_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST2L2

FILE INFORMATION

FILENAME(S): DIST2L2

FILE TYPE(S): PRG

FILE SIZE: 7K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

ae63370cc5ce71b68f424669fe642f68c0d866646ec30ab45d4cb37e570f237f

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST2L2 PRG Radd Maxx 12 1 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 34 26 64 28 31  | A @q{}@dg04&d(1|
00000010: 2C 55 2F 6D 65 61 73 29  26 63 28 32 2C 7B 7D 29  |,U/meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29  26 64 28 34 2C 54 6F 74  |&c(3,{})&d(4,Tot|
00000030: 61 6C 29 26 64 28 35 2C  52 61 74 65 29 26 64 28  |al)&d(5,Rate)&d(|
00000040: 31 30 2C 54 69 6D 65 29  26 64 28 31 35 2C 44 69  |10,Time)&d(15,Di|
00000050: 73 74 2E 29 40 72 52 45  41 44 40 70 52 65 61 64  |st.)@rREAD@pRead|
00000060: 20 74 68 65 20 77 68 6F  6C 65 20 70 72 6F 62 6C  | the whole probl|
00000070: 65 6D 2E 20 54 68 69 6E  6B 3A 20 57 68 61 74 20  |em. Think: What |
00000080: 61 72 65 20 74 68 65 20  66 61 63 74 73 3F 20 57  |are the facts? W|
00000090: 68 61 74 20 69 73 20 62  65 69 6E 67 20 61 73 6B  |hat is being ask|
000000A0: 65 64 3F 20 28 50 72 65  73 73 20 61 6E 79 20 6B  |ed? (Press any k|
000000B0: 65 79 20 74 6F 20 63 6F  6E 74 69 6E 75 65 29 2E  |ey to continue).|
000000C0: 40 68 57 68 61 74 20 61  72 65 20 74 68 65 20 66  |@hWhat are the f|
000000D0: 61 63 74 73 3F 20 7B 7D  2E 40 68 57 68 61 74 20  |acts? {}.@hWhat |
000000E0: 69 73 20 62 65 69 6E 67  20 61 73 6B 65 64 3F 20  |is being asked? |
000000F0: 7B 7D 3F 40 69 28 30 29  20 40 72 50 4C 41 4E 40  |{}?@i(0) @rPLAN@|
00000100: 70 4C 65 74 20 44 7B 7D  20 3D 20 7B 7D 20 64 69  |pLet D{} = {} di|
00000110: 73 74 2E 20 61 6E 64 20  44 7B 7D 20 3D 20 7B 7D  |st. and D{} = {}|
00000120: 20 64 69 73 74 2E 20 57  72 69 74 65 20 61 6E 20  | dist. Write an |
00000130: 65 71 75 61 74 69 6F 6E  20 74 6F 20 72 65 6C 61  |equation to rela|
00000140: 74 65 20 44 7B 7D 20 61  6E 64 20 44 7B 7D 20 74  |te D{} and D{} t|
00000150: 6F 20 74 68 65 20 54 6F  74 61 6C 20 64 69 73 74  |o the Total dist|
00000160: 2E 40 68 54 68 65 20 74  6F 74 61 6C 20 69 73 20  |.@hThe total is |
00000170: 74 68 65 20 73 75 6D 20  6F 66 20 74 68 65 69 72  |the sum of their|
00000180: 20 64 69 73 74 61 6E 63  65 73 2E 40 68 7B 7D 20  | distances.@h{} |
00000190: 73 68 6F 77 73 20 74 68  61 74 20 74 68 65 20 73  |shows that the s|
000001A0: 75 6D 20 6F 66 20 74 68  65 20 64 69 73 74 61 6E  |um of the distan|
000001B0: 63 65 73 20 74 72 61 76  65 6C 6C 65 64 20 77 69  |ces travelled wi|
000001C0: 6C 6C 20 65 71 75 61 6C  20 74 68 65 20 74 6F 74  |ll equal the tot|
000001D0: 61 6C 20 64 69 73 74 61  6E 63 65 20 62 65 74 77  |al distance betw|
000001E0: 65 65 6E 20 74 68 65 6D  2E 40 69 28 32 30 2C 63  |een them.@i(20,c|
000001F0: 30 2C 20 29 40 70 4F 6E  65 20 61 6E 73 77 65 72  |0, )@pOne answer|
00000200: 20 69 73 20 7B 7D 2E 20  43 68 61 6E 67 65 20 79  | is {}. Change y|
00000210: 6F 75 72 20 61 6E 73 77  65 72 20 69 66 20 69 74  |our answer if it|
00000220: 20 69 73 20 6E 6F 74 20  65 71 75 69 76 61 6C 65  | is not equivale|
00000230: 6E 74 2E 20 28 50 72 65  73 73 20 72 65 74 75 72  |nt. (Press retur|
00000240: 6E 29 40 68 54 68 65 20  74 6F 74 61 6C 20 69 73  |n)@hThe total is|
00000250: 20 74 68 65 20 73 75 6D  20 6F 66 20 74 68 65 69  | the sum of thei|
00000260: 72 20 64 69 73 74 61 6E  63 65 73 2E 40 68 7B 7D  |r distances.@h{}|
00000270: 20 73 68 6F 77 73 20 74  68 61 74 20 74 68 65 20  | shows that the |
00000280: 73 75 6D 20 6F 66 20 74  68 65 20 64 69 73 74 61  |sum of the dista|
00000290: 6E 63 65 73 20 74 72 61  76 65 6C 6C 65 64 20 77  |nces travelled w|
000002A0: 69 6C 6C 20 65 71 75 61  6C 20 74 68 65 20 74 6F  |ill equal the to|
000002B0: 74 61 6C 20 64 69 73 74  61 6E 63 65 20 62 65 74  |tal distance bet|
000002C0: 77 65 65 6E 20 74 68 65  6D 2E 40 69 28 32 30 2C  |ween them.@i(20,|
000002D0: 63 30 2C 20 29 40 72 44  41 54 41 20 45 4E 54 52  |c0, )@rDATA ENTR|
000002E0: 59 40 70 46 69 6C 6C 20  69 6E 20 74 68 65 20 75  |Y@pFill in the u|
000002F0: 6E 69 74 73 20 62 79 20  77 68 69 63 68 20 72 61  |nits by which ra|
00000300: 74 65 2C 20 74 69 6D 65  2C 20 61 6E 64 20 64 69  |te, time, and di|
00000310: 73 74 61 6E 63 65 20 61  72 65 20 6D 65 61 73 75  |stance are measu|
00000320: 72 65 64 2E 20 28 55 73  65 20 61 62 62 72 65 76  |red. (Use abbrev|
00000330: 69 61 74 65 64 20 66 6F  72 6D 29 2E 40 68 52 61  |iated form).@hRa|
00000340: 74 65 20 6F 66 20 73 70  65 65 64 20 69 73 20 63  |te of speed is c|
00000350: 6F 6D 6D 6F 6E 6C 79 20  6D 65 61 73 75 72 65 64  |ommonly measured|
00000360: 20 69 6E 20 6D 69 6C 65  73 20 70 65 72 20 68 6F  | in miles per ho|
00000370: 75 72 28 6D 69 2F 68 72  29 2C 20 6D 65 74 65 72  |ur(mi/hr), meter|
00000380: 73 20 70 65 72 20 6D 69  6E 75 74 65 20 28 6D 2F  |s per minute (m/|
00000390: 6D 69 6E 29 2C 20 65 74  63 2E 40 68 54 68 65 20  |min), etc.@hThe |
000003A0: 72 61 74 65 20 6F 66 20  73 70 65 65 64 20 69 6E  |rate of speed in|
000003B0: 20 74 68 69 73 20 70 72  6F 62 6C 65 6D 20 69 73  | this problem is|
000003C0: 20 6D 65 61 73 75 72 65  64 20 69 6E 20 7B 7D 2E  | measured in {}.|
000003D0: 40 69 28 36 2C 63 7B 7D  2C 7B 7D 29 40 68 54 69  |@i(6,c{},{})@hTi|
000003E0: 6D 65 20 69 73 20 63 6F  6D 6D 6F 6E 6C 79 20 6D  |me is commonly m|
000003F0: 65 61 73 75 72 65 64 20  69 6E 20 73 65 63 6F 6E  |easured in secon|
00000400: 64 73 28 73 65 63 29 2C  20 6D 69 6E 75 74 65 73  |ds(sec), minutes|
00000410: 28 6D 69 6E 29 2C 20 68  6F 75 72 73 28 68 72 29  |(min), hours(hr)|
00000420: 2C 20 64 61 79 73 20 28  64 61 29 20 65 74 63 2E  |, days (da) etc.|
00000430: 40 68 54 69 6D 65 20 69  6E 20 74 68 69 73 20 70  |@hTime in this p|
00000440: 72 6F 62 6C 65 6D 20 69  73 20 6D 65 61 73 75 72  |roblem is measur|
00000450: 65 64 20 69 6E 20 7B 7D  2E 40 69 28 31 31 2C 63  |ed in {}.@i(11,c|
00000460: 7B 7D 2C 7B 7D 29 40 68  44 69 73 74 61 6E 63 65  |{},{})@hDistance|
00000470: 20 69 73 20 63 6F 6D 6D  6F 6E 6C 79 20 6D 65 61  | is commonly mea|
00000480: 73 75 72 65 64 20 69 6E  20 66 65 65 74 20 28 66  |sured in feet (f|
00000490: 74 29 2C 20 79 61 72 64  73 28 79 64 29 2C 20 6D  |t), yards(yd), m|
000004A0: 65 74 65 72 73 28 6D 29  2C 20 6D 69 6C 65 73 28  |eters(m), miles(|
000004B0: 6D 69 29 2C 20 6B 69 6C  6F 6D 65 74 65 72 73 28  |mi), kilometers(|
000004C0: 6B 6D 29 2C 20 65 74 63  2E 40 68 44 69 73 74 61  |km), etc.@hDista|
000004D0: 6E 63 65 20 69 6E 20 74  68 69 73 20 70 72 6F 62  |nce in this prob|
000004E0: 6C 65 6D 20 69 73 20 6D  65 61 73 75 72 65 64 20  |lem is measured |
000004F0: 69 6E 20 7B 7D 2E 40 69  28 31 36 2C 63 7B 7D 2C  |in {}.@i(16,c{},|
00000500: 7B 7D 29 40 70 45 6E 74  65 72 20 74 68 65 20 66  |{})@pEnter the f|
00000510: 61 63 74 73 20 66 72 6F  6D 20 74 68 65 20 70 72  |acts from the pr|
00000520: 6F 62 6C 65 6D 20 69 6E  74 6F 20 74 68 65 20 63  |oblem into the c|
00000530: 68 61 72 74 2E 40 68 7B  7D 40 68 54 68 65 20 54  |hart.@h{}@hThe T|
00000540: 6F 74 61 6C 20 64 69 73  74 61 6E 63 65 20 69 73  |otal distance is|
00000550: 20 7B 7D 2E 40 69 28 31  39 2C 69 2C 7B 7D 29 40  | {}.@i(19,i,{})@|
00000560: 68 7B 7D 40 68 54 68 65  20 72 61 74 65 20 6F 66  |h{}@hThe rate of|
00000570: 20 73 70 65 65 64 20 66  6F 72 20 7B 7D 20 69 73  | speed for {} is|
00000580: 20 7B 7D 2E 40 69 28 37  2C 69 2C 7B 7D 29 40 68  | {}.@i(7,i,{})@h|
00000590: 7B 7D 40 68 54 68 65 20  72 61 74 65 20 6F 66 20  |{}@hThe rate of |
000005A0: 73 70 65 65 64 20 66 6F  72 20 7B 7D 20 69 73 20  |speed for {} is |
000005B0: 7B 7D 2E 40 69 28 38 2C  69 2C 7B 7D 29 40 70 55  |{}.@i(8,i,{})@pU|
000005C0: 73 65 20 61 20 76 61 72  69 61 62 6C 65 20 74 6F  |se a variable to|
000005D0: 20 72 65 70 72 65 73 65  6E 74 20 74 68 65 20 7B  | represent the {|
000005E0: 7D 20 74 69 6D 65 20 66  6F 72 20 65 61 63 68 20  |} time for each |
000005F0: 7B 7D 2E 40 68 55 73 65  20 74 68 65 20 73 61 6D  |{}.@hUse the sam|
00000600: 65 20 76 61 72 69 61 62  6C 65 2C 20 73 75 63 68  |e variable, such|
00000610: 20 61 73 20 60 74 27 20  74 6F 20 72 65 70 72 65  | as `t' to repre|
00000620: 73 65 6E 74 20 74 68 65  20 74 69 6D 65 20 66 6F  |sent the time fo|
00000630: 72 20 62 6F 74 68 20 70  65 6F 70 6C 65 2E 40 68  |r both people.@h|
00000640: 55 73 65 20 61 20 76 61  72 69 61 62 6C 65 20 73  |Use a variable s|
00000650: 75 63 68 20 61 73 20 60  7B 7D 27 20 74 6F 20 72  |uch as `{}' to r|
00000660: 65 70 72 65 73 65 6E 74  20 7B 7D 20 74 69 6D 65  |epresent {} time|
00000670: 2E 40 69 28 31 32 2C 69  2C 26 76 29 40 68 55 73  |.@i(12,i,&v)@hUs|
00000680: 65 20 74 68 65 20 73 61  6D 65 20 76 61 72 69 61  |e the same varia|
00000690: 62 6C 65 2C 20 73 75 63  68 20 61 73 20 60 74 27  |ble, such as `t'|
000006A0: 20 74 6F 20 72 65 70 72  65 73 65 6E 74 20 74 68  | to represent th|
000006B0: 65 20 74 69 6D 65 20 66  6F 72 20 62 6F 74 68 20  |e time for both |
000006C0: 6F 66 20 74 68 65 6D 2E  40 68 55 73 65 20 61 20  |of them.@hUse a |
000006D0: 76 61 72 69 61 62 6C 65  20 73 75 63 68 20 61 73  |variable such as|
000006E0: 20 60 7B 7D 27 20 74 6F  20 72 65 70 72 65 73 65  | `{}' to represe|
000006F0: 6E 74 20 7B 7D 20 74 69  6D 65 2E 40 69 28 31 33  |nt {} time.@i(13|
00000700: 2C 69 2C 26 76 29 40 72  50 41 52 54 53 40 70 57  |,i,&v)@rPARTS@pW|
00000710: 72 69 74 65 20 61 6E 20  65 78 70 72 65 73 73 69  |rite an expressi|
00000720: 6F 6E 20 74 6F 20 72 65  70 72 65 73 65 6E 74 20  |on to represent |
00000730: 74 68 65 20 64 69 73 74  61 6E 63 65 20 74 72 61  |the distance tra|
00000740: 76 65 6C 6C 65 64 20 62  79 20 65 61 63 68 20 7B  |velled by each {|
00000750: 7D 2E 40 68 52 61 74 65  20 2A 20 54 69 6D 65 20  |}.@hRate * Time |
00000760: 3D 20 44 69 73 74 61 6E  63 65 40 68 52 61 74 65  |= Distance@hRate|
00000770: 20 20 20 5C 66 30 36 2A  20 54 69 6D 65 20 5C 66  |   \f06* Time \f|
00000780: 31 33 3D 20 44 69 73 74  61 6E 63 65 20 5C 6E 7B  |13= Distance \n{|
00000790: 7D 40 69 28 31 37 2C 69  2C 7B 7D 29 40 68 52 61  |}@i(17,i,{})@hRa|
000007A0: 74 65 20 2A 20 54 69 6D  65 20 3D 20 44 69 73 74  |te * Time = Dist|
000007B0: 61 6E 63 65 40 68 52 61  74 65 20 5C 66 30 36 2A  |ance@hRate \f06*|
000007C0: 20 54 69 6D 65 20 5C 66  31 33 3D 20 44 69 73 74  | Time \f13= Dist|
000007D0: 61 6E 63 65 20 5C 6E 7B  7D 40 69 28 31 38 2C 69  |ance \n{}@i(18,i|
000007E0: 2C 7B 7D 29 26 64 28 32  30 2C 20 29 40 72 57 48  |,{})&d(20, )@rWH|
000007F0: 4F 4C 45 40 70 53 75 62  73 74 69 74 75 74 65 20  |OLE@pSubstitute |
00000800: 79 6F 75 72 20 65 78 70  72 65 73 73 69 6F 6E 73  |your expressions|
00000810: 20 66 6F 72 20 44 7B 7D  2C 20 44 7B 7D 20 61 6E  | for D{}, D{} an|
00000820: 64 20 54 6F 74 61 6C 20  69 6E 20 74 68 65 20 65  |d Total in the e|
00000830: 71 75 61 74 69 6F 6E 3A  20 5C 6E 20 20 44 7B 7D  |quation: \n  D{}|
00000840: 2B 44 7B 7D 20 3D 20 7B  7D 40 68 44 7B 7D 20 3D  |+D{} = {}@hD{} =|
00000850: 20 7B 7D 20 61 6E 64 20  44 7B 7D 20 3D 20 7B 7D  | {} and D{} = {}|
00000860: 2E 40 68 7B 7D 40 69 28  32 30 2C 69 2C 7B 7D 29  |.@h{}@i(20,i,{})|
00000870: 40 73 40 72 43 4F 4D 50  55 54 45 40 70 53 6F 6C  |@s@rCOMPUTE@pSol|
00000880: 76 65 20 74 68 65 20 65  71 75 61 74 69 6F 6E 20  |ve the equation |
00000890: 66 6F 72 20 22 26 76 22  2E 20 55 73 65 20 70 61  |for "&v". Use pa|
000008A0: 70 65 72 20 61 6E 64 20  70 65 6E 63 69 6C 20 61  |per and pencil a|
000008B0: 6E 64 20 65 6E 74 65 72  20 74 68 65 20 66 69 6E  |nd enter the fin|
000008C0: 61 6C 20 65 71 75 61 74  69 6F 6E 2C 20 6F 72 20  |al equation, or |
000008D0: 75 73 65 20 74 68 65 20  43 61 6C 63 75 6C 61 74  |use the Calculat|
000008E0: 6F 72 2E 40 68 49 73 6F  6C 61 74 65 20 22 26 76  |or.@hIsolate "&v|
000008F0: 22 20 6F 6E 20 6F 6E 65  20 73 69 64 65 20 6F 66  |" on one side of|
00000900: 20 74 68 65 20 65 71 75  61 74 69 6F 6E 2E 40 68  | the equation.@h|
00000910: 54 68 65 20 63 61 6C 63  75 6C 61 74 6F 72 20 73  |The calculator s|
00000920: 6F 6C 76 65 73 20 65 71  75 61 74 69 6F 6E 73 20  |olves equations |
00000930: 66 6F 72 20 79 6F 75 20  61 6E 64 20 64 69 73 70  |for you and disp|
00000940: 6C 61 79 73 20 74 68 65  20 73 74 65 70 73 20 69  |lays the steps i|
00000950: 6E 20 74 68 65 20 73 6F  6C 75 74 69 6F 6E 2E 40  |n the solution.@|
00000960: 69 28 32 30 2C 69 2C 26  76 3D 7B 7D 29 40 70 4E  |i(20,i,&v={})@pN|
00000970: 6F 77 20 65 6E 74 65 72  20 79 6F 75 72 20 61 6E  |ow enter your an|
00000980: 73 77 65 72 20 69 6E 20  74 68 65 20 67 72 69 64  |swer in the grid|
00000990: 2E 20 52 65 6D 65 6D 62  65 72 20 77 68 61 74 20  |. Remember what |
000009A0: 69 73 20 62 65 69 6E 67  20 61 73 6B 65 64 2E 20  |is being asked. |
000009B0: 7B 7D 26 77 28 32 30 29  40 68 7B 7D 20 65 71 75  |{}&w(20)@h{} equ|
000009C0: 61 6C 20 74 6F 20 74 68  65 20 76 61 6C 75 65 20  |al to the value |
000009D0: 6F 66 20 22 26 76 22 2E  40 68 26 76 3D 7B 7D 2C  |of "&v".@h&v={},|
000009E0: 20 73 6F 20 7B 7D 40 69  28 7B 7D 2C 69 2C 7B 7D  | so {}@i({},i,{}|
000009F0: 29 40 73 26 64 28 31 33  2C 7B 7D 29 40 72 43 48  |)@s&d(13,{})@rCH|
00000A00: 45 43 4B 40 70 52 65 72  65 61 64 20 74 68 65 20  |ECK@pReread the |
00000A10: 70 72 6F 62 6C 65 6D 2E  20 43 68 65 63 6B 20 79  |problem. Check y|
00000A20: 6F 75 72 20 61 6E 73 77  65 72 73 2E 20 45 76 61  |our answers. Eva|
00000A30: 6C 75 61 74 65 20 74 68  65 20 72 65 6D 61 69 6E  |luate the remain|
00000A40: 69 6E 67 20 65 78 70 72  65 73 73 69 6F 6E 73 20  |ing expressions |
00000A50: 69 6E 20 74 68 65 20 63  68 61 72 74 2E 40 68 53  |in the chart.@hS|
00000A60: 75 62 73 74 69 74 75 74  65 20 66 6F 72 20 22 26  |ubstitute for "&|
00000A70: 76 22 20 69 6E 20 74 68  65 20 65 78 70 72 65 73  |v" in the expres|
00000A80: 73 69 6F 6E 20 66 6F 72  20 7B 7D 20 64 69 73 74  |sion for {} dist|
00000A90: 61 6E 63 65 2E 20 54 68  65 6E 20 63 61 6C 63 75  |ance. Then calcu|
00000AA0: 6C 61 74 65 20 74 68 65  20 72 65 73 75 6C 74 2E  |late the result.|
00000AB0: 40 68 7B 7D 40 69 28 31  37 2C 69 2C 7B 7D 29 40  |@h{}@i(17,i,{})@|
00000AC0: 68 53 75 62 73 74 69 74  75 74 65 20 66 6F 72 20  |hSubstitute for |
00000AD0: 22 26 76 22 20 69 6E 20  74 68 65 20 65 78 70 72  |"&v" in the expr|
00000AE0: 65 73 73 69 6F 6E 20 66  6F 72 20 7B 7D 20 64 69  |ession for {} di|
00000AF0: 73 74 61 6E 63 65 2E 20  54 68 65 6E 20 63 61 6C  |stance. Then cal|
00000B00: 63 75 6C 61 74 65 20 74  68 65 20 72 65 73 75 6C  |culate the resul|
00000B10: 74 2E 40 68 7B 7D 40 69  28 31 38 2C 69 2C 7B 7D  |t.@h{}@i(18,i,{}|
00000B20: 29 26 64 28 30 2C 43 68  65 63 6B 20 79 6F 75 72  |)&d(0,Check your|
00000B30: 20 77 6F 72 6B 2E 20 54  68 65 20 73 75 6D 20 6F  | work. The sum o|
00000B40: 66 20 74 68 65 69 72 20  64 69 73 74 61 6E 63 65  |f their distance|
00000B50: 73 20 73 68 6F 75 6C 64  20 62 65 20 7B 7D 2E 20  |s should be {}. |
00000B60: 47 65 74 20 72 65 61 64  79 20 66 6F 72 20 61 20  |Get ready for a |
00000B70: 6E 65 77 20 70 72 6F 62  6C 65 6D 2E 29 40 66 50  |new problem.)@fP|
00000B80: 61 74 72 69 63 6B 20 61  6E 64 20 4D 61 75 72 61  |atrick and Maura|
00000B90: 20 6C 69 76 65 20 35 30  34 20 6B 6D 2E 20 61 70  | live 504 km. ap|
00000BA0: 61 72 74 2E 20 48 6F 77  20 6C 6F 6E 67 20 77 69  |art. How long wi|
00000BB0: 6C 6C 20 69 74 20 74 61  6B 65 20 74 68 65 6D 20  |ll it take them |
00000BC0: 74 6F 20 6D 65 65 74 20  69 66 20 74 68 65 79 20  |to meet if they |
00000BD0: 6C 65 61 76 65 20 74 68  65 69 72 20 68 6F 75 73  |leave their hous|
00000BE0: 65 73 20 61 74 20 74 68  65 20 73 61 6D 65 20 74  |es at the same t|
00000BF0: 69 6D 65 20 61 6E 64 20  4D 61 75 72 61 20 64 72  |ime and Maura dr|
00000C00: 69 76 65 73 20 35 30 20  6B 6D 2F 68 72 20 61 6E  |ives 50 km/hr an|
00000C10: 64 20 50 61 74 72 69 63  6B 20 64 72 69 76 65 73  |d Patrick drives|
00000C20: 20 33 34 20 6B 6D 2F 68  72 3F 00 4D 61 75 72 61  | 34 km/hr?.Maura|
00000C30: 00 50 61 74 72 69 63 6B  00 54 6F 67 65 74 68 65  |.Patrick.Togethe|
00000C40: 72 20 74 68 65 79 20 64  72 69 76 65 20 61 20 74  |r they drive a t|
00000C50: 6F 74 61 6C 20 6F 66 20  35 30 34 20 6B 6D 2E 20  |otal of 504 km. |
00000C60: 54 68 65 79 20 64 72 69  76 65 20 74 6F 77 61 72  |They drive towar|
00000C70: 64 73 20 65 61 63 68 20  6F 74 68 65 72 20 61 74  |ds each other at|
00000C80: 20 64 69 66 66 65 72 65  6E 74 20 72 61 74 65 73  | different rates|
00000C90: 00 26 68 48 6F 77 20 6C  6F 6E 67 20 77 69 6C 6C  |.&hHow long will|
00000CA0: 20 69 74 20 74 61 6B 65  20 74 68 65 6D 20 74 6F  | it take them to|
00000CB0: 20 6D 65 65 74 26 68 00  6D 00 4D 61 75 72 61 27  | meet&h.m.Maura'|
00000CC0: 73 00 70 00 50 61 74 72  69 63 6B 27 73 00 6D 00  |s.p.Patrick's.m.|
00000CD0: 70 00 60 44 70 2B 44 6D  20 3D 20 54 6F 74 61 6C  |p.`Dp+Dm = Total|
00000CE0: 27 00 60 44 70 2B 44 6D  20 3D 20 54 6F 74 61 6C  |'.`Dp+Dm = Total|
00000CF0: 27 00 60 44 70 2B 44 6D  20 3D 20 54 6F 74 61 6C  |'.`Dp+Dm = Total|
00000D00: 27 00 6B 69 6C 6F 6D 65  74 65 72 73 20 70 65 72  |'.kilometers per|
00000D10: 20 68 6F 75 72 20 28 60  6B 6D 2F 68 72 27 29 00  | hour (`km/hr').|
00000D20: 35 00 6B 6D 2F 68 72 00  68 6F 75 72 73 2E 20 28  |5.km/hr.hours. (|
00000D30: 60 68 72 27 29 00 32 00  68 72 00 6B 69 6C 6F 6D  |`hr').2.hr.kilom|
00000D40: 65 74 65 72 73 20 28 60  6B 6D 27 29 00 32 00 6B  |eters (`km').2.k|
00000D50: 6D 00 26 68 50 61 74 72  69 63 6B 20 61 6E 64 20  |m.&hPatrick and |
00000D60: 4D 61 75 72 61 20 6C 69  76 65 20 35 30 34 20 6B  |Maura live 504 k|
00000D70: 6D 2E 20 61 70 61 72 74  2E 26 68 00 60 35 30 34  |m. apart.&h.`504|
00000D80: 27 20 6B 6D 00 35 30 34  00 26 68 4D 61 75 72 61  |' km.504.&hMaura|
00000D90: 20 64 72 69 76 65 73 20  35 30 20 6B 6D 2F 68 72  | drives 50 km/hr|
00000DA0: 26 68 00 4D 61 75 72 61  00 60 35 30 27 20 6B 6D  |&h.Maura.`50' km|
00000DB0: 2F 68 72 00 35 30 00 26  68 50 61 74 72 69 63 6B  |/hr.50.&hPatrick|
00000DC0: 20 64 72 69 76 65 73 20  33 34 20 6B 6D 2F 68 72  | drives 34 km/hr|
00000DD0: 26 68 00 50 61 74 72 69  63 6B 00 60 33 34 27 20  |&h.Patrick.`34' |
00000DE0: 6B 6D 2F 68 72 00 33 34  00 64 72 69 76 69 6E 67  |km/hr.34.driving|
00000DF0: 00 70 65 72 73 6F 6E 00  74 00 4D 61 75 72 61 27  |.person.t.Maura'|
00000E00: 73 00 74 00 50 61 74 72  69 63 6B 27 73 00 70 65  |s.t.Patrick's.pe|
00000E10: 72 73 6F 6E 00 60 35 30  20 20 20 5C 66 30 36 2A  |rson.`50   \f06*|
00000E20: 20 20 26 76 27 20 5C 66  31 33 3D 20 4D 61 75 72  |  &v' \f13= Maur|
00000E30: 61 27 73 20 64 69 73 74  61 6E 63 65 00 35 30 26  |a's distance.50&|
00000E40: 76 00 60 33 34 20 20 5C  66 30 36 2A 20 20 26 76  |v.`34  \f06*  &v|
00000E50: 27 20 5C 66 31 33 3D 20  50 61 74 72 69 63 6B 27  |' \f13= Patrick'|
00000E60: 73 20 64 69 73 74 61 6E  63 65 2E 00 33 34 26 76  |s distance..34&v|
00000E70: 00 6D 00 70 00 6D 00 70  00 54 6F 74 61 6C 00 6D  |.m.p.m.p.Total.m|
00000E80: 00 35 30 26 76 00 70 00  33 34 26 76 00 4D 61 75  |.50&v.p.34&v.Mau|
00000E90: 72 61 27 73 20 64 69 73  74 2E 5C 66 31 34 2B 50  |ra's dist.\f14+P|
00000EA0: 61 74 72 69 63 6B 27 73  20 64 69 73 74 2E 5C 66  |atrick's dist.\f|
00000EB0: 33 31 3D 20 54 6F 74 61  6C 20 5C 6E 60 35 30 26  |31= Total \n`50&|
00000EC0: 76 20 20 20 5C 66 31 34  2B 20 20 33 34 26 76 20  |v   \f14+  34&v |
00000ED0: 20 5C 66 33 31 3D 20 35  30 34 27 00 35 30 26 76  | \f31= 504'.50&v|
00000EE0: 2B 33 34 26 76 3D 35 30  34 00 36 00 26 71 48 6F  |+34&v=504.6.&qHo|
00000EF0: 77 20 6C 6F 6E 67 20 77  69 6C 6C 20 69 74 20 74  |w long will it t|
00000F00: 61 6B 65 20 74 68 65 6D  20 74 6F 20 6D 65 65 74  |ake them to meet|
00000F10: 26 71 00 42 6F 74 68 20  4D 61 75 72 61 20 61 6E  |&q.Both Maura an|
00000F20: 64 20 50 61 74 72 69 63  6B 27 73 20 74 69 6D 65  |d Patrick's time|
00000F30: 73 20 61 72 65 00 36 00  74 68 65 79 20 77 69 6C  |s are.6.they wil|
00000F40: 6C 20 6D 65 65 74 20 61  66 74 65 72 20 60 36 27  |l meet after `6'|
00000F50: 20 68 6F 75 72 73 2E 00  31 32 00 36 00 36 00 4D  | hours..12.6.6.M|
00000F60: 61 75 72 61 27 73 00 35  30 26 76 20 3D 20 60 33  |aura's.50&v = `3|
00000F70: 30 30 27 00 33 30 30 00  50 61 74 72 69 63 6B 27  |00'.300.Patrick'|
00000F80: 73 00 33 34 26 76 20 3D  20 60 32 30 34 27 00 32  |s.34&v = `204'.2|
00000F90: 30 34 00 35 30 34 00 40  66 41 6C 70 68 69 65 20  |04.504.@fAlphie |
00000FA0: 61 6E 64 20 52 69 63 6B  20 6C 69 76 65 20 33 2E  |and Rick live 3.|
00000FB0: 35 20 6D 69 6C 65 73 20  61 70 61 72 74 2E 20 54  |5 miles apart. T|
00000FC0: 68 65 79 20 73 74 61 72  74 20 6A 6F 67 67 69 6E  |hey start joggin|
00000FD0: 67 20 74 6F 77 61 72 64  73 20 65 61 63 68 20 6F  |g towards each o|
00000FE0: 74 68 65 72 20 61 74 20  74 68 65 20 73 61 6D 65  |ther at the same|
00000FF0: 20 74 69 6D 65 2E 20 48  6F 77 20 6C 6F 6E 67 20  | time. How long |
00001000: 77 69 6C 6C 20 74 68 65  79 20 6A 6F 67 20 62 65  |will they jog be|
00001010: 66 6F 72 65 20 6D 65 65  74 69 6E 67 20 69 66 20  |fore meeting if |
00001020: 52 69 63 6B 20 67 6F 65  73 20 38 20 6D 69 2F 68  |Rick goes 8 mi/h|
00001030: 72 20 61 6E 64 20 41 6C  70 68 69 65 20 67 6F 65  |r and Alphie goe|
00001040: 73 20 36 20 6D 69 2F 68  72 3F 00 41 6C 70 68 69  |s 6 mi/hr?.Alphi|
00001050: 65 00 52 69 63 6B 00 42  65 74 77 65 65 6E 20 74  |e.Rick.Between t|
00001060: 68 65 6D 20 41 6C 70 68  69 65 20 61 6E 64 20 52  |hem Alphie and R|
00001070: 69 63 6B 20 77 69 6C 6C  20 72 75 6E 20 61 20 74  |ick will run a t|
00001080: 6F 74 61 6C 20 6F 66 20  33 2E 35 20 6D 69 6C 65  |otal of 3.5 mile|
00001090: 73 00 26 68 48 6F 77 20  6C 6F 6E 67 20 77 69 6C  |s.&hHow long wil|
000010A0: 6C 20 74 68 65 79 20 6A  6F 67 20 62 65 66 6F 72  |l they jog befor|
000010B0: 65 20 6D 65 65 74 69 6E  67 26 68 00 61 00 41 6C  |e meeting&h.a.Al|
000010C0: 70 68 69 65 27 73 00 72  00 52 69 63 6B 27 73 00  |phie's.r.Rick's.|
000010D0: 61 00 72 00 60 44 61 2B  44 72 20 3D 20 54 6F 74  |a.r.`Da+Dr = Tot|
000010E0: 61 6C 27 00 60 44 61 2B  44 72 20 3D 20 54 6F 74  |al'.`Da+Dr = Tot|
000010F0: 61 6C 27 00 60 44 61 2B  44 72 20 3D 20 54 6F 74  |al'.`Da+Dr = Tot|
00001100: 61 6C 27 00 6D 69 2F 68  72 00 34 00 6D 69 2F 68  |al'.mi/hr.4.mi/h|
00001110: 72 00 68 6F 75 72 73 20  28 60 68 72 27 29 00 32  |r.hours (`hr').2|
00001120: 00 68 72 00 6D 69 6C 65  73 20 28 60 6D 69 27 29  |.hr.miles (`mi')|
00001130: 00 32 00 6D 69 00 26 68  41 6C 70 68 69 65 20 61  |.2.mi.&hAlphie a|
00001140: 6E 64 20 52 69 63 6B 20  6C 69 76 65 20 33 2E 35  |nd Rick live 3.5|
00001150: 20 6D 69 6C 65 73 20 61  70 61 72 74 26 68 00 60  | miles apart&h.`|
00001160: 33 2E 35 27 20 6D 69 6C  65 73 00 33 2E 35 00 26  |3.5' miles.3.5.&|
00001170: 68 41 6C 70 68 69 65 20  67 6F 65 73 20 36 20 6D  |hAlphie goes 6 m|
00001180: 69 2F 68 72 26 68 00 41  6C 70 68 69 65 00 60 36  |i/hr&h.Alphie.`6|
00001190: 27 20 6D 69 2F 68 72 00  36 00 26 68 52 69 63 6B  |' mi/hr.6.&hRick|
000011A0: 20 67 6F 65 73 20 38 20  6D 69 2F 68 72 26 68 00  | goes 8 mi/hr&h.|
000011B0: 52 69 63 6B 00 60 38 27  20 6D 69 2F 68 72 00 38  |Rick.`8' mi/hr.8|
000011C0: 00 6A 6F 67 67 69 6E 67  00 70 65 72 73 6F 6E 00  |.jogging.person.|
000011D0: 74 00 41 6C 70 68 69 65  27 73 00 74 00 52 69 63  |t.Alphie's.t.Ric|
000011E0: 6B 27 73 00 70 65 72 73  6F 6E 00 60 36 20 20 5C  |k's.person.`6  \|
000011F0: 66 30 36 2A 20 20 26 76  27 20 5C 66 31 33 3D 20  |f06*  &v' \f13= |
00001200: 41 6C 70 68 69 65 27 73  20 64 69 73 74 61 6E 63  |Alphie's distanc|
00001210: 65 00 36 26 76 00 60 38  20 20 5C 66 30 36 2A 20  |e.6&v.`8  \f06* |
00001220: 26 76 27 20 20 5C 66 31  33 3D 20 52 69 63 6B 27  |&v'  \f13= Rick'|
00001230: 73 20 64 69 73 74 61 6E  63 65 00 38 26 76 00 61  |s distance.8&v.a|
00001240: 00 72 00 61 00 72 00 54  6F 74 61 6C 00 61 00 36  |.r.a.r.Total.a.6|
00001250: 26 76 00 72 00 38 26 76  00 41 6C 70 68 69 65 27  |&v.r.8&v.Alphie'|
00001260: 73 20 64 69 73 74 20 5C  66 31 34 2B 20 52 69 63  |s dist \f14+ Ric|
00001270: 6B 27 73 20 64 69 73 74  2E 20 5C 66 32 38 3D 54  |k's dist. \f28=T|
00001280: 6F 74 61 6C 20 64 69 73  74 2E 20 5C 6E 20 20 20  |otal dist. \n   |
00001290: 20 60 36 26 76 20 20 20  20 5C 66 31 34 2B 20 20  | `6&v    \f14+  |
000012A0: 38 26 76 20 20 5C 66 32  38 3D 20 20 20 33 2E 35  |8&v  \f28=   3.5|
000012B0: 27 00 36 26 76 2B 38 26  76 3D 33 2E 35 00 2E 32  |'.6&v+8&v=3.5..2|
000012C0: 35 00 26 68 48 6F 77 20  6C 6F 6E 67 20 77 69 6C  |5.&hHow long wil|
000012D0: 6C 20 74 68 65 79 20 6A  6F 79 20 62 65 66 6F 72  |l they joy befor|
000012E0: 65 20 6D 65 65 74 69 6E  67 26 68 00 42 6F 74 68  |e meeting&h.Both|
000012F0: 20 41 6C 70 68 69 65 20  61 6E 64 20 52 69 63 6B  | Alphie and Rick|
00001300: 27 73 20 74 69 6D 65 73  20 61 72 65 00 2E 32 35  |'s times are..25|
00001310: 00 73 6F 20 74 68 65 79  20 77 69 6C 6C 20 6D 65  |.so they will me|
00001320: 65 74 20 69 6E 20 60 2E  32 35 27 20 6F 66 20 61  |et in `.25' of a|
00001330: 6E 20 68 6F 75 72 2E 00  31 32 00 2E 32 35 00 2E  |n hour..12..25..|
00001340: 32 35 00 41 6C 70 68 69  65 27 73 00 26 76 20 3D  |25.Alphie's.&v =|
00001350: 20 2E 32 35 2C 20 73 6F  20 36 26 76 20 3D 20 60  | .25, so 6&v = `|
00001360: 31 2E 35 27 00 31 2E 35  00 52 69 63 6B 27 73 00  |1.5'.1.5.Rick's.|
00001370: 26 76 20 3D 20 2E 32 35  2C 20 73 6F 20 38 26 76  |&v = .25, so 8&v|
00001380: 20 3D 20 60 32 27 00 32  00 33 2E 35 00 40 66 42  | = `2'.2.3.5.@fB|
00001390: 6F 73 74 6F 6E 20 61 6E  64 20 4C 2E 41 2E 20 61  |oston and L.A. a|
000013A0: 72 65 20 32 34 30 30 20  6D 69 6C 65 73 20 61 70  |re 2400 miles ap|
000013B0: 61 72 74 2E 20 48 6F 77  20 6C 6F 6E 67 20 77 69  |art. How long wi|
000013C0: 6C 6C 20 69 74 20 74 61  6B 65 20 61 20 63 6F 6D  |ll it take a com|
000013D0: 6D 75 74 65 72 20 6A 65  74 20 67 6F 69 6E 67 20  |muter jet going |
000013E0: 34 35 30 20 6D 69 2F 68  72 20 66 72 6F 6D 20 42  |450 mi/hr from B|
000013F0: 6F 73 74 6F 6E 20 74 6F  20 4C 2E 41 2E 20 74 6F  |oston to L.A. to|
00001400: 20 70 61 73 73 20 61 20  70 72 69 76 61 74 65 20  | pass a private |
00001410: 6A 65 74 20 67 6F 69 6E  67 20 33 35 30 20 6D 69  |jet going 350 mi|
00001420: 2F 68 72 20 66 72 6F 6D  20 4C 2E 41 2E 20 74 6F  |/hr from L.A. to|
00001430: 20 42 6F 73 74 6F 6E 3F  00 43 6F 6D 6D 75 74 65  | Boston?.Commute|
00001440: 72 00 50 72 69 76 61 74  65 00 54 77 6F 20 6A 65  |r.Private.Two je|
00001450: 74 73 20 61 72 65 20 66  6C 79 69 6E 67 20 74 6F  |ts are flying to|
00001460: 77 61 72 64 73 20 65 61  63 68 20 6F 74 68 65 72  |wards each other|
00001470: 20 61 74 20 64 69 66 66  65 72 65 6E 74 20 72 61  | at different ra|
00001480: 74 65 73 2E 20 54 68 65  69 72 20 74 6F 74 61 6C  |tes. Their total|
00001490: 20 64 69 73 74 61 6E 63  65 20 69 73 20 32 34 30  | distance is 240|
000014A0: 30 20 6D 69 00 26 68 48  6F 77 20 6C 6F 6E 67 20  |0 mi.&hHow long |
000014B0: 77 69 6C 6C 20 69 74 20  74 61 6B 65 26 68 00 63  |will it take&h.c|
000014C0: 00 43 6F 6D 6D 75 74 65  72 27 73 00 70 00 50 72  |.Commuter's.p.Pr|
000014D0: 69 76 61 74 65 27 73 00  63 00 70 00 60 44 63 2B  |ivate's.c.p.`Dc+|
000014E0: 44 70 20 3D 20 54 6F 74  61 6C 27 00 60 44 63 2B  |Dp = Total'.`Dc+|
000014F0: 44 70 20 3D 20 54 6F 74  61 6C 27 00 60 44 63 2B  |Dp = Total'.`Dc+|
00001500: 44 70 20 3D 20 54 6F 74  61 6C 27 00 6D 69 2F 68  |Dp = Total'.mi/h|
00001510: 72 00 34 00 6D 69 2F 68  72 00 68 6F 75 72 73 20  |r.4.mi/hr.hours |
00001520: 28 60 68 72 27 29 00 32  00 68 72 00 6D 69 6C 65  |(`hr').2.hr.mile|
00001530: 73 20 28 60 6D 69 27 29  00 32 00 6D 69 00 26 68  |s (`mi').2.mi.&h|
00001540: 42 6F 73 74 6F 6E 20 61  6E 64 20 4C 2E 41 2E 20  |Boston and L.A. |
00001550: 61 72 65 20 32 34 30 30  20 6D 69 6C 65 73 20 61  |are 2400 miles a|
00001560: 70 61 72 74 26 68 00 60  32 34 30 30 27 00 32 34  |part&h.`2400'.24|
00001570: 30 30 00 26 68 43 6F 6D  6D 75 74 65 72 20 6A 65  |00.&hCommuter je|
00001580: 74 20 67 6F 69 6E 67 20  34 35 30 20 6D 69 2F 68  |t going 450 mi/h|
00001590: 72 26 68 00 74 68 65 20  63 6F 6D 6D 75 74 65 72  |r&h.the commuter|
000015A0: 20 6A 65 74 00 60 34 35  30 27 00 34 35 30 00 26  | jet.`450'.450.&|
000015B0: 68 50 72 69 76 61 74 65  20 6A 65 74 20 67 6F 69  |hPrivate jet goi|
000015C0: 6E 67 20 33 35 30 20 6D  69 2F 68 72 26 68 00 74  |ng 350 mi/hr&h.t|
000015D0: 68 65 20 70 72 69 76 61  74 65 20 6A 65 74 00 60  |he private jet.`|
000015E0: 33 35 30 27 00 33 35 30  00 66 6C 79 69 6E 67 00  |350'.350.flying.|
000015F0: 6A 65 74 00 74 00 74 68  65 20 63 6F 6D 6D 75 74  |jet.t.the commut|
00001600: 65 72 20 6A 65 74 27 73  00 74 00 70 72 69 76 61  |er jet's.t.priva|
00001610: 74 65 20 6A 65 74 27 73  00 6A 65 74 00 60 34 35  |te jet's.jet.`45|
00001620: 30 20 20 5C 66 30 36 2A  20 20 26 76 27 20 5C 66  |0  \f06*  &v' \f|
00001630: 31 33 3D 20 43 6F 6D 6D  75 74 65 72 27 73 20 64  |13= Commuter's d|
00001640: 69 73 74 61 6E 63 65 2E  00 34 35 30 26 76 00 60  |istance..450&v.`|
00001650: 33 35 30 20 5C 66 30 36  2A 20 20 26 76 20 5C 66  |350 \f06*  &v \f|
00001660: 31 33 3D 20 50 72 69 76  61 74 65 27 73 20 64 69  |13= Private's di|
00001670: 73 74 61 6E 63 65 2E 00  33 35 30 26 76 00 63 00  |stance..350&v.c.|
00001680: 70 00 63 00 70 00 54 6F  74 61 6C 00 63 00 34 35  |p.c.p.Total.c.45|
00001690: 30 26 76 00 70 00 33 35  30 26 76 00 43 27 73 20  |0&v.p.350&v.C's |
000016A0: 64 69 73 74 2E 20 5C 66  31 31 2B 20 50 27 73 20  |dist. \f11+ P's |
000016B0: 64 69 73 74 2E 20 5C 66  32 33 3D 20 54 6F 74 61  |dist. \f23= Tota|
000016C0: 6C 20 64 69 73 74 2E 20  5C 6E 20 20 60 34 35 30  |l dist. \n  `450|
000016D0: 26 76 20 5C 66 31 31 2B  20 20 33 35 30 26 76 20  |&v \f11+  350&v |
000016E0: 20 5C 66 32 33 3D 20 32  34 30 30 27 00 34 35 30  | \f23= 2400'.450|
000016F0: 26 76 2B 33 35 30 26 76  3D 32 34 30 30 00 33 00  |&v+350&v=2400.3.|
00001700: 26 68 48 6F 77 20 6C 6F  6E 67 20 77 69 6C 6C 20  |&hHow long will |
00001710: 69 74 20 74 61 6B 65 26  68 00 54 68 65 20 74 69  |it take&h.The ti|
00001720: 6D 65 20 69 74 20 74 61  6B 65 73 20 66 6F 72 20  |me it takes for |
00001730: 74 68 65 20 6A 65 74 73  20 74 6F 20 70 61 73 73  |the jets to pass|
00001740: 20 65 61 63 68 20 6F 74  68 65 72 20 69 73 00 33  | each other is.3|
00001750: 00 61 66 74 65 72 20 60  33 27 20 68 6F 75 72 73  |.after `3' hours|
00001760: 20 74 68 65 79 20 77 69  6C 6C 20 70 61 73 73 20  | they will pass |
00001770: 65 61 63 68 20 6F 74 68  65 72 2E 00 31 32 00 33  |each other..12.3|
00001780: 00 33 00 74 68 65 20 63  6F 6D 6D 75 74 65 72 20  |.3.the commuter |
00001790: 6A 65 74 27 73 00 26 76  20 3D 20 33 2C 20 73 6F  |jet's.&v = 3, so|
000017A0: 20 34 35 30 20 2A 20 26  76 20 3D 20 60 31 33 35  | 450 * &v = `135|
000017B0: 30 27 00 31 33 35 30 00  70 72 69 76 61 74 65 20  |0'.1350.private |
000017C0: 6A 65 74 27 73 00 26 76  20 3D 20 33 2C 20 73 6F  |jet's.&v = 3, so|
000017D0: 20 33 35 30 20 2A 20 26  76 20 3D 20 60 31 30 35  | 350 * &v = `105|
000017E0: 30 27 00 31 30 35 30 00  32 34 30 30 00 40 66 4B  |0'.1050.2400.@fK|
000017F0: 69 6D 20 61 6E 64 20 50  61 75 6C 20 6C 69 76 65  |im and Paul live|
00001800: 20 38 30 30 20 6D 65 74  65 72 73 20 61 70 61 72  | 800 meters apar|
00001810: 74 2E 20 49 66 20 4B 69  6D 20 77 61 6C 6B 73 20  |t. If Kim walks |
00001820: 37 20 6D 2F 73 65 63 20  28 6D 65 74 65 72 73 20  |7 m/sec (meters |
00001830: 70 65 72 20 73 65 63 6F  6E 64 29 20 61 6E 64 20  |per second) and |
00001840: 50 61 75 6C 20 77 61 6C  6B 73 20 35 2E 35 20 6D  |Paul walks 5.5 m|
00001850: 2F 73 65 63 2C 20 68 6F  77 20 6C 6F 6E 67 20 77  |/sec, how long w|
00001860: 69 6C 6C 20 69 74 20 74  61 6B 65 20 74 68 65 6D  |ill it take them|
00001870: 20 74 6F 20 6D 65 65 74  20 69 66 20 74 68 65 79  | to meet if they|
00001880: 20 6C 65 61 76 65 20 74  68 65 69 72 20 68 6F 75  | leave their hou|
00001890: 73 65 73 20 61 74 20 74  68 65 20 73 61 6D 65 20  |ses at the same |
000018A0: 74 69 6D 65 3F 00 4B 69  6D 00 50 61 75 6C 00 4B  |time?.Kim.Paul.K|
000018B0: 69 6D 20 61 6E 64 20 50  61 75 6C 20 77 61 6C 6B  |im and Paul walk|
000018C0: 20 74 6F 77 61 72 64 73  20 65 61 63 68 20 6F 74  | towards each ot|
000018D0: 68 65 72 20 61 74 20 64  69 66 66 65 72 65 6E 74  |her at different|
000018E0: 20 72 61 74 65 73 2E 20  54 68 65 20 74 6F 74 61  | rates. The tota|
000018F0: 6C 20 64 69 73 74 61 6E  63 65 20 69 73 20 38 30  |l distance is 80|
00001900: 30 20 6D 65 74 65 72 73  00 26 68 48 6F 77 20 6C  |0 meters.&hHow l|
00001910: 6F 6E 67 20 77 69 6C 6C  20 69 74 20 74 61 6B 65  |ong will it take|
00001920: 26 68 00 6B 00 4B 69 6D  27 73 00 70 00 50 61 75  |&h.k.Kim's.p.Pau|
00001930: 6C 73 00 74 00 6B 00 60  44 6B 2B 44 70 20 3D 20  |ls.t.k.`Dk+Dp = |
00001940: 54 6F 74 61 6C 27 00 60  44 6B 2B 44 70 20 3D 20  |Total'.`Dk+Dp = |
00001950: 54 6F 74 61 6C 27 00 60  44 6B 2B 44 70 20 3D 20  |Total'.`Dk+Dp = |
00001960: 54 6F 74 61 6C 27 00 60  6D 2F 73 65 63 27 00 35  |Total'.`m/sec'.5|
00001970: 00 6D 2F 73 65 63 00 73  65 63 6F 6E 64 73 20 28  |.m/sec.seconds (|
00001980: 60 73 65 63 27 29 00 35  00 73 65 63 00 6D 65 74  |`sec').5.sec.met|
00001990: 65 72 73 20 28 60 6D 27  29 00 31 00 6D 00 26 68  |ers (`m').1.m.&h|
000019A0: 4B 69 6D 20 61 6E 64 20  50 61 75 6C 20 6C 69 76  |Kim and Paul liv|
000019B0: 65 20 38 30 30 20 6D 65  74 65 72 73 20 61 70 61  |e 800 meters apa|
000019C0: 72 74 26 68 00 60 38 30  30 27 20 6D 65 74 65 72  |rt&h.`800' meter|
000019D0: 73 00 38 30 30 00 26 68  4B 69 6D 20 77 61 6C 6B  |s.800.&hKim walk|
000019E0: 73 20 37 20 6D 2F 73 65  63 26 68 00 4B 69 6D 00  |s 7 m/sec&h.Kim.|
000019F0: 60 37 27 20 6D 2F 73 65  63 00 37 00 26 68 50 61  |`7' m/sec.7.&hPa|
00001A00: 75 6C 20 77 61 6C 6B 73  20 35 2E 35 20 6D 2F 73  |ul walks 5.5 m/s|
00001A10: 65 63 26 68 00 50 61 75  6C 00 60 35 2E 35 27 20  |ec&h.Paul.`5.5' |
00001A20: 6D 2F 73 65 63 00 35 2E  35 00 77 61 6C 6B 69 6E  |m/sec.5.5.walkin|
00001A30: 67 00 70 65 72 73 6F 6E  00 74 00 4B 69 6D 27 73  |g.person.t.Kim's|
00001A40: 00 74 00 50 61 75 6C 27  73 00 70 65 72 73 6F 6E  |.t.Paul's.person|
00001A50: 00 60 37 20 20 5C 66 30  36 2A 20 20 26 76 27 20  |.`7  \f06*  &v' |
00001A60: 5C 66 31 33 3D 20 4B 69  6D 27 73 20 64 69 73 74  |\f13= Kim's dist|
00001A70: 61 6E 63 65 2E 00 37 26  76 00 60 35 2E 35 20 20  |ance..7&v.`5.5  |
00001A80: 5C 66 30 36 2A 20 20 26  76 27 20 20 5C 66 31 33  |\f06*  &v'  \f13|
00001A90: 3D 20 50 61 75 6C 27 73  20 64 69 73 74 61 6E 63  |= Paul's distanc|
00001AA0: 65 2E 00 35 2E 35 26 76  00 6B 00 70 00 6B 00 70  |e..5.5&v.k.p.k.p|
00001AB0: 00 54 6F 74 61 6C 00 6B  00 37 26 76 00 70 00 35  |.Total.k.7&v.p.5|
00001AC0: 2E 35 26 76 00 4B 69 6D  27 73 20 64 69 73 74 2E  |.5&v.Kim's dist.|
00001AD0: 5C 66 31 32 2B 50 61 75  6C 27 73 20 64 69 73 74  |\f12+Paul's dist|
00001AE0: 2E 20 5C 66 32 36 3D 20  54 6F 74 61 6C 20 64 69  |. \f26= Total di|
00001AF0: 73 74 2E 20 5C 6E 20 20  20 60 37 26 76 20 20 20  |st. \n   `7&v   |
00001B00: 20 5C 66 31 32 2B 20 20  20 35 2E 35 20 20 5C 66  | \f12+   5.5  \f|
00001B10: 32 36 3D 20 20 20 38 30  30 27 00 37 26 76 2B 35  |26=   800'.7&v+5|
00001B20: 2E 35 26 76 3D 38 30 30  00 36 34 00 26 68 48 6F  |.5&v=800.64.&hHo|
00001B30: 77 20 6C 6F 6E 67 20 77  69 6C 6C 20 69 74 20 74  |w long will it t|
00001B40: 61 6B 65 26 68 3F 00 54  68 65 20 74 69 6D 65 20  |ake&h?.The time |
00001B50: 69 74 20 77 69 6C 6C 20  74 61 6B 65 20 74 68 65  |it will take the|
00001B60: 6D 20 74 6F 20 6D 65 65  74 20 69 73 00 36 34 00  |m to meet is.64.|
00001B70: 74 68 65 79 20 77 69 6C  6C 20 6D 65 65 74 20 61  |they will meet a|
00001B80: 66 74 65 72 20 60 36 34  27 20 73 65 63 6F 6E 64  |fter `64' second|
00001B90: 73 2E 00 31 32 00 36 34  00 36 34 00 4B 69 6D 27  |s..12.64.64.Kim'|
00001BA0: 73 00 26 76 20 3D 20 36  34 2C 20 73 6F 20 37 20  |s.&v = 64, so 7 |
00001BB0: 2A 20 26 76 20 3D 20 60  34 34 38 27 00 34 34 38  |* &v = `448'.448|
00001BC0: 00 50 61 75 6C 27 73 00  26 76 20 3D 20 36 34 2C  |.Paul's.&v = 64,|
00001BD0: 20 73 6F 20 35 2E 35 20  2A 20 26 76 20 3D 20 60  | so 5.5 * &v = `|
00001BE0: 33 35 32 27 00 33 35 32  00 38 30 30 00 7C 6C     |352'.352.800.|l |
 A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&D(4,TOTAL)&D(5,RATE)&D(10,TIME)&D(15,DI
ST.)@RREAD@PREAD THE WHOLE PROBLEM. THIN
K: WHAT ARE THE FACTS? WHAT IS BEING ASK
ED? (PRESS ANY KEY TO CONTINUE).@HWHAT A
RE THE FACTS? {}.@HWHAT IS BEING ASKED? 
{}?@I(0) @RPLAN@PLET D{} = {} DIST. AND 
D{} = {} DIST. WRITE AN EQUATION TO RELA
TE D{} AND D{} TO THE TOTAL DIST.@HTHE T
OTAL IS THE SUM OF THEIR DISTANCES.@H{} 
SHOWS THAT THE SUM OF THE DISTANCES TRAV
ELLED WILL EQUAL THE TOTAL DISTANCE BETW
EEN THEM.@I(20,C0, )@PONE ANSWER IS {}. 
CHANGE YOUR ANSWER IF IT IS NOT EQUIVALE
NT. (PRESS RETURN)@HTHE TOTAL IS THE SUM
 OF THEIR DISTANCES.@H{} SHOWS THAT THE 
SUM OF THE DISTANCES TRAVELLED WILL EQUA
L THE TOTAL DISTANCE BETWEEN THEM.@I(20,
C0, )@RDATA ENTRY@PFILL IN THE UNITS BY 
WHICH RATE, TIME, AND DISTANCE ARE MEASU
RED. (USE ABBREVIATED FORM).@HRATE OF SP
EED IS COMMONLY MEASURED IN MILES PER HO
UR(MI/HR), METERS PER MINUTE (M/MIN), ET
C.@HTHE RATE OF SPEED IN THIS PROBLEM IS
 MEASURED IN {}.@I(6,C{},{})@HTIME IS CO
MMONLY MEASURED IN SECONDS(SEC), MINUTES
(MIN), HOURS(HR), DAYS (DA) ETC.@HTIME I
N THIS PROBLEM IS MEASURED IN {}.@I(11,C
{},{})@HDISTANCE IS COMMONLY MEASURED IN
 FEET (FT), YARDS(YD), METERS(M), MILES(
MI), KILOMETERS(KM), ETC.@HDISTANCE IN T
HIS PROBLEM IS MEASURED IN {}.@I(16,C{},
{})@PENTER THE FACTS FROM THE PROBLEM IN
TO THE CHART.@H{}@HTHE TOTAL DISTANCE IS
 {}.@I(19,I,{})@H{}@HTHE RATE OF SPEED F
OR {} IS {}.@I(7,I,{})@H{}@HTHE RATE OF 
SPEED FOR {} IS {}.@I(8,I,{})@PUSE A VAR
IABLE TO REPRESENT THE {} TIME FOR EACH 
{}.@HUSE THE SAME VARIABLE, SUCH AS `T' 
TO REPRESENT THE TIME FOR BOTH PEOPLE.@H
USE A VARIABLE SUCH AS `{}' TO REPRESENT
 {} TIME.@I(12,I,&V)@HUSE THE SAME VARIA
BLE, SUCH AS `T' TO REPRESENT THE TIME F
OR BOTH OF THEM.@HUSE A VARIABLE SUCH AS
 `{}' TO REPRESENT {} TIME.@I(13,I,&V)@R
PARTS@PWRITE AN EXPRESSION TO REPRESENT 
THE DISTANCE TRAVELLED BY EACH {}.@HRATE
 * TIME = DISTANCE@HRATE   \F06* TIME \F
13= DISTANCE \N{}@I(17,I,{})@HRATE * TIM
E = DISTANCE@HRATE \F06* TIME \F13= DIST
ANCE \N{}@I(18,I,{})&D(20, )@RWHOLE@PSUB
STITUTE YOUR EXPRESSIONS FOR D{}, D{} AN
D TOTAL IN THE EQUATION: \N  D{}+D{} = {
}@HD{} = {} AND D{} = {}.@H{}@I(20,I,{})
@S@RCOMPUTE@PSOLVE THE EQUATION FOR "&V"
. USE PAPER AND PENCIL AND ENTER THE FIN
AL EQUATION, OR USE THE CALCULATOR.@HISO
LATE "&V" ON ONE SIDE OF THE EQUATION.@H
THE CALCULATOR SOLVES EQUATIONS FOR YOU 
AND DISPLAYS THE STEPS IN THE SOLUTION.@
I(20,I,&V={})@PNOW ENTER YOUR ANSWER IN 
THE GRID. REMEMBER WHAT IS BEING ASKED. 
{}&W(20)@H{} EQUAL TO THE VALUE OF "&V".
@H&V={}, SO {}@I({},I,{})@S&D(13,{})@RCH
ECK@PREREAD THE PROBLEM. CHECK YOUR ANSW
ERS. EVALUATE THE REMAINING EXPRESSIONS 
IN THE CHART.@HSUBSTITUTE FOR "&V" IN TH
E EXPRESSION FOR {} DISTANCE. THEN CALCU
LATE THE RESULT.@H{}@I(17,I,{})@HSUBSTIT
UTE FOR "&V" IN THE EXPRESSION FOR {} DI
STANCE. THEN CALCULATE THE RESULT.@H{}@I
(18,I,{})&D(0,CHECK YOUR WORK. THE SUM O
F THEIR DISTANCES SHOULD BE {}. GET READ
Y FOR A NEW PROBLEM.)@FPATRICK AND MAURA
 LIVE 504 KM. APART. HOW LONG WILL IT TA
KE THEM TO MEET IF THEY LEAVE THEIR HOUS
ES AT THE SAME TIME AND MAURA DRIVES 50 
KM/HR AND PATRICK DRIVES 34 KM/HR?.MAURA
.PATRICK.TOGETHER THEY DRIVE A TOTAL OF 
504 KM. THEY DRIVE TOWARDS EACH OTHER AT
 DIFFERENT RATES.&HHOW LONG WILL IT TAKE
 THEM TO MEET&H.M.MAURA'S.P.PATRICK'S.M.
P.`DP+DM = TOTAL'.`DP+DM = TOTAL'.`DP+DM
 = TOTAL'.KILOMETERS PER HOUR (`KM/HR').
5.KM/HR.HOURS. (`HR').2.HR.KILOMETERS (`
KM').2.KM.&HPATRICK AND MAURA LIVE 504 K
M. APART.&H.`504' KM.504.&HMAURA DRIVES 
50 KM/HR&H.MAURA.`50' KM/HR.50.&HPATRICK
 DRIVES 34 KM/HR&H.PATRICK.`34' KM/HR.34
.DRIVING.PERSON.T.MAURA'S.T.PATRICK'S.PE
RSON.`50   \F06*  &V' \F13= MAURA'S DIST
ANCE.50&V.`34  \F06*  &V' \F13= PATRICK'
S DISTANCE..34&V.M.P.M.P.TOTAL.M.50&V.P.
34&V.MAURA'S DIST.\F14+PATRICK'S DIST.\F
31= TOTAL \N`50&V   \F14+  34&V  \F31= 5
04'.50&V+34&V=504.6.&QHOW LONG WILL IT T
AKE THEM TO MEET&Q.BOTH MAURA AND PATRIC
K'S TIMES ARE.6.THEY WILL MEET AFTER `6'
 HOURS..12.6.6.MAURA'S.50&V = `300'.300.
PATRICK'S.34&V = `204'.204.504.@FALPHIE 
AND RICK LIVE 3.5 MILES APART. THEY STAR
T JOGGING TOWARDS EACH OTHER AT THE SAME
 TIME. HOW LONG WILL THEY JOG BEFORE MEE
TING IF RICK GOES 8 MI/HR AND ALPHIE GOE
S 6 MI/HR?.ALPHIE.RICK.BETWEEN THEM ALPH
IE AND RICK WILL RUN A TOTAL OF 3.5 MILE
S.&HHOW LONG WILL THEY JOG BEFORE MEETIN
G&H.A.ALPHIE'S.R.RICK'S.A.R.`DA+DR = TOT
AL'.`DA+DR = TOTAL'.`DA+DR = TOTAL'.MI/H
R.4.MI/HR.HOURS (`HR').2.HR.MILES (`MI')
.2.MI.&HALPHIE AND RICK LIVE 3.5 MILES A
PART&H.`3.5' MILES.3.5.&HALPHIE GOES 6 M
I/HR&H.ALPHIE.`6' MI/HR.6.&HRICK GOES 8 
MI/HR&H.RICK.`8' MI/HR.8.JOGGING.PERSON.
T.ALPHIE'S.T.RICK'S.PERSON.`6  \F06*  &V
' \F13= ALPHIE'S DISTANCE.6&V.`8  \F06* 
&V'  \F13= RICK'S DISTANCE.8&V.A.R.A.R.T
OTAL.A.6&V.R.8&V.ALPHIE'S DIST \F14+ RIC
K'S DIST. \F28=TOTAL DIST. \N    `6&V   
 \F14+  8&V  \F28=   3.5'.6&V+8&V=3.5..2
5.&HHOW LONG WILL THEY JOY BEFORE MEETIN
G&H.BOTH ALPHIE AND RICK'S TIMES ARE..25
.SO THEY WILL MEET IN `.25' OF AN HOUR..
12..25..25.ALPHIE'S.&V = .25, SO 6&V = `
1.5'.1.5.RICK'S.&V = .25, SO 8&V = `2'.2
.3.5.@FBOSTON AND L.A. ARE 2400 MILES AP
ART. HOW LONG WILL IT TAKE A COMMUTER JE
T GOING 450 MI/HR FROM BOSTON TO L.A. TO
 PASS A PRIVATE JET GOING 350 MI/HR FROM
 L.A. TO BOSTON?.COMMUTER.PRIVATE.TWO JE
TS ARE FLYING TOWARDS EACH OTHER AT DIFF
ERENT RATES. THEIR TOTAL DISTANCE IS 240
0 MI.&HHOW LONG WILL IT TAKE&H.C.COMMUTE
R'S.P.PRIVATE'S.C.P.`DC+DP = TOTAL'.`DC+
DP = TOTAL'.`DC+DP = TOTAL'.MI/HR.4.MI/H
R.HOURS (`HR').2.HR.MILES (`MI').2.MI.&H
BOSTON AND L.A. ARE 2400 MILES APART&H.`
2400'.2400.&HCOMMUTER JET GOING 450 MI/H
R&H.THE COMMUTER JET.`450'.450.&HPRIVATE
 JET GOING 350 MI/HR&H.THE PRIVATE JET.`
350'.350.FLYING.JET.T.THE COMMUTER JET'S
.T.PRIVATE JET'S.JET.`450  \F06*  &V' \F
13= COMMUTER'S DISTANCE..450&V.`350 \F06
*  &V \F13= PRIVATE'S DISTANCE..350&V.C.
P.C.P.TOTAL.C.450&V.P.350&V.C'S DIST. \F
11+ P'S DIST. \F23= TOTAL DIST. \N  `450
&V \F11+  350&V  \F23= 2400'.450&V+350&V
=2400.3.&HHOW LONG WILL IT TAKE&H.THE TI
ME IT TAKES FOR THE JETS TO PASS EACH OT
HER IS.3.AFTER `3' HOURS THEY WILL PASS 
EACH OTHER..12.3.3.THE COMMUTER JET'S.&V
 = 3, SO 450 * &V = `1350'.1350.PRIVATE 
JET'S.&V = 3, SO 350 * &V = `1050'.1050.
2400.@FKIM AND PAUL LIVE 800 METERS APAR
T. IF KIM WALKS 7 M/SEC (METERS PER SECO
ND) AND PAUL WALKS 5.5 M/SEC, HOW LONG W
ILL IT TAKE THEM TO MEET IF THEY LEAVE T
HEIR HOUSES AT THE SAME TIME?.KIM.PAUL.K
IM AND PAUL WALK TOWARDS EACH OTHER AT D
IFFERENT RATES. THE TOTAL DISTANCE IS 80
0 METERS.&HHOW LONG WILL IT TAKE&H.K.KIM
'S.P.PAULS.T.K.`DK+DP = TOTAL'.`DK+DP = 
TOTAL'.`DK+DP = TOTAL'.`M/SEC'.5.M/SEC.S
ECONDS (`SEC').5.SEC.METERS (`M').1.M.&H
KIM AND PAUL LIVE 800 METERS APART&H.`80
0' METERS.800.&HKIM WALKS 7 M/SEC&H.KIM.
`7' M/SEC.7.&HPAUL WALKS 5.5 M/SEC&H.PAU
L.`5.5' M/SEC.5.5.WALKING.PERSON.T.KIM'S
.T.PAUL'S.PERSON.`7  \F06*  &V' \F13= KI
M'S DISTANCE..7&V.`5.5  \F06*  &V'  \F13
= PAUL'S DISTANCE..5.5&V.K.P.K.P.TOTAL.K
.7&V.P.5.5&V.KIM'S DIST.\F12+PAUL'S DIST
. \F26= TOTAL DIST. \N   `7&V    \F12+  
 5.5  \F26=   800'.7&V+5.5&V=800.64.&HHO
W LONG WILL IT TAKE&H?.THE TIME IT WILL 
TAKE THEM TO MEET IS.64.THEY WILL MEET A
FTER `64' SECONDS..12.64.64.KIM'S.&V = 6
4, SO 7 * &V = `448'.448.PAUL'S.&V = 64,
 SO 5.5 * &V = `352'.352.800.|L
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL