DIST1L2
FILE INFORMATION
FILENAME(S): DIST1L2
FILE TYPE(S): PRG
FILE SIZE: 7.3K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
affad1f0651cbe172fef33c4e177f68967eedcc1fe064ee4ed8b563e1ba6cf16
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST1L2 | PRG | Radd Maxx | 15 | 1 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 40 71 7B 7D 40 64 67 30 34 26 64 28 31 | A @q{}@dg04&d(1|
00000010: 2C 55 2F 4D 65 61 73 29 26 63 28 32 2C 7B 7D 29 |,U/Meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29 26 64 28 34 2C 54 6F 74 |&c(3,{})&d(4,Tot|
00000030: 2E 29 26 64 28 35 2C 52 61 74 65 29 26 64 28 31 |.)&d(5,Rate)&d(1|
00000040: 30 2C 54 69 6D 65 29 26 64 28 31 35 2C 44 69 73 |0,Time)&d(15,Dis|
00000050: 74 29 40 72 52 45 41 44 40 70 52 65 61 64 20 74 |t)@rREAD@pRead t|
00000060: 68 65 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D |he whole problem|
00000070: 2E 20 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 |. Think: What ar|
00000080: 65 20 74 68 65 20 66 61 63 74 73 3F 20 57 68 61 |e the facts? Wha|
00000090: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
000000A0: 3F 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 |? (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E 29 40 68 | to continue.)@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 40 68 57 68 61 74 20 69 73 20 |ts? {}@hWhat is |
000000E0: 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 26 68 7B |being asked? &h{|
000000F0: 7D 26 68 40 69 28 30 29 20 40 72 50 4C 41 4E 40 |}&h@i(0) @rPLAN@|
00000100: 70 4C 65 74 20 44 7B 7D 3D 7B 7D 20 64 69 73 74 |pLet D{}={} dist|
00000110: 2E 20 61 6E 64 20 44 7B 7D 20 3D 20 7B 7D 20 64 |. and D{} = {} d|
00000120: 69 73 74 2E 20 57 72 69 74 65 20 61 6E 20 65 71 |ist. Write an eq|
00000130: 75 61 74 69 6F 6E 20 74 6F 20 72 65 6C 61 74 65 |uation to relate|
00000140: 20 44 7B 7D 20 61 6E 64 20 44 7B 7D 20 74 6F 20 | D{} and D{} to |
00000150: 74 68 65 20 60 54 6F 74 61 6C 27 20 64 69 73 74 |the `Total' dist|
00000160: 2E 40 68 7B 7D 40 68 7B 7D 20 73 68 6F 77 73 20 |.@h{}@h{} shows |
00000170: 74 68 61 74 20 74 68 65 20 73 75 6D 20 6F 66 20 |that the sum of |
00000180: 74 68 65 20 64 69 73 74 61 6E 63 65 73 20 74 72 |the distances tr|
00000190: 61 76 65 6C 6C 65 64 20 7B 7D 20 65 71 75 61 6C |avelled {} equal|
000001A0: 73 20 74 68 65 20 74 6F 74 61 6C 20 64 69 73 74 |s the total dist|
000001B0: 61 6E 63 65 20 62 65 74 77 65 65 6E 20 74 68 65 |ance between the|
000001C0: 6D 2E 40 69 28 32 30 2C 63 30 2C 20 29 40 70 4F |m.@i(20,c0, )@pO|
000001D0: 6E 65 20 61 6E 73 77 65 72 20 69 73 20 7B 7D 2E |ne answer is {}.|
000001E0: 20 43 68 61 6E 67 65 20 79 6F 75 72 20 61 6E 73 | Change your ans|
000001F0: 77 65 72 20 69 66 20 69 74 20 69 73 20 6E 6F 74 |wer if it is not|
00000200: 20 65 71 75 69 76 61 6C 65 6E 74 2E 20 28 50 72 | equivalent. (Pr|
00000210: 65 73 73 20 72 65 74 75 72 6E 29 40 68 7B 7D 40 |ess return)@h{}@|
00000220: 68 7B 7D 20 73 68 6F 77 73 20 74 68 61 74 20 74 |h{} shows that t|
00000230: 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 64 69 |he sum of the di|
00000240: 73 74 61 6E 63 65 73 20 74 72 61 76 65 6C 6C 65 |stances travelle|
00000250: 64 20 7B 7D 20 65 71 75 61 6C 73 20 74 68 65 20 |d {} equals the |
00000260: 74 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 20 62 |total distance b|
00000270: 65 74 77 65 65 6E 20 74 68 65 6D 2E 40 69 28 32 |etween them.@i(2|
00000280: 30 2C 63 30 2C 20 29 40 72 44 41 54 41 20 45 4E |0,c0, )@rDATA EN|
00000290: 54 52 59 40 70 46 69 6C 6C 20 69 6E 20 74 68 65 |TRY@pFill in the|
000002A0: 20 75 6E 69 74 73 20 62 79 20 77 68 69 63 68 20 | units by which |
000002B0: 72 61 74 65 2C 20 74 69 6D 65 2C 20 61 6E 64 20 |rate, time, and |
000002C0: 64 69 73 74 61 6E 63 65 20 61 72 65 20 6D 65 61 |distance are mea|
000002D0: 73 75 72 65 64 2E 20 28 55 73 65 20 61 62 62 72 |sured. (Use abbr|
000002E0: 65 76 69 61 74 65 64 20 66 6F 72 6D 29 2E 40 68 |eviated form).@h|
000002F0: 52 61 74 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C 79 |Rate is commonly|
00000300: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 6D 69 6C | measured in mil|
00000310: 65 73 20 70 65 72 20 68 6F 75 72 20 28 6D 69 2F |es per hour (mi/|
00000320: 68 72 29 2C 20 66 65 65 74 20 70 65 72 20 73 65 |hr), feet per se|
00000330: 63 6F 6E 64 20 28 66 74 2F 73 65 63 29 2C 20 6D |cond (ft/sec), m|
00000340: 65 74 65 72 73 20 70 65 72 20 73 65 63 6F 6E 64 |eters per second|
00000350: 20 28 6D 2F 73 65 63 29 2C 20 65 74 63 2E 40 68 | (m/sec), etc.@h|
00000360: 54 68 65 20 72 61 74 65 20 6F 66 20 73 70 65 65 |The rate of spee|
00000370: 64 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 |d in this proble|
00000380: 6D 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E |m is measured in|
00000390: 20 60 7B 7D 27 2E 40 69 28 36 2C 63 7B 7D 2C 7B | `{}'.@i(6,c{},{|
000003A0: 7D 29 40 68 54 69 6D 65 20 69 73 20 63 6F 6D 6D |})@hTime is comm|
000003B0: 6F 6E 6C 79 20 6D 65 61 73 75 72 65 64 20 69 6E |only measured in|
000003C0: 20 73 65 63 6F 6E 64 73 20 28 73 65 63 29 2C 20 | seconds (sec), |
000003D0: 6D 69 6E 75 74 65 73 20 28 6D 69 6E 29 2C 20 68 |minutes (min), h|
000003E0: 6F 75 72 73 20 28 68 72 29 2C 20 64 61 79 73 20 |ours (hr), days |
000003F0: 28 64 61 29 2C 20 65 74 63 2E 40 68 54 69 6D 65 |(da), etc.@hTime|
00000400: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
00000410: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
00000420: 7B 7D 40 69 28 31 31 2C 63 7B 7D 2C 7B 7D 29 40 |{}@i(11,c{},{})@|
00000430: 68 44 69 73 74 61 6E 63 65 20 69 73 20 63 6F 6D |hDistance is com|
00000440: 6D 6F 6E 6C 79 20 6D 65 61 73 75 72 65 64 20 69 |monly measured i|
00000450: 6E 20 66 65 65 74 20 28 66 74 29 2C 20 79 61 72 |n feet (ft), yar|
00000460: 64 73 20 28 79 64 29 2C 20 6D 65 74 65 72 73 20 |ds (yd), meters |
00000470: 28 6D 29 2C 20 6D 69 6C 65 73 20 28 6D 69 29 2C |(m), miles (mi),|
00000480: 20 6B 69 6C 6F 6D 65 74 65 72 73 20 28 6B 6D 29 | kilometers (km)|
00000490: 2C 20 65 74 63 2E 40 68 44 69 73 74 61 6E 63 65 |, etc.@hDistance|
000004A0: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
000004B0: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
000004C0: 7B 7D 40 69 28 31 36 2C 63 7B 7D 2C 7B 7D 29 40 |{}@i(16,c{},{})@|
000004D0: 70 45 6E 74 65 72 20 74 68 65 20 66 61 63 74 73 |pEnter the facts|
000004E0: 20 66 72 6F 6D 20 74 68 65 20 70 72 6F 62 6C 65 | from the proble|
000004F0: 6D 20 69 6E 74 6F 20 74 68 65 20 67 72 69 64 2E |m into the grid.|
00000500: 40 68 7B 7D 2E 40 68 54 68 65 20 72 61 74 65 20 |@h{}.@hThe rate |
00000510: 6F 66 20 73 70 65 65 64 20 66 6F 72 20 7B 7D 20 |of speed for {} |
00000520: 69 73 20 7B 7D 2E 40 69 28 37 2C 69 2C 7B 7D 29 |is {}.@i(7,i,{})|
00000530: 40 68 7B 7D 2E 40 68 54 68 65 20 72 61 74 65 20 |@h{}.@hThe rate |
00000540: 6F 66 20 73 70 65 65 64 20 66 6F 72 20 7B 7D 20 |of speed for {} |
00000550: 69 73 20 7B 7D 2E 40 69 28 38 2C 69 2C 7B 7D 29 |is {}.@i(8,i,{})|
00000560: 40 68 7B 7D 40 68 7B 7D 20 69 73 20 7B 7D 20 74 |@h{}@h{} is {} t|
00000570: 69 6D 65 2E 40 69 28 31 32 2C 69 2C 7B 7D 29 40 |ime.@i(12,i,{})@|
00000580: 68 7B 7D 40 68 7B 7D 20 69 73 20 7B 7D 20 74 69 |h{}@h{} is {} ti|
00000590: 6D 65 2E 40 69 28 31 33 2C 69 2C 7B 7D 29 40 70 |me.@i(13,i,{})@p|
000005A0: 43 68 6F 6F 73 65 20 61 20 76 61 72 69 61 62 6C |Choose a variabl|
000005B0: 65 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 |e to represent t|
000005C0: 68 65 20 64 69 73 74 61 6E 63 65 20 62 65 74 77 |he distance betw|
000005D0: 65 65 6E 20 74 68 65 6D 20 7B 7D 2E 40 68 55 73 |een them {}.@hUs|
000005E0: 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 6F 20 |e a variable to |
000005F0: 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 74 6F |represent the to|
00000600: 74 61 6C 20 64 69 73 74 61 6E 63 65 2E 40 68 55 |tal distance.@hU|
00000610: 73 65 20 61 20 6C 65 74 74 65 72 2C 20 73 75 63 |se a letter, suc|
00000620: 68 20 61 73 20 60 74 27 20 74 6F 20 72 65 70 72 |h as `t' to repr|
00000630: 65 73 65 6E 74 20 74 68 65 20 54 6F 74 61 6C 20 |esent the Total |
00000640: 64 69 73 74 61 6E 63 65 2E 40 69 28 31 39 2C 69 |distance.@i(19,i|
00000650: 2C 26 76 29 40 72 50 41 52 54 53 40 70 43 61 6C |,&v)@rPARTS@pCal|
00000660: 63 75 6C 61 74 65 20 74 68 65 20 64 69 73 74 61 |culate the dista|
00000670: 6E 63 65 20 74 72 61 76 65 6C 6C 65 64 20 62 79 |nce travelled by|
00000680: 20 65 61 63 68 20 7B 7D 2E 40 68 52 61 74 65 20 | each {}.@hRate |
00000690: 2A 20 54 69 6D 65 20 3D 20 44 69 73 74 61 6E 63 |* Time = Distanc|
000006A0: 65 40 68 52 61 74 65 20 20 5C 66 30 35 2A 20 20 |e@hRate \f05* |
000006B0: 5C 66 30 37 54 69 6D 65 20 5C 66 31 32 3D 20 44 |\f07Time \f12= D|
000006C0: 69 73 74 61 6E 63 65 20 5C 6E 7B 7D 40 69 28 31 |istance \n{}@i(1|
000006D0: 37 2C 69 2C 7B 7D 29 40 68 52 61 74 65 20 2A 20 |7,i,{})@hRate * |
000006E0: 54 69 6D 65 20 3D 20 44 69 73 74 61 6E 63 65 40 |Time = Distance@|
000006F0: 68 52 61 74 65 20 5C 66 30 35 2A 20 20 5C 66 30 |hRate \f05* \f0|
00000700: 37 54 69 6D 65 20 20 5C 66 31 32 3D 20 44 69 73 |7Time \f12= Dis|
00000710: 74 61 6E 63 65 20 5C 6E 7B 7D 40 69 28 31 38 2C |tance \n{}@i(18,|
00000720: 69 2C 7B 7D 29 26 64 28 32 30 2C 20 29 40 72 57 |i,{})&d(20, )@rW|
00000730: 48 4F 4C 45 40 70 53 75 62 73 74 69 74 75 74 65 |HOLE@pSubstitute|
00000740: 20 66 6F 72 20 44 7B 7D 2C 20 44 7B 7D 20 61 6E | for D{}, D{} an|
00000750: 64 20 54 6F 74 61 6C 20 69 6E 20 74 68 65 20 65 |d Total in the e|
00000760: 71 75 61 74 69 6F 6E 3A 20 5C 6E 20 20 20 44 7B |quation: \n D{|
00000770: 7D 2B 44 7B 7D 20 3D 20 7B 7D 40 68 44 7B 7D 3D |}+D{} = {}@hD{}=|
00000780: 7B 7D 2C 20 44 7B 7D 3D 7B 7D 20 61 6E 64 20 54 |{}, D{}={} and T|
00000790: 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 3D 26 76 |otal distance=&v|
000007A0: 2E 40 68 7B 7D 20 64 69 73 74 2E 20 5C 66 31 32 |.@h{} dist. \f12|
000007B0: 2B 20 7B 7D 20 64 69 73 74 2E 20 5C 66 32 35 3D |+ {} dist. \f25=|
000007C0: 20 7B 7D 20 5C 6E 7B 7D 2E 40 69 28 32 30 2C 69 | {} \n{}.@i(20,i|
000007D0: 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 54 45 40 |,{})@s@rCOMPUTE@|
000007E0: 70 53 6F 6C 76 65 20 74 68 65 20 65 71 75 61 74 |pSolve the equat|
000007F0: 69 6F 6E 20 66 6F 72 20 22 26 76 22 20 28 54 6F |ion for "&v" (To|
00000800: 74 61 6C 20 64 69 73 74 2E 29 20 55 73 65 20 70 |tal dist.) Use p|
00000810: 61 70 65 72 20 61 6E 64 20 70 65 6E 63 69 6C 2C |aper and pencil,|
00000820: 20 6F 72 20 75 73 65 20 74 68 65 20 43 61 6C 63 | or use the Calc|
00000830: 75 6C 61 74 6F 72 2E 40 68 49 73 6F 6C 61 74 65 |ulator.@hIsolate|
00000840: 20 22 26 76 22 20 6F 6E 20 6F 6E 65 20 73 69 64 | "&v" on one sid|
00000850: 65 20 6F 66 20 74 68 65 20 65 71 75 61 74 69 6F |e of the equatio|
00000860: 6E 2E 40 68 54 68 65 20 63 61 6C 63 75 6C 61 74 |n.@hThe calculat|
00000870: 6F 72 20 73 6F 6C 76 65 73 20 65 71 75 61 74 69 |or solves equati|
00000880: 6F 6E 73 20 66 6F 72 20 79 6F 75 20 61 6E 64 20 |ons for you and |
00000890: 64 69 73 70 6C 61 79 73 20 74 68 65 20 73 74 65 |displays the ste|
000008A0: 70 73 20 69 6E 20 74 68 65 20 73 6F 6C 75 74 69 |ps in the soluti|
000008B0: 6F 6E 2E 40 69 28 32 30 2C 69 2C 26 76 3D 7B 7D |on.@i(20,i,&v={}|
000008C0: 29 40 70 4E 6F 77 20 65 6E 74 65 72 20 79 6F 75 |)@pNow enter you|
000008D0: 72 20 61 6E 73 77 65 72 20 74 6F 20 74 68 65 20 |r answer to the |
000008E0: 70 72 6F 62 6C 65 6D 20 69 6E 20 74 68 65 20 67 |problem in the g|
000008F0: 72 69 64 2E 20 52 65 6D 65 6D 62 65 72 20 74 68 |rid. Remember th|
00000900: 65 20 71 75 65 73 74 69 6F 6E 2E 20 7B 7D 26 77 |e question. {}&w|
00000910: 28 32 30 29 40 68 7B 7D 20 65 71 75 61 6C 20 74 |(20)@h{} equal t|
00000920: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |o the value of "|
00000930: 26 76 22 2E 40 68 26 76 3D 7B 7D 2C 20 73 6F 20 |&v".@h&v={}, so |
00000940: 7B 7D 40 69 28 31 39 2C 69 2C 7B 7D 29 40 73 40 |{}@i(19,i,{})@s@|
00000950: 72 43 48 45 43 4B 26 64 28 30 2C 52 65 72 65 61 |rCHECK&d(0,Rerea|
00000960: 64 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 |d the problem. C|
00000970: 68 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 |heck your answer|
00000980: 73 2E 20 47 65 74 20 72 65 61 64 79 20 66 6F 72 |s. Get ready for|
00000990: 20 61 20 6E 65 77 20 70 72 6F 62 6C 65 6D 2E 29 | a new problem.)|
000009A0: 40 66 41 74 20 31 30 20 41 4D 20 61 20 62 6C 75 |@fAt 10 AM a blu|
000009B0: 65 20 63 61 72 20 6C 65 61 76 65 73 20 53 70 72 |e car leaves Spr|
000009C0: 69 6E 67 66 69 65 6C 64 20 68 65 61 64 69 6E 67 |ingfield heading|
000009D0: 20 77 65 73 74 20 61 74 20 34 38 20 6D 69 2F 68 | west at 48 mi/h|
000009E0: 72 20 61 6E 64 20 61 20 67 72 65 65 6E 20 63 61 |r and a green ca|
000009F0: 72 20 68 65 61 64 73 20 65 61 73 74 20 61 74 20 |r heads east at |
00000A00: 35 30 20 6D 69 2F 68 72 2E 20 48 6F 77 20 66 61 |50 mi/hr. How fa|
00000A10: 72 20 61 70 61 72 74 20 77 69 6C 6C 20 74 68 65 |r apart will the|
00000A20: 79 20 62 65 20 61 74 20 31 20 50 4D 3F 00 42 6C |y be at 1 PM?.Bl|
00000A30: 75 65 00 47 72 65 65 6E 00 54 77 6F 20 63 61 72 |ue.Green.Two car|
00000A40: 73 20 64 72 69 76 65 20 69 6E 20 6F 70 70 6F 73 |s drive in oppos|
00000A50: 69 74 65 20 64 69 72 65 63 74 69 6F 6E 73 20 61 |ite directions a|
00000A60: 74 20 64 69 66 66 65 72 65 6E 74 20 72 61 74 65 |t different rate|
00000A70: 73 20 66 6F 72 20 74 68 65 20 73 61 6D 65 20 6C |s for the same l|
00000A80: 65 6E 67 74 68 20 6F 66 20 74 69 6D 65 2E 00 48 |ength of time..H|
00000A90: 6F 77 20 66 61 72 20 61 70 61 72 74 20 77 69 6C |ow far apart wil|
00000AA0: 6C 20 74 68 65 79 20 62 65 20 61 74 20 31 20 50 |l they be at 1 P|
00000AB0: 4D 3F 00 62 00 42 6C 75 65 27 73 00 67 00 47 72 |M?.b.Blue's.g.Gr|
00000AC0: 65 65 6E 27 73 00 62 00 67 00 54 68 65 20 64 69 |een's.b.g.The di|
00000AD0: 73 74 61 6E 63 65 20 62 65 74 77 65 65 6E 20 74 |stance between t|
00000AE0: 68 65 6D 20 77 69 6C 6C 20 62 65 20 74 68 65 20 |hem will be the |
00000AF0: 73 75 6D 20 6F 66 20 74 68 65 20 64 69 73 74 61 |sum of the dista|
00000B00: 6E 63 65 73 20 74 72 61 76 65 6C 6C 65 64 20 62 |nces travelled b|
00000B10: 79 20 65 61 63 68 20 63 61 72 2E 00 60 44 62 2B |y each car..`Db+|
00000B20: 44 67 3D 54 6F 74 61 6C 27 00 62 79 20 65 61 63 |Dg=Total'.by eac|
00000B30: 68 20 63 61 72 00 44 62 2B 44 67 3D 54 6F 74 61 |h car.Db+Dg=Tota|
00000B40: 6C 00 54 68 65 20 64 69 73 74 61 6E 63 65 20 62 |l.The distance b|
00000B50: 65 74 77 65 65 6E 20 74 68 65 6D 20 77 69 6C 6C |etween them will|
00000B60: 20 62 65 20 74 68 65 20 73 75 6D 20 6F 66 20 74 | be the sum of t|
00000B70: 68 65 20 64 69 73 74 61 6E 63 65 73 20 74 72 61 |he distances tra|
00000B80: 76 65 6C 6C 65 64 20 62 79 20 65 61 63 68 20 63 |velled by each c|
00000B90: 61 72 2E 00 60 44 62 2B 44 67 3D 54 6F 74 61 6C |ar..`Db+Dg=Total|
00000BA0: 27 00 62 79 20 65 61 63 68 20 63 61 72 00 6D 69 |'.by each car.mi|
00000BB0: 2F 68 72 00 34 00 6D 69 2F 68 72 00 68 6F 75 72 |/hr.4.mi/hr.hour|
00000BC0: 73 2E 20 28 60 68 72 27 29 00 32 00 68 72 00 6D |s. (`hr').2.hr.m|
00000BD0: 69 6C 65 73 2E 20 28 60 6D 69 27 29 00 32 00 6D |iles. (`mi').2.m|
00000BE0: 69 00 54 68 65 20 62 6C 75 65 20 63 61 72 20 67 |i.The blue car g|
00000BF0: 6F 65 73 20 26 68 34 38 20 6D 69 2F 68 72 26 68 |oes &h48 mi/hr&h|
00000C00: 00 74 68 65 20 62 6C 75 65 20 63 61 72 00 60 34 |.the blue car.`4|
00000C10: 38 27 20 6D 69 2F 68 72 00 34 38 00 54 68 65 20 |8' mi/hr.48.The |
00000C20: 67 72 65 65 6E 20 63 61 72 20 67 6F 65 73 20 26 |green car goes &|
00000C30: 68 35 30 20 6D 69 2F 68 72 26 68 00 74 68 65 20 |h50 mi/hr&h.the |
00000C40: 67 72 65 65 6E 20 63 61 72 00 60 35 30 27 20 6D |green car.`50' m|
00000C50: 69 2F 68 72 00 35 30 00 54 68 65 20 63 61 72 73 |i/hr.50.The cars|
00000C60: 20 73 74 61 72 74 65 64 20 61 74 20 31 30 20 41 | started at 10 A|
00000C70: 4D 20 61 6E 64 20 73 74 6F 70 70 65 64 20 61 74 |M and stopped at|
00000C80: 20 31 20 50 4D 2E 00 60 33 27 20 68 6F 75 72 73 | 1 PM..`3' hours|
00000C90: 00 74 68 65 20 62 6C 75 65 20 63 61 72 27 73 00 |.the blue car's.|
00000CA0: 33 00 54 68 65 20 63 61 72 73 20 73 74 61 72 74 |3.The cars start|
00000CB0: 65 64 20 61 74 20 31 30 20 41 4D 20 61 6E 64 20 |ed at 10 AM and |
00000CC0: 73 74 6F 70 70 65 64 20 61 74 20 31 20 50 4D 2E |stopped at 1 PM.|
00000CD0: 00 60 33 27 20 68 6F 75 72 73 00 74 68 65 20 67 |.`3' hours.the g|
00000CE0: 72 65 65 6E 20 63 61 72 27 73 00 33 00 61 74 20 |reen car's.3.at |
00000CF0: 31 20 50 4D 00 63 61 72 00 20 34 38 20 20 5C 66 |1 PM.car. 48 \f|
00000D00: 30 35 2A 20 20 5C 66 30 37 20 33 20 20 20 5C 66 |05* \f07 3 \f|
00000D10: 31 32 3D 20 20 60 31 34 34 27 00 31 34 34 00 20 |12= `144'.144. |
00000D20: 35 30 20 5C 66 30 35 2A 20 20 20 20 20 20 5C 66 |50 \f05* \f|
00000D30: 30 37 20 33 20 20 20 20 5C 66 31 32 3D 20 20 60 |07 3 \f12= `|
00000D40: 31 35 30 27 00 31 35 30 00 62 00 67 00 62 00 67 |150'.150.b.g.b.g|
00000D50: 00 54 6F 74 61 6C 00 62 00 31 34 34 00 67 00 31 |.Total.b.144.g.1|
00000D60: 35 30 00 42 6C 75 65 00 47 72 65 65 6E 00 54 6F |50.Blue.Green.To|
00000D70: 74 61 6C 00 20 20 60 31 34 34 20 20 20 20 20 20 |tal. `144 |
00000D80: 20 20 5C 66 31 32 2B 20 20 20 31 35 30 20 20 20 | \f12+ 150 |
00000D90: 20 20 20 20 20 20 5C 66 32 35 3D 20 20 26 76 27 | \f25= &v'|
00000DA0: 00 31 34 34 2B 31 35 30 3D 26 76 00 32 39 34 00 |.144+150=&v.294.|
00000DB0: 26 71 48 6F 77 20 66 61 72 20 61 70 61 72 74 20 |&qHow far apart |
00000DC0: 77 69 6C 6C 20 74 68 65 79 20 62 65 20 61 74 20 |will they be at |
00000DD0: 31 20 50 4D 3F 26 71 00 54 68 65 20 64 69 73 74 |1 PM?&q.The dist|
00000DE0: 61 6E 63 65 20 62 65 74 77 65 65 6E 20 74 68 65 |ance between the|
00000DF0: 6D 20 69 73 00 32 39 34 00 74 68 65 79 20 61 72 |m is.294.they ar|
00000E00: 65 20 60 32 39 34 27 20 6D 69 6C 65 73 20 61 70 |e `294' miles ap|
00000E10: 61 72 74 2E 00 32 39 34 00 40 66 53 70 61 72 72 |art..294.@fSparr|
00000E20: 6F 77 73 20 66 6C 79 20 34 30 20 6D 69 2F 64 61 |ows fly 40 mi/da|
00000E30: 20 61 6E 64 20 67 65 65 73 65 20 66 6C 79 20 33 | and geese fly 3|
00000E40: 32 20 6D 69 2F 64 61 2E 20 49 66 20 61 20 66 6C |2 mi/da. If a fl|
00000E50: 6F 63 6B 20 6F 66 20 67 65 65 73 65 20 66 6C 79 |ock of geese fly|
00000E60: 20 6E 6F 72 74 68 20 61 6E 64 20 61 20 66 6C 6F | north and a flo|
00000E70: 63 6B 20 6F 66 20 73 70 61 72 72 6F 77 73 20 66 |ck of sparrows f|
00000E80: 6C 79 20 73 6F 75 74 68 20 66 72 6F 6D 20 74 68 |ly south from th|
00000E90: 65 20 73 61 6D 65 20 73 70 6F 74 20 61 74 20 74 |e same spot at t|
00000EA0: 68 65 20 73 61 6D 65 20 74 69 6D 65 2C 20 68 6F |he same time, ho|
00000EB0: 77 20 66 61 72 20 61 70 61 72 74 20 61 72 65 20 |w far apart are |
00000EC0: 74 68 65 79 20 61 66 74 65 72 20 32 2E 35 20 64 |they after 2.5 d|
00000ED0: 61 79 73 3F 00 53 70 61 72 72 6F 77 73 00 47 65 |ays?.Sparrows.Ge|
00000EE0: 65 73 65 00 54 77 6F 20 66 6C 6F 63 6B 73 20 66 |ese.Two flocks f|
00000EF0: 6C 79 20 69 6E 20 6F 70 70 6F 73 69 74 65 20 64 |ly in opposite d|
00000F00: 69 72 65 63 74 69 6F 6E 73 20 61 74 20 64 69 66 |irections at dif|
00000F10: 66 65 72 65 6E 74 20 72 61 74 65 73 20 66 6F 72 |ferent rates for|
00000F20: 20 74 68 65 20 73 61 6D 65 20 6C 65 6E 67 74 68 | the same length|
00000F30: 20 6F 66 20 74 69 6D 65 2E 00 48 6F 77 20 66 61 | of time..How fa|
00000F40: 72 20 61 70 61 72 74 20 61 72 65 20 74 68 65 79 |r apart are they|
00000F50: 20 61 66 74 65 72 20 32 2E 35 20 64 61 79 73 3F | after 2.5 days?|
00000F60: 00 73 00 53 70 61 2E 00 67 00 47 65 65 73 65 27 |.s.Spa..g.Geese'|
00000F70: 73 00 73 00 67 00 54 68 65 20 64 69 73 74 61 6E |s.s.g.The distan|
00000F80: 63 65 20 62 65 74 77 65 65 6E 20 74 68 65 6D 20 |ce between them |
00000F90: 77 69 6C 6C 20 62 65 20 74 68 65 20 73 75 6D 20 |will be the sum |
00000FA0: 6F 66 20 74 68 65 20 64 69 73 74 61 6E 63 65 73 |of the distances|
00000FB0: 20 74 72 61 76 65 6C 6C 65 64 20 62 79 20 65 61 | travelled by ea|
00000FC0: 63 68 20 6F 66 20 74 68 65 20 66 6C 6F 63 6B 73 |ch of the flocks|
00000FD0: 2E 00 60 44 73 2B 44 67 20 3D 20 54 6F 74 61 6C |..`Ds+Dg = Total|
00000FE0: 27 00 62 79 20 65 61 63 68 20 66 6C 6F 63 6B 00 |'.by each flock.|
00000FF0: 44 73 2B 44 67 20 3D 20 54 6F 74 61 6C 00 54 68 |Ds+Dg = Total.Th|
00001000: 65 20 64 69 73 74 61 6E 63 65 20 62 65 74 77 65 |e distance betwe|
00001010: 65 6E 20 74 68 65 6D 20 77 69 6C 6C 20 62 65 20 |en them will be |
00001020: 74 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 64 |the sum of the d|
00001030: 69 73 74 61 6E 63 65 73 20 74 72 61 76 65 6C 6C |istances travell|
00001040: 65 64 20 62 79 20 65 61 63 68 20 6F 66 20 74 68 |ed by each of th|
00001050: 65 20 66 6C 6F 63 6B 73 2E 00 60 44 73 2B 44 67 |e flocks..`Ds+Dg|
00001060: 20 3D 20 54 6F 74 61 6C 27 00 62 79 20 65 61 63 | = Total'.by eac|
00001070: 68 20 66 6C 6F 63 6B 00 6D 69 2F 64 61 00 35 00 |h flock.mi/da.5.|
00001080: 6D 69 2F 64 61 00 64 61 79 73 2E 20 28 60 64 61 |mi/da.days. (`da|
00001090: 27 29 00 32 00 64 61 00 6D 69 6C 65 73 2E 20 28 |').2.da.miles. (|
000010A0: 60 6D 69 27 29 00 32 00 6D 69 00 26 68 53 70 61 |`mi').2.mi.&hSpa|
000010B0: 72 72 6F 77 73 20 66 6C 79 20 34 30 20 6D 69 2F |rrows fly 40 mi/|
000010C0: 64 61 26 68 00 73 70 61 72 72 6F 77 73 00 60 34 |da&h.sparrows.`4|
000010D0: 30 27 20 6D 69 2F 64 61 00 34 30 00 26 68 47 65 |0' mi/da.40.&hGe|
000010E0: 65 73 65 20 66 6C 79 20 33 32 20 6D 69 2F 64 61 |ese fly 32 mi/da|
000010F0: 26 68 00 67 65 65 73 65 00 60 33 32 27 20 6D 69 |&h.geese.`32' mi|
00001100: 2F 64 61 00 33 32 00 54 68 65 20 66 6C 6F 63 6B |/da.32.The flock|
00001110: 73 20 77 69 6C 6C 20 62 65 20 66 6C 79 69 6E 67 |s will be flying|
00001120: 20 66 6F 72 20 32 2E 35 20 64 61 79 73 2E 00 60 | for 2.5 days..`|
00001130: 32 2E 35 27 20 64 61 79 73 00 73 70 61 72 72 6F |2.5' days.sparro|
00001140: 77 73 27 00 32 2E 35 00 54 68 65 20 67 65 65 73 |ws'.2.5.The gees|
00001150: 65 20 77 69 6C 6C 20 62 65 20 66 6C 79 69 6E 67 |e will be flying|
00001160: 20 66 6F 72 20 74 68 65 20 73 61 6D 65 20 61 6D | for the same am|
00001170: 6F 75 6E 74 20 6F 66 20 74 69 6D 65 20 61 73 20 |ount of time as |
00001180: 74 68 65 20 73 70 61 72 72 6F 77 73 2E 00 60 32 |the sparrows..`2|
00001190: 2E 35 27 00 74 68 65 20 67 65 65 73 65 27 73 00 |.5'.the geese's.|
000011A0: 32 2E 35 00 61 66 74 65 72 20 32 2E 35 20 64 61 |2.5.after 2.5 da|
000011B0: 79 73 00 6F 66 20 74 68 65 20 66 6C 6F 63 6B 73 |ys.of the flocks|
000011C0: 00 34 30 20 20 5C 66 30 35 2A 20 20 20 5C 66 30 |.40 \f05* \f0|
000011D0: 36 20 32 2E 35 20 5C 66 31 32 3D 20 60 31 30 30 |6 2.5 \f12= `100|
000011E0: 27 00 31 30 30 00 20 33 32 20 5C 66 30 35 2A 20 |'.100. 32 \f05* |
000011F0: 20 5C 66 30 37 20 32 2E 35 20 20 5C 66 31 32 3D | \f07 2.5 \f12=|
00001200: 60 38 30 27 00 38 30 00 73 00 67 00 73 00 67 00 |`80'.80.s.g.s.g.|
00001210: 54 6F 74 61 6C 00 63 00 31 30 30 00 73 00 38 30 |Total.c.100.s.80|
00001220: 00 53 70 61 72 72 6F 77 00 47 65 65 73 65 00 54 |.Sparrow.Geese.T|
00001230: 6F 74 61 6C 20 64 69 73 74 2E 00 60 20 20 31 30 |otal dist..` 10|
00001240: 30 20 20 5C 66 31 32 2B 20 20 38 30 20 20 5C 66 |0 \f12+ 80 \f|
00001250: 32 35 3D 20 20 26 76 27 00 31 30 30 2B 38 30 3D |25= &v'.100+80=|
00001260: 26 76 00 31 38 30 00 26 71 48 6F 77 20 66 61 72 |&v.180.&qHow far|
00001270: 20 61 70 61 72 74 20 61 72 65 20 74 68 65 79 20 | apart are they |
00001280: 61 66 74 65 72 20 32 2E 35 20 64 61 79 73 3F 26 |after 2.5 days?&|
00001290: 71 00 60 31 38 30 27 20 69 73 00 31 38 30 00 65 |q.`180' is.180.e|
000012A0: 6E 74 65 72 20 60 31 38 30 27 20 6D 69 6C 65 73 |nter `180' miles|
000012B0: 2E 00 31 38 30 00 40 66 41 20 66 61 73 74 20 74 |..180.@fA fast t|
000012C0: 72 6F 75 74 20 73 77 69 6D 73 20 35 30 20 79 61 |rout swims 50 ya|
000012D0: 72 64 73 20 65 61 63 68 20 6D 69 6E 75 74 65 20 |rds each minute |
000012E0: 61 6E 64 20 61 20 73 6C 6F 77 65 72 20 74 72 6F |and a slower tro|
000012F0: 75 74 20 73 77 69 6D 73 20 34 30 20 79 64 2F 6D |ut swims 40 yd/m|
00001300: 69 6E 2E 20 49 66 20 74 68 65 20 74 77 6F 20 74 |in. If the two t|
00001310: 72 6F 75 74 20 73 74 61 72 74 20 61 74 20 74 68 |rout start at th|
00001320: 65 20 73 61 6D 65 20 70 6F 69 6E 74 20 61 6E 64 |e same point and|
00001330: 20 73 77 69 6D 20 69 6E 20 6F 70 70 6F 73 69 74 | swim in opposit|
00001340: 65 20 64 69 72 65 63 74 69 6F 6E 73 2C 20 68 6F |e directions, ho|
00001350: 77 20 66 61 72 20 61 70 61 72 74 20 61 72 65 20 |w far apart are |
00001360: 74 68 65 79 20 61 66 74 65 72 20 34 35 20 73 65 |they after 45 se|
00001370: 63 6F 6E 64 73 3F 00 46 61 73 74 00 53 6C 6F 77 |conds?.Fast.Slow|
00001380: 00 54 77 6F 20 74 72 6F 75 74 20 73 77 69 6D 20 |.Two trout swim |
00001390: 69 6E 20 6F 70 70 6F 73 69 74 65 20 64 69 72 65 |in opposite dire|
000013A0: 63 74 69 6F 6E 73 20 61 74 20 64 69 66 66 65 72 |ctions at differ|
000013B0: 65 6E 74 20 72 61 74 65 73 20 66 6F 72 20 74 68 |ent rates for th|
000013C0: 65 20 73 61 6D 65 20 6C 65 6E 67 74 68 20 6F 66 |e same length of|
000013D0: 20 74 69 6D 65 2E 00 48 6F 77 20 66 61 72 20 61 | time..How far a|
000013E0: 70 61 72 74 20 61 72 65 20 74 68 65 79 20 61 66 |part are they af|
000013F0: 74 65 72 20 34 35 20 73 65 63 6F 6E 64 73 3F 00 |ter 45 seconds?.|
00001400: 66 00 46 61 73 74 00 73 00 53 6C 6F 77 00 66 00 |f.Fast.s.Slow.f.|
00001410: 73 00 54 68 65 20 64 69 73 74 61 6E 63 65 20 62 |s.The distance b|
00001420: 65 74 77 65 65 6E 20 74 68 65 6D 20 69 73 20 74 |etween them is t|
00001430: 68 65 20 73 75 6D 20 6F 66 20 74 68 65 20 64 69 |he sum of the di|
00001440: 73 74 61 6E 63 65 73 20 74 68 61 74 20 65 61 63 |stances that eac|
00001450: 68 20 6F 66 20 74 68 65 20 74 72 6F 75 74 20 73 |h of the trout s|
00001460: 77 69 6D 73 2E 00 60 44 66 2B 44 73 3D 54 6F 74 |wims..`Df+Ds=Tot|
00001470: 61 6C 27 00 62 79 20 65 61 63 68 20 74 72 6F 75 |al'.by each trou|
00001480: 74 00 44 66 2B 44 73 20 3D 20 54 6F 74 61 6C 00 |t.Df+Ds = Total.|
00001490: 54 68 65 20 64 69 73 74 61 6E 63 65 20 62 65 74 |The distance bet|
000014A0: 77 65 65 6E 20 74 68 65 6D 20 69 73 20 74 68 65 |ween them is the|
000014B0: 20 73 75 6D 20 6F 66 20 74 68 65 20 64 69 73 74 | sum of the dist|
000014C0: 61 6E 63 65 73 20 74 68 61 74 20 65 61 63 68 20 |ances that each |
000014D0: 6F 66 20 74 68 65 20 74 72 6F 75 74 20 73 77 69 |of the trout swi|
000014E0: 6D 73 2E 00 60 44 66 2B 44 73 3D 54 6F 74 61 6C |ms..`Df+Ds=Total|
000014F0: 27 00 62 79 20 65 61 63 68 20 74 72 6F 75 74 00 |'.by each trout.|
00001500: 79 64 2F 6D 69 6E 00 36 00 79 64 2F 6D 69 6E 00 |yd/min.6.yd/min.|
00001510: 6D 69 6E 75 74 65 73 2E 20 28 60 6D 69 6E 27 29 |minutes. (`min')|
00001520: 00 33 00 6D 69 6E 00 79 61 72 64 73 2E 20 28 60 |.3.min.yards. (`|
00001530: 79 64 27 29 00 32 00 79 64 00 26 68 41 20 66 61 |yd').2.yd.&hA fa|
00001540: 73 74 20 74 72 6F 75 74 20 73 77 69 6D 73 20 35 |st trout swims 5|
00001550: 30 20 79 61 72 64 73 20 65 61 63 68 20 6D 69 6E |0 yards each min|
00001560: 75 74 65 26 68 00 74 68 65 20 66 61 73 74 20 74 |ute&h.the fast t|
00001570: 72 6F 75 74 00 60 35 30 27 20 79 64 2F 6D 69 6E |rout.`50' yd/min|
00001580: 00 35 30 00 26 68 41 20 73 6C 6F 77 65 72 20 74 |.50.&hA slower t|
00001590: 72 6F 75 74 20 73 77 69 6D 73 20 34 30 20 79 64 |rout swims 40 yd|
000015A0: 2F 6D 69 6E 26 68 00 74 68 65 20 73 6C 6F 77 65 |/min&h.the slowe|
000015B0: 72 20 74 72 6F 75 74 00 60 34 30 27 20 79 64 2F |r trout.`40' yd/|
000015C0: 6D 69 6E 00 34 30 00 54 68 65 79 20 73 77 69 6D |min.40.They swim|
000015D0: 20 66 6F 72 20 34 35 20 73 65 63 2E 20 28 31 20 | for 45 sec. (1 |
000015E0: 6D 69 6E 2E 3D 36 30 20 73 65 63 2E 20 61 6E 64 |min.=60 sec. and|
000015F0: 20 73 69 6E 63 65 20 74 69 6D 65 20 69 73 20 6D | since time is m|
00001600: 65 61 73 75 72 65 64 20 69 6E 20 6D 69 6E 2E 2C |easured in min.,|
00001610: 20 74 68 65 20 34 35 20 73 65 63 2E 20 6D 75 73 | the 45 sec. mus|
00001620: 74 20 62 65 20 63 6F 6E 76 65 72 74 65 64 20 74 |t be converted t|
00001630: 6F 20 6D 69 6E 2E 29 00 60 2E 37 35 27 20 6D 69 |o min.).`.75' mi|
00001640: 6E 75 74 65 73 00 74 68 65 20 66 61 73 74 20 74 |nutes.the fast t|
00001650: 72 6F 75 74 27 73 00 2E 37 35 00 54 68 65 20 73 |rout's..75.The s|
00001660: 6C 6F 77 20 74 72 6F 75 74 20 73 77 69 6D 73 20 |low trout swims |
00001670: 66 6F 72 20 74 68 65 20 73 61 6D 65 20 61 6D 6F |for the same amo|
00001680: 75 6E 74 20 6F 66 20 74 69 6D 65 20 61 73 20 74 |unt of time as t|
00001690: 68 65 20 66 61 73 74 20 74 72 6F 75 74 2E 00 60 |he fast trout..`|
000016A0: 2E 37 35 27 20 6D 69 6E 75 74 65 73 00 74 68 65 |.75' minutes.the|
000016B0: 20 73 6C 6F 77 20 74 72 6F 75 74 27 73 00 2E 37 | slow trout's..7|
000016C0: 35 00 61 66 74 65 72 20 34 35 20 73 65 63 6F 6E |5.after 45 secon|
000016D0: 64 73 00 6F 66 20 74 68 65 20 74 72 6F 75 74 00 |ds.of the trout.|
000016E0: 35 30 20 20 5C 66 30 35 2A 20 20 5C 66 30 37 20 |50 \f05* \f07 |
000016F0: 2E 37 35 20 20 5C 66 31 32 3D 20 60 33 37 2E 35 |.75 \f12= `37.5|
00001700: 27 20 79 61 72 64 73 00 33 37 2E 35 00 34 30 20 |' yards.37.5.40 |
00001710: 20 5C 66 30 35 2A 20 20 5C 66 30 37 20 2E 37 35 | \f05* \f07 .75|
00001720: 20 20 5C 66 31 32 3D 20 60 33 30 27 20 79 61 72 | \f12= `30' yar|
00001730: 64 73 00 33 30 00 66 00 73 00 66 00 73 00 54 6F |ds.30.f.s.f.s.To|
00001740: 74 61 6C 00 66 00 33 37 2E 35 00 73 00 33 30 00 |tal.f.37.5.s.30.|
00001750: 46 61 73 74 00 53 6C 6F 77 00 54 6F 74 61 6C 00 |Fast.Slow.Total.|
00001760: 60 33 37 2E 35 20 20 5C 66 31 32 2B 20 20 20 20 |`37.5 \f12+ |
00001770: 33 30 20 20 20 5C 66 32 35 3D 20 26 76 27 00 33 |30 \f25= &v'.3|
00001780: 37 2E 35 2B 33 30 3D 26 76 00 36 37 2E 35 00 26 |7.5+30=&v.67.5.&|
00001790: 71 48 6F 77 20 66 61 72 20 61 70 61 72 74 20 61 |qHow far apart a|
000017A0: 72 65 20 74 68 65 79 20 61 66 74 65 72 20 34 35 |re they after 45|
000017B0: 20 73 65 63 6F 6E 64 73 3F 26 71 00 54 68 65 20 | seconds?&q.The |
000017C0: 74 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 20 69 |total distance i|
000017D0: 73 00 36 37 2E 35 00 61 66 74 65 72 20 34 35 20 |s.67.5.after 45 |
000017E0: 73 65 63 6F 6E 64 73 2C 20 74 68 65 79 20 77 65 |seconds, they we|
000017F0: 72 65 20 60 36 37 2E 35 27 20 79 61 72 64 73 20 |re `67.5' yards |
00001800: 61 70 61 72 74 2E 00 36 37 2E 35 00 40 66 41 20 |apart..67.5.@fA |
00001810: 73 74 61 74 65 20 74 72 6F 6F 70 65 72 20 61 6E |state trooper an|
00001820: 64 20 61 20 64 65 74 65 63 74 69 76 65 20 6C 65 |d a detective le|
00001830: 66 74 20 74 68 65 20 73 61 6D 65 20 68 65 61 64 |ft the same head|
00001840: 71 75 61 72 74 65 72 73 20 61 74 20 32 20 50 4D |quarters at 2 PM|
00001850: 2E 20 54 68 65 20 74 72 6F 6F 70 65 72 20 68 65 |. The trooper he|
00001860: 61 64 65 64 20 65 61 73 74 20 61 74 20 35 30 20 |aded east at 50 |
00001870: 6D 69 2F 68 72 20 61 6E 64 20 74 68 65 20 64 65 |mi/hr and the de|
00001880: 74 65 63 74 69 76 65 20 68 65 61 64 65 64 20 77 |tective headed w|
00001890: 65 73 74 20 61 74 20 35 38 20 6D 69 2F 68 72 2E |est at 58 mi/hr.|
000018A0: 20 48 6F 77 20 66 61 72 20 61 70 61 72 74 20 77 | How far apart w|
000018B0: 69 6C 6C 20 74 68 65 79 20 62 65 20 61 74 20 35 |ill they be at 5|
000018C0: 3A 33 30 20 50 4D 3F 00 54 72 6F 6F 70 65 72 00 |:30 PM?.Trooper.|
000018D0: 44 65 74 65 63 74 69 76 65 00 54 68 65 79 20 74 |Detective.They t|
000018E0: 72 61 76 65 6C 20 69 6E 20 6F 70 70 6F 73 69 74 |ravel in opposit|
000018F0: 69 76 65 20 64 69 72 65 63 74 69 6F 6E 73 20 66 |ive directions f|
00001900: 6F 72 20 74 68 65 20 73 61 6D 65 20 6C 65 6E 67 |or the same leng|
00001910: 74 68 20 6F 66 20 74 69 6D 65 2C 20 62 75 74 20 |th of time, but |
00001920: 61 74 20 64 69 66 66 65 72 65 6E 74 20 72 61 74 |at different rat|
00001930: 65 73 2E 00 48 6F 77 20 66 61 72 20 61 70 61 72 |es..How far apar|
00001940: 74 20 77 69 6C 6C 20 74 68 65 79 20 62 65 20 61 |t will they be a|
00001950: 74 20 35 3A 33 30 20 50 4D 3F 00 74 00 74 72 6F |t 5:30 PM?.t.tro|
00001960: 6F 70 65 72 27 73 00 64 00 64 65 74 65 63 74 69 |oper's.d.detecti|
00001970: 76 65 27 73 00 74 00 64 00 53 69 6E 63 65 20 74 |ve's.t.d.Since t|
00001980: 68 65 79 20 61 72 65 20 74 72 61 76 65 6C 6C 69 |hey are travelli|
00001990: 6E 67 20 69 6E 20 6F 70 70 6F 73 69 74 69 76 65 |ng in oppositive|
000019A0: 20 64 69 72 65 63 74 69 6F 6E 73 2C 20 74 68 65 | directions, the|
000019B0: 20 74 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 20 | total distance |
000019C0: 69 73 20 74 68 65 20 73 75 6D 20 6F 66 20 65 61 |is the sum of ea|
000019D0: 63 68 20 6F 66 20 74 68 65 69 72 20 64 69 73 74 |ch of their dist|
000019E0: 61 6E 63 65 73 2E 00 60 44 74 2B 44 64 20 3D 20 |ances..`Dt+Dd = |
000019F0: 54 6F 74 61 6C 27 00 62 79 20 65 61 63 68 20 6F |Total'.by each o|
00001A00: 66 66 69 63 65 72 00 60 44 74 2B 44 64 20 3D 20 |fficer.`Dt+Dd = |
00001A10: 54 6F 74 61 6C 27 00 53 69 6E 63 65 20 74 68 65 |Total'.Since the|
00001A20: 79 20 61 72 65 20 74 72 61 76 65 6C 6C 69 6E 67 |y are travelling|
00001A30: 20 69 6E 20 6F 70 70 6F 73 69 74 69 76 65 20 64 | in oppositive d|
00001A40: 69 72 65 63 74 69 6F 6E 73 2C 20 74 68 65 20 74 |irections, the t|
00001A50: 6F 74 61 6C 20 64 69 73 74 61 6E 63 65 20 69 73 |otal distance is|
00001A60: 20 74 68 65 20 73 75 6D 20 6F 66 20 65 61 63 68 | the sum of each|
00001A70: 20 6F 66 20 74 68 65 69 72 20 64 69 73 74 61 6E | of their distan|
00001A80: 63 65 73 2E 00 60 44 74 2B 44 64 20 3D 20 54 6F |ces..`Dt+Dd = To|
00001A90: 74 61 6C 27 00 62 79 20 65 61 63 68 20 6F 66 66 |tal'.by each off|
00001AA0: 69 63 65 72 00 6D 69 2F 68 72 00 34 00 6D 69 2F |icer.mi/hr.4.mi/|
00001AB0: 68 72 00 68 6F 75 72 73 20 28 60 68 72 27 29 2E |hr.hours (`hr').|
00001AC0: 00 32 00 68 72 00 6D 69 6C 65 73 20 28 60 6D 69 |.2.hr.miles (`mi|
00001AD0: 27 29 2E 00 32 00 6D 69 00 26 68 54 68 65 20 74 |')..2.mi.&hThe t|
00001AE0: 72 6F 6F 70 65 72 20 68 65 61 64 65 64 20 65 61 |rooper headed ea|
00001AF0: 73 74 20 61 74 20 35 30 20 6D 69 2F 68 72 26 68 |st at 50 mi/hr&h|
00001B00: 00 74 68 65 20 74 72 6F 6F 70 65 72 00 60 35 30 |.the trooper.`50|
00001B10: 27 20 6D 69 2F 68 72 00 35 30 00 26 68 54 68 65 |' mi/hr.50.&hThe|
00001B20: 20 64 65 74 65 63 74 69 76 65 20 68 65 61 64 65 | detective heade|
00001B30: 64 20 77 65 73 74 20 61 74 20 35 38 20 6D 69 2F |d west at 58 mi/|
00001B40: 68 72 26 68 00 64 65 74 65 63 74 69 76 65 00 60 |hr&h.detective.`|
00001B50: 35 38 27 20 6D 69 2F 68 72 00 35 38 00 54 68 65 |58' mi/hr.58.The|
00001B60: 79 20 64 72 6F 76 65 20 66 72 6F 6D 20 32 3A 33 |y drove from 2:3|
00001B70: 30 20 74 6F 20 35 3A 33 30 2C 20 77 68 69 63 68 |0 to 5:30, which|
00001B80: 20 69 73 20 33 2E 35 20 68 6F 75 72 73 2E 00 60 | is 3.5 hours..`|
00001B90: 33 2E 35 27 00 74 68 65 20 74 72 6F 6F 70 65 72 |3.5'.the trooper|
00001BA0: 27 73 20 64 72 69 76 69 6E 67 00 33 2E 35 00 54 |'s driving.3.5.T|
00001BB0: 68 65 20 64 65 74 65 63 74 69 76 65 27 73 20 74 |he detective's t|
00001BC0: 69 6D 65 20 69 73 20 74 68 65 20 73 61 6D 65 20 |ime is the same |
00001BD0: 61 73 20 74 68 65 20 74 72 6F 6F 70 65 72 27 73 |as the trooper's|
00001BE0: 2E 00 60 33 2E 35 27 00 74 68 65 20 64 65 74 65 |..`3.5'.the dete|
00001BF0: 63 74 69 76 65 27 73 20 64 72 69 76 69 6E 67 00 |ctive's driving.|
00001C00: 33 2E 35 00 61 74 20 35 3A 33 30 00 6F 66 66 69 |3.5.at 5:30.offi|
00001C10: 63 65 72 00 60 35 30 20 20 5C 66 30 35 2A 20 20 |cer.`50 \f05* |
00001C20: 5C 66 30 37 20 33 2E 35 27 20 5C 66 31 32 3D 20 |\f07 3.5' \f12= |
00001C30: 44 69 73 74 61 6E 63 65 00 35 30 2A 33 2E 35 00 |Distance.50*3.5.|
00001C40: 60 35 38 20 5C 66 30 35 2A 20 5C 66 30 37 20 33 |`58 \f05* \f07 3|
00001C50: 2E 35 27 20 20 5C 66 31 32 3D 20 44 69 73 74 61 |.5' \f12= Dista|
00001C60: 6E 63 65 00 35 38 2A 33 2E 35 00 74 00 64 00 74 |nce.58*3.5.t.d.t|
00001C70: 00 64 00 26 76 00 74 00 31 37 35 00 64 00 32 30 |.d.&v.t.175.d.20|
00001C80: 33 00 54 27 73 00 44 27 73 00 54 6F 74 61 6C 00 |3.T's.D's.Total.|
00001C90: 20 60 31 37 35 20 20 5C 66 31 32 2B 20 20 32 30 | `175 \f12+ 20|
00001CA0: 33 20 20 20 5C 66 32 35 3D 20 20 26 76 27 00 31 |3 \f25= &v'.1|
00001CB0: 37 35 2B 32 30 33 3D 26 76 00 33 37 38 00 26 71 |75+203=&v.378.&q|
00001CC0: 48 6F 77 20 66 61 72 20 61 70 61 72 74 20 77 69 |How far apart wi|
00001CD0: 6C 6C 20 74 68 65 79 20 62 65 20 61 74 20 35 3A |ll they be at 5:|
00001CE0: 33 30 20 50 4D 3F 26 71 00 54 68 65 20 74 6F 74 |30 PM?&q.The tot|
00001CF0: 61 6C 20 64 69 73 74 61 6E 63 65 20 69 73 00 33 |al distance is.3|
00001D00: 37 38 00 74 68 65 20 74 6F 74 61 6C 20 64 69 73 |78.the total dis|
00001D10: 74 61 6E 63 65 20 69 73 20 60 33 37 38 27 20 6D |tance is `378' m|
00001D20: 69 6C 65 73 2E 00 33 37 38 00 7C 00 |iles..378.|. |
A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&D(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIS
T)@RREAD@PREAD THE WHOLE PROBLEM. THINK:
WHAT ARE THE FACTS? WHAT IS BEING ASKED
? (PRESS ANY KEY TO CONTINUE.)@HWHAT ARE
THE FACTS? {}@HWHAT IS BEING ASKED? &H{
}&H@I(0) @RPLAN@PLET D{}={} DIST. AND D{
} = {} DIST. WRITE AN EQUATION TO RELATE
D{} AND D{} TO THE `TOTAL' DIST.@H{}@H{
} SHOWS THAT THE SUM OF THE DISTANCES TR
AVELLED {} EQUALS THE TOTAL DISTANCE BET
WEEN THEM.@I(20,C0, )@PONE ANSWER IS {}.
CHANGE YOUR ANSWER IF IT IS NOT EQUIVAL
ENT. (PRESS RETURN)@H{}@H{} SHOWS THAT T
HE SUM OF THE DISTANCES TRAVELLED {} EQU
ALS THE TOTAL DISTANCE BETWEEN THEM.@I(2
0,C0, )@RDATA ENTRY@PFILL IN THE UNITS B
Y WHICH RATE, TIME, AND DISTANCE ARE MEA
SURED. (USE ABBREVIATED FORM).@HRATE IS
COMMONLY MEASURED IN MILES PER HOUR (MI/
HR), FEET PER SECOND (FT/SEC), METERS PE
R SECOND (M/SEC), ETC.@HTHE RATE OF SPEE
D IN THIS PROBLEM IS MEASURED IN `{}'.@I
(6,C{},{})@HTIME IS COMMONLY MEASURED IN
SECONDS (SEC), MINUTES (MIN), HOURS (HR
), DAYS (DA), ETC.@HTIME IN THIS PROBLEM
IS MEASURED IN {}@I(11,C{},{})@HDISTANC
E IS COMMONLY MEASURED IN FEET (FT), YAR
DS (YD), METERS (M), MILES (MI), KILOMET
ERS (KM), ETC.@HDISTANCE IN THIS PROBLEM
IS MEASURED IN {}@I(16,C{},{})@PENTER T
HE FACTS FROM THE PROBLEM INTO THE GRID.
@H{}.@HTHE RATE OF SPEED FOR {} IS {}.@I
(7,I,{})@H{}.@HTHE RATE OF SPEED FOR {}
IS {}.@I(8,I,{})@H{}@H{} IS {} TIME.@I(1
2,I,{})@H{}@H{} IS {} TIME.@I(13,I,{})@P
CHOOSE A VARIABLE TO REPRESENT THE DISTA
NCE BETWEEN THEM {}.@HUSE A VARIABLE TO
REPRESENT THE TOTAL DISTANCE.@HUSE A LET
TER, SUCH AS `T' TO REPRESENT THE TOTAL
DISTANCE.@I(19,I,&V)@RPARTS@PCALCULATE T
HE DISTANCE TRAVELLED BY EACH {}.@HRATE
* TIME = DISTANCE@HRATE \F05* \F07TIME
\F12= DISTANCE \N{}@I(17,I,{})@HRATE *
TIME = DISTANCE@HRATE \F05* \F07TIME \
F12= DISTANCE \N{}@I(18,I,{})&D(20, )@RW
HOLE@PSUBSTITUTE FOR D{}, D{} AND TOTAL
IN THE EQUATION: \N D{}+D{} = {}@HD{}=
{}, D{}={} AND TOTAL DISTANCE=&V.@H{} DI
ST. \F12+ {} DIST. \F25= {} \N{}.@I(20,I
,{})@S@RCOMPUTE@PSOLVE THE EQUATION FOR
"&V" (TOTAL DIST.) USE PAPER AND PENCIL,
OR USE THE CALCULATOR.@HISOLATE "&V" ON
ONE SIDE OF THE EQUATION.@HTHE CALCULAT
OR SOLVES EQUATIONS FOR YOU AND DISPLAYS
THE STEPS IN THE SOLUTION.@I(20,I,&V={}
)@PNOW ENTER YOUR ANSWER TO THE PROBLEM
IN THE GRID. REMEMBER THE QUESTION. {}&W
(20)@H{} EQUAL TO THE VALUE OF "&V".@H&V
={}, SO {}@I(19,I,{})@S@RCHECK&D(0,REREA
D THE PROBLEM. CHECK YOUR ANSWERS. GET R
EADY FOR A NEW PROBLEM.)@FAT 10 AM A BLU
E CAR LEAVES SPRINGFIELD HEADING WEST AT
48 MI/HR AND A GREEN CAR HEADS EAST AT
50 MI/HR. HOW FAR APART WILL THEY BE AT
1 PM?.BLUE.GREEN.TWO CARS DRIVE IN OPPOS
ITE DIRECTIONS AT DIFFERENT RATES FOR TH
E SAME LENGTH OF TIME..HOW FAR APART WIL
L THEY BE AT 1 PM?.B.BLUE'S.G.GREEN'S.B.
G.THE DISTANCE BETWEEN THEM WILL BE THE
SUM OF THE DISTANCES TRAVELLED BY EACH C
AR..`DB+DG=TOTAL'.BY EACH CAR.DB+DG=TOTA
L.THE DISTANCE BETWEEN THEM WILL BE THE
SUM OF THE DISTANCES TRAVELLED BY EACH C
AR..`DB+DG=TOTAL'.BY EACH CAR.MI/HR.4.MI
/HR.HOURS. (`HR').2.HR.MILES. (`MI').2.M
I.THE BLUE CAR GOES &H48 MI/HR&H.THE BLU
E CAR.`48' MI/HR.48.THE GREEN CAR GOES &
H50 MI/HR&H.THE GREEN CAR.`50' MI/HR.50.
THE CARS STARTED AT 10 AM AND STOPPED AT
1 PM..`3' HOURS.THE BLUE CAR'S.3.THE CA
RS STARTED AT 10 AM AND STOPPED AT 1 PM.
.`3' HOURS.THE GREEN CAR'S.3.AT 1 PM.CAR
. 48 \F05* \F07 3 \F12= `144'.144.
50 \F05* \F07 3 \F12= `150'.150
.B.G.B.G.TOTAL.B.144.G.150.BLUE.GREEN.TO
TAL. `144 \F12+ 150 \F
25= &V'.144+150=&V.294.&QHOW FAR APART
WILL THEY BE AT 1 PM?&Q.THE DISTANCE BET
WEEN THEM IS.294.THEY ARE `294' MILES AP
ART..294.@FSPARROWS FLY 40 MI/DA AND GEE
SE FLY 32 MI/DA. IF A FLOCK OF GEESE FLY
NORTH AND A FLOCK OF SPARROWS FLY SOUTH
FROM THE SAME SPOT AT THE SAME TIME, HO
W FAR APART ARE THEY AFTER 2.5 DAYS?.SPA
RROWS.GEESE.TWO FLOCKS FLY IN OPPOSITE D
IRECTIONS AT DIFFERENT RATES FOR THE SAM
E LENGTH OF TIME..HOW FAR APART ARE THEY
AFTER 2.5 DAYS?.S.SPA..G.GEESE'S.S.G.TH
E DISTANCE BETWEEN THEM WILL BE THE SUM
OF THE DISTANCES TRAVELLED BY EACH OF TH
E FLOCKS..`DS+DG = TOTAL'.BY EACH FLOCK.
DS+DG = TOTAL.THE DISTANCE BETWEEN THEM
WILL BE THE SUM OF THE DISTANCES TRAVELL
ED BY EACH OF THE FLOCKS..`DS+DG = TOTAL
'.BY EACH FLOCK.MI/DA.5.MI/DA.DAYS. (`DA
').2.DA.MILES. (`MI').2.MI.&HSPARROWS FL
Y 40 MI/DA&H.SPARROWS.`40' MI/DA.40.&HGE
ESE FLY 32 MI/DA&H.GEESE.`32' MI/DA.32.T
HE FLOCKS WILL BE FLYING FOR 2.5 DAYS..`
2.5' DAYS.SPARROWS'.2.5.THE GEESE WILL B
E FLYING FOR THE SAME AMOUNT OF TIME AS
THE SPARROWS..`2.5'.THE GEESE'S.2.5.AFTE
R 2.5 DAYS.OF THE FLOCKS.40 \F05* \F0
6 2.5 \F12= `100'.100. 32 \F05* \F07 2.
5 \F12=`80'.80.S.G.S.G.TOTAL.C.100.S.80
.SPARROW.GEESE.TOTAL DIST..` 100 \F12+
80 \F25= &V'.100+80=&V.180.&QHOW FAR
APART ARE THEY AFTER 2.5 DAYS?&Q.`180'
IS.180.ENTER `180' MILES..180.@FA FAST T
ROUT SWIMS 50 YARDS EACH MINUTE AND A SL
OWER TROUT SWIMS 40 YD/MIN. IF THE TWO T
ROUT START AT THE SAME POINT AND SWIM IN
OPPOSITE DIRECTIONS, HOW FAR APART ARE
THEY AFTER 45 SECONDS?.FAST.SLOW.TWO TRO
UT SWIM IN OPPOSITE DIRECTIONS AT DIFFER
ENT RATES FOR THE SAME LENGTH OF TIME..H
OW FAR APART ARE THEY AFTER 45 SECONDS?.
F.FAST.S.SLOW.F.S.THE DISTANCE BETWEEN T
HEM IS THE SUM OF THE DISTANCES THAT EAC
H OF THE TROUT SWIMS..`DF+DS=TOTAL'.BY E
ACH TROUT.DF+DS = TOTAL.THE DISTANCE BET
WEEN THEM IS THE SUM OF THE DISTANCES TH
AT EACH OF THE TROUT SWIMS..`DF+DS=TOTAL
'.BY EACH TROUT.YD/MIN.6.YD/MIN.MINUTES.
(`MIN').3.MIN.YARDS. (`YD').2.YD.&HA FA
ST TROUT SWIMS 50 YARDS EACH MINUTE&H.TH
E FAST TROUT.`50' YD/MIN.50.&HA SLOWER T
ROUT SWIMS 40 YD/MIN&H.THE SLOWER TROUT.
`40' YD/MIN.40.THEY SWIM FOR 45 SEC. (1
MIN.=60 SEC. AND SINCE TIME IS MEASURED
IN MIN., THE 45 SEC. MUST BE CONVERTED T
O MIN.).`.75' MINUTES.THE FAST TROUT'S..
75.THE SLOW TROUT SWIMS FOR THE SAME AMO
UNT OF TIME AS THE FAST TROUT..`.75' MIN
UTES.THE SLOW TROUT'S..75.AFTER 45 SECON
DS.OF THE TROUT.50 \F05* \F07 .75 \F1
2= `37.5' YARDS.37.5.40 \F05* \F07 .75
\F12= `30' YARDS.30.F.S.F.S.TOTAL.F.37
.5.S.30.FAST.SLOW.TOTAL.`37.5 \F12+
30 \F25= &V'.37.5+30=&V.67.5.&QHOW FAR
APART ARE THEY AFTER 45 SECONDS?&Q.THE
TOTAL DISTANCE IS.67.5.AFTER 45 SECONDS,
THEY WERE `67.5' YARDS APART..67.5.@FA
STATE TROOPER AND A DETECTIVE LEFT THE S
AME HEADQUARTERS AT 2 PM. THE TROOPER HE
ADED EAST AT 50 MI/HR AND THE DETECTIVE
HEADED WEST AT 58 MI/HR. HOW FAR APART W
ILL THEY BE AT 5:30 PM?.TROOPER.DETECTIV
E.THEY TRAVEL IN OPPOSITIVE DIRECTIONS F
OR THE SAME LENGTH OF TIME, BUT AT DIFFE
RENT RATES..HOW FAR APART WILL THEY BE A
T 5:30 PM?.T.TROOPER'S.D.DETECTIVE'S.T.D
.SINCE THEY ARE TRAVELLING IN OPPOSITIVE
DIRECTIONS, THE TOTAL DISTANCE IS THE S
UM OF EACH OF THEIR DISTANCES..`DT+DD =
TOTAL'.BY EACH OFFICER.`DT+DD = TOTAL'.S
INCE THEY ARE TRAVELLING IN OPPOSITIVE D
IRECTIONS, THE TOTAL DISTANCE IS THE SUM
OF EACH OF THEIR DISTANCES..`DT+DD = TO
TAL'.BY EACH OFFICER.MI/HR.4.MI/HR.HOURS
(`HR')..2.HR.MILES (`MI')..2.MI.&HTHE T
ROOPER HEADED EAST AT 50 MI/HR&H.THE TRO
OPER.`50' MI/HR.50.&HTHE DETECTIVE HEADE
D WEST AT 58 MI/HR&H.DETECTIVE.`58' MI/H
R.58.THEY DROVE FROM 2:30 TO 5:30, WHICH
IS 3.5 HOURS..`3.5'.THE TROOPER'S DRIVI
NG.3.5.THE DETECTIVE'S TIME IS THE SAME
AS THE TROOPER'S..`3.5'.THE DETECTIVE'S
DRIVING.3.5.AT 5:30.OFFICER.`50 \F05*
\F07 3.5' \F12= DISTANCE.50*3.5.`58 \F05
* \F07 3.5' \F12= DISTANCE.58*3.5.T.D.T
.D.&V.T.175.D.203.T'S.D'S.TOTAL. `175 \
F12+ 203 \F25= &V'.175+203=&V.378.&Q
HOW FAR APART WILL THEY BE AT 5:30 PM?&Q
.THE TOTAL DISTANCE IS.378.THE TOTAL DIS
TANCE IS `378' MILES..378.|.
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL