D 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 |})@hSubstitute f|
000008A0: 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 |or "&v" in the e|
000008B0: 78 70 72 65 73 73 69 6F 6E 2E 20 54 68 65 6E 20 |xpression. Then |
000008C0: 63 61 6C 63 75 6C 61 74 65 20 74 68 65 20 72 65 |calculate the re|
000008D0: 73 75 6C 74 2E 26 77 28 7B 7D 29 40 68 7B 7D 2E |sult.&w({})@h{}.|
000008E0: 40 69 28 7B 7D 2C 7B 7D 2C 7B 7D 29 40 73 26 64 |@i({},{},{})@s&d|
000008F0: 28 30 2C 43 68 65 63 6B 20 79 6F 75 72 20 77 6F |(0,Check your wo|
00000900: 72 6B 2E 20 54 68 65 20 7B 7D 20 73 68 6F 75 6C |rk. The {} shoul|
00000910: 64 20 65 71 75 61 6C 20 74 68 65 20 54 6F 74 61 |d equal the Tota|
00000920: 6C 20 76 61 6C 2E 20 47 65 74 20 72 65 61 64 79 |l val. Get ready|
00000930: 20 66 6F 72 20 61 20 6E 65 77 20 70 72 6F 62 6C | for a new probl|
00000940: 65 6D 2E 29 40 66 42 72 69 61 6E 20 68 61 73 20 |em.)@fBrian has |
00000950: 24 31 2E 32 30 20 69 6E 20 6E 69 63 6B 65 6C 73 |$1.20 in nickels|
00000960: 20 61 6E 64 20 64 69 6D 65 73 2E 20 49 66 20 68 | and dimes. If h|
00000970: 65 20 68 61 73 20 73 69 78 20 6D 6F 72 65 20 64 |e has six more d|
00000980: 69 6D 65 73 20 74 68 61 6E 20 6E 69 63 6B 65 6C |imes than nickel|
00000990: 73 2C 20 68 6F 77 20 6D 61 6E 79 20 6F 66 20 65 |s, how many of e|
000009A0: 61 63 68 20 74 79 70 65 20 6F 66 20 63 6F 69 6E |ach type of coin|
000009B0: 20 64 6F 65 73 20 68 65 20 68 61 76 65 3F 00 26 | does he have?.&|
000009C0: 71 24 31 2E 32 30 20 69 6E 20 6E 69 63 6B 65 6C |q$1.20 in nickel|
000009D0: 73 20 61 6E 64 20 64 69 6D 65 73 26 71 20 26 71 |s and dimes&q &q|
000009E0: 73 69 78 20 6D 6F 72 65 20 64 69 6D 65 73 20 74 |six more dimes t|
000009F0: 68 61 6E 20 6E 69 63 6B 65 6C 73 26 71 00 26 71 |han nickels&q.&q|
00000A00: 48 6F 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 |How many of each|
00000A10: 20 74 79 70 65 20 6F 66 20 63 6F 69 6E 20 64 6F | type of coin do|
00000A20: 65 73 20 68 65 20 68 61 76 65 3F 26 71 00 6E 69 |es he have?&q.ni|
00000A30: 63 6B 65 6C 00 6E 69 63 6B 65 6C 00 35 00 69 00 |ckel.nickel.5.i.|
00000A40: 35 00 35 00 35 00 64 69 6D 65 00 64 69 6D 65 00 |5.5.5.dime.dime.|
00000A50: 36 00 69 00 31 30 00 36 00 31 30 00 42 72 69 61 |6.i.10.6.10.Bria|
00000A60: 6E 20 68 61 73 20 26 68 24 31 2E 32 30 26 68 00 |n has &h$1.20&h.|
00000A70: 26 68 24 31 2E 32 30 26 68 00 60 31 32 30 27 00 |&h$1.20&h.`120'.|
00000A80: 31 35 00 69 00 31 32 30 00 6E 69 63 6B 65 6C 73 |15.i.120.nickels|
00000A90: 00 6E 69 63 6B 65 6C 73 00 39 00 69 00 64 69 6D |.nickels.9.i.dim|
00000AA0: 65 73 00 6E 69 63 6B 65 6C 73 00 26 68 48 65 20 |es.nickels.&hHe |
00000AB0: 68 61 73 20 73 69 78 20 6D 6F 72 65 20 64 69 6D |has six more dim|
00000AC0: 65 73 20 74 68 61 6E 20 6E 69 63 6B 65 6C 73 26 |es than nickels&|
00000AD0: 68 00 26 68 48 65 20 68 61 73 20 73 69 78 20 6D |h.&hHe has six m|
00000AE0: 6F 72 65 20 64 69 6D 65 73 20 74 68 61 6E 20 6E |ore dimes than n|
00000AF0: 69 63 6B 65 6C 73 26 68 00 64 69 6D 65 73 20 69 |ickels&h.dimes i|
00000B00: 73 20 27 26 76 2B 36 27 00 31 30 00 69 00 26 76 |s '&v+6'.10.i.&v|
00000B10: 2B 36 00 6E 69 63 6B 65 6C 73 00 75 6E 69 74 73 |+6.nickels.units|
00000B20: 20 5C 66 30 37 2A 20 28 23 20 6F 66 20 6E 69 63 | \f07* (# of nic|
00000B30: 6B 65 6C 73 29 20 5C 66 32 34 3D 20 6E 69 63 6B |kels) \f24= nick|
00000B40: 65 6C 73 20 76 61 6C 2E 20 5C 6E 20 27 35 20 20 |els val. \n '5 |
00000B50: 20 20 5C 66 30 37 2A 20 20 20 20 20 20 20 26 76 | \f07* &v|
00000B60: 27 20 20 20 20 20 20 5C 66 32 34 3D 20 6E 69 63 |' \f24= nic|
00000B70: 6B 65 6C 73 20 76 61 6C 2E 00 31 33 00 69 00 35 |kels val..13.i.5|
00000B80: 2A 26 76 00 64 69 6D 65 73 00 75 6E 69 74 73 20 |*&v.dimes.units |
00000B90: 5C 66 30 37 2A 20 28 23 20 6F 66 20 64 69 6D 65 |\f07* (# of dime|
00000BA0: 73 29 20 5C 66 32 33 3D 20 64 69 6D 65 73 20 76 |s) \f23= dimes v|
00000BB0: 61 6C 75 65 2E 20 5C 6E 20 27 31 30 20 5C 66 30 |alue. \n '10 \f0|
00000BC0: 37 2A 20 20 28 26 76 2B 36 29 27 20 20 5C 66 32 |7* (&v+6)' \f2|
00000BD0: 33 3D 20 64 69 6D 65 73 20 76 61 6C 75 65 2E 00 |3= dimes value..|
00000BE0: 31 34 00 69 00 31 30 2A 28 26 76 2B 36 29 00 4E |14.i.10*(&v+6).N|
00000BF0: 69 63 6B 65 6C 73 20 61 6E 64 20 44 69 6D 65 73 |ickels and Dimes|
00000C00: 00 4E 69 63 6B 65 6C 73 20 76 61 6C 75 65 5C 66 |.Nickels value\f|
00000C10: 31 34 2B 44 69 6D 65 73 20 76 61 6C 75 65 20 5C |14+Dimes value \|
00000C20: 66 32 39 3D 20 54 6F 74 61 6C 20 76 61 6C 20 5C |f29= Total val \|
00000C30: 6E 20 20 20 27 28 35 2A 26 76 29 20 20 20 20 5C |n '(5*&v) \|
00000C40: 66 31 34 2B 28 31 30 2A 28 26 76 2B 36 29 29 20 |f14+(10*(&v+6)) |
00000C50: 5C 66 32 39 3D 20 31 32 30 27 00 31 36 00 69 00 |\f29= 120'.16.i.|
00000C60: 35 26 76 2B 31 30 28 26 76 2B 36 29 3D 31 32 30 |5&v+10(&v+6)=120|
00000C70: 00 6D 75 6C 74 69 70 6C 79 20 62 6F 74 68 20 22 |.multiply both "|
00000C80: 26 76 22 20 61 6E 64 20 22 36 22 20 62 79 20 22 |&v" and "6" by "|
00000C90: 31 30 22 00 31 36 00 69 00 26 76 3D 34 00 68 6F |10".16.i.&v=4.ho|
00000CA0: 77 20 6D 61 6E 79 20 6F 66 20 65 61 63 68 20 74 |w many of each t|
00000CB0: 79 70 65 20 6F 66 20 63 6F 69 6E 20 64 6F 65 73 |ype of coin does|
00000CC0: 20 68 65 20 68 61 76 65 3F 00 6E 69 63 6B 65 6C | he have?.nickel|
00000CD0: 73 00 26 76 00 6E 69 63 6B 65 6C 73 00 22 26 76 |s.&v.nickels."&v|
00000CE0: 22 2E 20 26 76 3D 34 2C 20 73 6F 20 65 6E 74 65 |". &v=4, so ente|
00000CF0: 72 20 27 34 27 00 39 00 69 00 34 00 26 76 2B 36 |r '4'.9.i.4.&v+6|
00000D00: 00 26 76 3D 34 2C 20 73 6F 20 26 76 2B 36 20 3D |.&v=4, so &v+6 =|
00000D10: 20 34 2B 36 20 3D 20 60 31 30 27 00 31 30 00 69 | 4+6 = `10'.10.i|
00000D20: 00 31 30 00 26 76 3D 34 2C 20 73 6F 20 31 30 2A |.10.&v=4, so 10*|
00000D30: 26 76 20 3D 20 35 2A 34 20 3D 20 60 32 30 27 00 |&v = 5*4 = `20'.|
00000D40: 31 33 00 69 00 32 30 00 31 36 00 26 76 3D 34 2C |13.i.20.16.&v=4,|
00000D50: 20 73 6F 20 31 30 2A 28 26 76 2B 36 29 20 3D 20 | so 10*(&v+6) = |
00000D60: 31 30 2A 28 34 2B 36 29 20 3D 20 60 31 30 30 27 |10*(4+6) = `100'|
00000D70: 00 31 34 00 69 00 31 30 30 00 76 61 6C 75 65 20 |.14.i.100.value |
00000D80: 6F 66 20 74 68 65 20 6E 69 63 6B 65 6C 73 20 61 |of the nickels a|
00000D90: 6E 64 20 64 69 6D 65 73 00 40 66 50 61 75 6C 20 |nd dimes.@fPaul |
00000DA0: 68 61 73 20 66 69 76 65 20 74 69 6D 65 73 20 61 |has five times a|
00000DB0: 73 20 6D 61 6E 79 20 6E 69 63 6B 65 6C 73 20 61 |s many nickels a|
00000DC0: 73 20 64 69 6D 65 73 2E 20 48 6F 77 20 6D 61 6E |s dimes. How man|
00000DD0: 79 20 63 6F 69 6E 73 20 6F 66 20 65 61 63 68 20 |y coins of each |
00000DE0: 74 79 70 65 20 64 6F 65 73 20 68 65 20 68 61 76 |type does he hav|
00000DF0: 65 20 69 66 20 68 69 73 20 6E 69 63 6B 65 6C 20 |e if his nickel |
00000E00: 61 6E 64 20 64 69 6D 65 20 63 6F 6C 6C 65 63 74 |and dime collect|
00000E10: 69 6F 6E 20 69 73 20 77 6F 72 74 68 20 24 37 2E |ion is worth $7.|
00000E20: 30 30 3F 00 26 71 50 61 75 6C 20 68 61 73 20 66 |00?.&qPaul has f|
00000E30: 69 76 65 20 74 69 6D 65 73 20 61 73 20 6D 61 6E |ive times as man|
00000E40: 79 20 6E 69 63 6B 65 6C 73 20 61 73 20 64 69 6D |y nickels as dim|
00000E50: 65 73 26 71 20 26 71 68 69 73 20 6E 69 63 6B 65 |es&q &qhis nicke|
00000E60: 6C 20 61 6E 64 20 64 69 6D 65 20 63 6F 6C 6C 65 |l and dime colle|
00000E70: 63 74 69 6F 6E 20 69 73 20 77 6F 72 74 68 20 24 |ction is worth $|
00000E80: 37 2E 30 30 26 71 00 26 71 48 6F 77 20 6D 61 6E |7.00&q.&qHow man|
00000E90: 79 20 63 6F 69 6E 73 20 6F 66 20 65 61 63 68 20 |y coins of each |
00000EA0: 74 79 70 65 20 64 6F 65 73 20 68 65 20 68 61 76 |type does he hav|
00000EB0: 65 26 71 3F 00 6E 69 63 6B 65 6C 00 6E 69 63 6B |e&q?.nickel.nick|
00000EC0: 65 6C 00 35 00 69 00 35 00 35 00 35 00 64 69 6D |el.5.i.5.5.5.dim|
00000ED0: 65 00 64 69 6D 65 00 36 00 69 00 31 30 00 36 00 |e.dime.6.i.10.6.|
00000EE0: 31 30 00 48 69 73 20 6E 69 63 6B 65 6C 20 61 6E |10.His nickel an|
00000EF0: 64 20 64 69 6D 65 20 63 6F 6C 6C 65 63 74 69 6F |d dime collectio|
00000F00: 6E 20 69 73 20 77 6F 72 74 68 20 26 68 24 37 2E |n is worth &h$7.|
00000F10: 30 30 26 68 00 26 68 24 37 2E 30 30 26 68 00 60 |00&h.&h$7.00&h.`|
00000F20: 37 30 30 27 00 31 35 00 69 00 37 30 30 00 64 69 |700'.15.i.700.di|
00000F30: 6D 65 73 00 64 69 6D 65 73 00 31 30 00 69 00 6E |mes.dimes.10.i.n|
00000F40: 69 63 6B 65 6C 73 00 64 69 6D 65 73 00 50 61 75 |ickels.dimes.Pau|
00000F50: 6C 20 68 61 73 20 26 68 66 69 76 65 20 74 69 6D |l has &hfive tim|
00000F60: 65 73 20 61 73 20 6D 61 6E 79 20 6E 69 63 6B 65 |es as many nicke|
00000F70: 6C 73 20 61 73 20 64 69 6D 65 73 26 68 00 50 61 |ls as dimes&h.Pa|
00000F80: 75 6C 20 68 61 73 20 26 68 66 69 76 65 20 74 69 |ul has &hfive ti|
00000F90: 6D 65 73 20 61 73 20 6D 61 6E 79 20 6E 69 63 6B |mes as many nick|
00000FA0: 65 6C 73 20 61 73 20 64 69 6D 65 73 26 68 00 6E |els as dimes&h.n|
00000FB0: 69 63 6B 65 6C 73 20 69 73 20 27 35 2A 26 76 27 |ickels is '5*&v'|
00000FC0: 00 39 00 69 00 35 2A 26 76 00 6E 69 63 6B 65 6C |.9.i.5*&v.nickel|
00000FD0: 73 00 76 61 6C 2F 75 6E 69 74 20 5C 66 30 37 2A |s.val/unit \f07*|
00000FE0: 28 23 20 6F 66 20 6E 69 63 6B 65 6C 73 29 20 5C |(# of nickels) \|
00000FF0: 66 32 34 3D 20 6E 69 63 6B 65 6C 73 20 76 61 6C |f24= nickels val|
00001000: 2E 20 5C 6E 20 60 35 20 20 20 20 5C 66 30 37 2A |. \n `5 \f07*|
00001010: 20 20 20 20 35 26 76 27 20 20 20 20 20 20 20 5C | 5&v' \|
00001020: 66 32 34 3D 20 6E 69 63 6B 65 6C 73 20 76 61 6C |f24= nickels val|
00001030: 2E 00 31 33 00 69 00 32 35 2A 26 76 00 64 69 6D |..13.i.25*&v.dim|
00001040: 65 73 00 76 61 6C 2F 75 6E 69 74 20 5C 66 30 37 |es.val/unit \f07|
00001050: 2A 28 23 20 6F 66 20 64 69 6D 65 73 29 20 5C 66 |*(# of dimes) \f|
00001060: 32 33 3D 20 64 69 6D 65 73 20 76 61 6C 2E 20 5C |23= dimes val. \|
00001070: 6E 20 20 31 30 20 20 20 5C 66 30 37 2A 20 20 20 |n 10 \f07* |
00001080: 20 20 26 76 20 20 20 20 20 5C 66 32 33 3D 20 64 | &v \f23= d|
00001090: 69 6D 65 73 20 76 61 6C 2E 00 31 34 00 69 00 31 |imes val..14.i.1|
000010A0: 30 2A 28 26 76 29 00 6E 69 63 6B 65 6C 73 20 61 |0*(&v).nickels a|
000010B0: 6E 64 20 64 69 6D 65 73 00 6E 69 63 6B 65 6C 73 |nd dimes.nickels|
000010C0: 20 76 61 6C 75 65 20 5C 66 31 34 2B 20 64 69 6D | value \f14+ dim|
000010D0: 65 73 20 76 61 6C 75 65 20 5C 66 32 37 3D 20 54 |es value \f27= T|
000010E0: 6F 74 61 6C 20 76 61 6C 2E 20 5C 6E 20 20 20 60 |otal val. \n `|
000010F0: 32 35 2A 26 76 20 20 20 20 20 20 20 5C 66 31 34 |25*&v \f14|
00001100: 2B 20 20 20 31 30 2A 26 76 20 20 20 20 20 5C 66 |+ 10*&v \f|
00001110: 32 37 3D 20 37 30 30 27 2E 00 31 36 00 69 00 32 |27= 700'..16.i.2|
00001120: 35 2A 26 76 2B 31 30 2A 26 76 3D 37 30 30 00 63 |5*&v+10*&v=700.c|
00001130: 6F 6D 62 69 6E 65 20 6C 69 6B 65 20 74 65 72 6D |ombine like term|
00001140: 73 00 31 36 00 69 00 26 76 3D 32 30 00 68 6F 77 |s.16.i.&v=20.how|
00001150: 20 6D 61 6E 79 20 63 6F 69 6E 73 20 6F 66 20 65 | many coins of e|
00001160: 61 63 68 20 74 79 70 65 20 64 6F 65 73 20 68 65 |ach type does he|
00001170: 20 68 61 76 65 00 6E 69 63 6B 65 6C 73 00 35 2A | have.nickels.5*|
00001180: 26 76 00 6E 69 63 6B 65 6C 73 00 35 2A 26 76 2E |&v.nickels.5*&v.|
00001190: 20 26 76 20 3D 20 32 30 2C 20 73 6F 20 35 2A 26 | &v = 20, so 5*&|
000011A0: 76 20 3D 20 35 2A 32 30 20 3D 20 60 31 30 30 27 |v = 5*20 = `100'|
000011B0: 00 39 00 69 00 31 30 30 00 26 76 00 54 68 65 20 |.9.i.100.&v.The |
000011C0: 6E 75 6D 62 65 72 20 6F 66 20 64 69 6D 65 73 20 |number of dimes |
000011D0: 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 |is the value of |
000011E0: 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E 20 22 |the expression "|
000011F0: 26 76 22 2C 20 73 6F 20 65 6E 74 65 72 20 60 32 |&v", so enter `2|
00001200: 30 27 00 31 30 00 69 00 32 30 00 32 35 2A 26 76 |0'.10.i.20.25*&v|
00001210: 20 3D 20 32 35 2A 32 30 20 3D 20 60 35 30 30 27 | = 25*20 = `500'|
00001220: 00 31 33 00 69 00 35 30 30 00 31 36 00 26 76 20 |.13.i.500.16.&v |
00001230: 3D 20 32 30 2C 20 73 6F 20 31 30 2A 26 76 20 3D |= 20, so 10*&v =|
00001240: 20 31 30 2A 32 30 20 3D 20 60 32 30 30 27 00 31 | 10*20 = `200'.1|
00001250: 34 00 69 00 32 30 30 00 73 75 6D 20 6F 66 20 74 |4.i.200.sum of t|
00001260: 68 65 20 6E 69 63 6B 65 6C 73 20 61 6E 64 20 64 |he nickels and d|
00001270: 69 6D 65 73 20 76 61 6C 75 65 00 7C 66 |imes value.|f |
A @Q{}@DG02&C(1,NICKELS)&C(2,DIMES)&C(3
,TOTAL)&D(4,VALUE/UNIT)&D(8,# OF COINS)&
D(12,VALUE)@RREAD@PREAD THE WHOLE PROBLE
M. THINK: WHAT ARE THE FACTS? WHAT IS BE
ING ASKED? (PRESS ANY KEY TO CONTINUE.)@
HWHAT ARE THE FACTS? {}@HWHAT IS BEING A
SKED? {}@I(0) @RDATA ENTRY@PFILL IN THE
VALUE OF EACH TYPE OF COIN IN TERMS OF
CENTS (THE COMMON UNIT).@HEXPRESS THE VA
LUE OF A {} IN CENTS. NOTE: IN A COIN PR
OBLEM IT HELPS TO EXPRESS ALL VALUES IN
CENTS.@HTHE VALUE, IN CENTS, OF A {} IS
'5 CENTS'.@I({},{},{})&D({},{} CENTS)@HE
XPRESS THE VALUE OF A {} IN CENTS.@HTHE
VALUE, IN CENTS, OF A {} IS '10 CENTS'.@
I({},{},{})&D({},{} CENTS)@PENTER THE FA
CTS FROM THE PROBLEM INTO THE CHART. BEG
IN WITH THE FIRST FACT IN THE PROBLEM.@H
{}. NOTE: IN A COIN PROBLEM IT HELPS TO
EXPRESS ALL VALUES IN CENTS.@H{} IS REPR
ESENTED IN CENTS AS {}.@I({},{},{}) @PRE
PRESENT THE NUMBER OF EACH TYPE OF COIN.
@HCHOOSE A VARIABLE TO REPRESENT THE NUM
BER OF {}.@HCHOOSE ANY LETTER, SUCH AS `
D', TO REPRESENT THE NUMBER OF {}.@I({},
{},&V)@HREPRESENT THE NUMBER OF {} IN TE
RMS OF "&V" (THE NUMBER OF {}). {}.@H{}.
THE NUMBER OF {}.@I({},{},{}) @RPARTS@P
WRITE AN EXPRESSION TO REPRESENT THE VAL
UE OF EACH TYPE OF COIN.@HMULTIPLY THE V
ALUE/UNIT BY THE NUMBER OF {}.@H{}@I({},
{},{})@HNOW MULTIPLY THE VALUE/UNIT BY T
HE NUMBER OF {}.@H{}@I({},{},{}) @RWHOLE
@PWRITE AN EQUATION TO REPRESENT THE REL
ATION BETWEEN THE PARTS ({}) AND THE WHO
LE (TOTAL).@HUSE THE BOTTOM LINE OF THE
CHART TO FORM THE EQUATION.@H{}@I({},{},
{})@S @RCOMPUTE@PSOLVE THE EQUATION FOR
"&V". USE PENCIL AND PAPER, OR USE THE C
ALCULATOR.@HREMEMBER TO {}. ISOLATE "&V"
ON ONE SIDE OF THE EQUATION.@HTHE CALCU
LATOR SOLVES EQUATIONS FOR YOU AND DISPL
AYS THE STEPS IN THE SOLUTION.@I({},{},{
})@PENTER YOUR ANSWERS TO THE PROBLEM IN
THE CHART. REMEMBER WHAT IS BEING ASKED
.&Q{}&Q&W(16)@HTHE NUMBER OF {} IS THE V
ALUE OF THE EXPRESSION "{}".@HTHE NUMBER
OF {} IS THE VALUE OF THE EXPRESSION {}
.@I({},{},{})@S@HTHE NUMBER OF DIMES IS
THE VALUE OF THE EXPRESSION "{}".@H{}.@I
({},{},{})@S @RCHECK@PREREAD THE PROBLEM
. CHECK YOUR ANSWERS. EVALUATE THE REMAI
NING EXPRESSIONS IN THE CHART.@HSUBSTITU
TE FOR "&V" IN THE EXPRESSION. THEN CALC
ULATE THE RESULT.@H{}.@I({},{},{})@HSUBS
TITUTE FOR "&V" IN THE EXPRESSION. THEN
CALCULATE THE RESULT.&W({})@H{}.@I({},{}
,{})@S&D(0,CHECK YOUR WORK. THE {} SHOUL
D EQUAL THE TOTAL VAL. GET READY FOR A N
EW PROBLEM.)@FBRIAN HAS $1.20 IN NICKELS
AND DIMES. IF HE HAS SIX MORE DIMES THA
N NICKELS, HOW MANY OF EACH TYPE OF COIN
DOES HE HAVE?.&Q$1.20 IN NICKELS AND DI
MES&Q &QSIX MORE DIMES THAN NICKELS&Q.&Q
HOW MANY OF EACH TYPE OF COIN DOES HE HA
VE?&Q.NICKEL.NICKEL.5.I.5.5.5.DIME.DIME.
6.I.10.6.10.BRIAN HAS &H$1.20&H.&H$1.20&
H.`120'.15.I.120.NICKELS.NICKELS.9.I.DIM
ES.NICKELS.&HHE HAS SIX MORE DIMES THAN
NICKELS&H.&HHE HAS SIX MORE DIMES THAN N
ICKELS&H.DIMES IS '&V+6'.10.I.&V+6.NICKE
LS.UNITS \F07* (# OF NICKELS) \F24= NICK
ELS VAL. \N '5 \F07* &V' \
F24= NICKELS VAL..13.I.5*&V.DIMES.UNITS
\F07* (# OF DIMES) \F23= DIMES VALUE. \N
'10 \F07* (&V+6)' \F23= DIMES VALUE..
14.I.10*(&V+6).NICKELS AND DIMES.NICKELS
VALUE\F14+DIMES VALUE \F29= TOTAL VAL \
N '(5*&V) \F14+(10*(&V+6)) \F29= 12
0'.16.I.5&V+10(&V+6)=120.MULTIPLY BOTH "
&V" AND "6" BY "10".16.I.&V=4.HOW MANY O
F EACH TYPE OF COIN DOES HE HAVE?.NICKEL
S.&V.NICKELS."&V". &V=4, SO ENTER '4'.9.
I.4.&V+6.&V=4, SO &V+6 = 4+6 = `10'.10.I
.10.&V=4, SO 10*&V = 5*4 = `20'.13.I.20.
16.&V=4, SO 10*(&V+6) = 10*(4+6) = `100'
.14.I.100.VALUE OF THE NICKELS AND DIMES
.@FPAUL HAS FIVE TIMES AS MANY NICKELS A
S DIMES. HOW MANY COINS OF EACH TYPE DOE
S HE HAVE IF HIS NICKEL AND DIME COLLECT
ION IS WORTH $7.00?.&QPAUL HAS FIVE TIME
S AS MANY NICKELS AS DIMES&Q &QHIS NICKE
L AND DIME COLLECTION IS WORTH $7.00&Q.&
QHOW MANY COINS OF EACH TYPE DOES HE HAV
E&Q?.NICKEL.NICKEL.5.I.5.5.5.DIME.DIME.6
.I.10.6.10.HIS NICKEL AND DIME COLLECTIO
N IS WORTH &H$7.00&H.&H$7.00&H.`700'.15.
I.700.DIMES.DIMES.10.I.NICKELS.DIMES.PAU
L HAS &HFIVE TIMES AS MANY NICKELS AS DI
MES&H.PAUL HAS &HFIVE TIMES AS MANY NICK
ELS AS DIMES&H.NICKELS IS '5*&V'.9.I.5*&
V.NICKELS.VAL/UNIT \F07*(# OF NICKELS) \
F24= NICKELS VAL. \N `5 \F07* 5&V'
\F24= NICKELS VAL..13.I.25*&V.DIM
ES.VAL/UNIT \F07*(# OF DIMES) \F23= DIME
S VAL. \N 10 \F07* &V \F23= D
IMES VAL..14.I.10*(&V).NICKELS AND DIMES
.NICKELS VALUE \F14+ DIMES VALUE \F27= T
OTAL VAL. \N `25*&V \F14+ 10*&
V \F27= 700'..16.I.25*&V+10*&V=700.C
OMBINE LIKE TERMS.16.I.&V=20.HOW MANY CO
INS OF EACH TYPE DOES HE HAVE.NICKELS.5*
&V.NICKELS.5*&V. &V = 20, SO 5*&V = 5*20
= `100'.9.I.100.&V.THE NUMBER OF DIMES
IS THE VALUE OF THE EXPRESSION "&V", SO
ENTER `20'.10.I.20.25*&V = 25*20 = `500'
.13.I.500.16.&V = 20, SO 10*&V = 10*20 =
`200'.14.I.200.SUM OF THE NICKELS AND D
IMES VALUE.|F
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL