DIST2L3
FILE INFORMATION
FILENAME(S): DIST2L3
FILE TYPE(S): PRG
FILE SIZE: 5.6K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
b687846bb71ddabcd44888c866134aadd1dc54525247dc7d7f1332fa177097ec
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST2L3 | PRG | Radd Maxx | 13 | 0 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 20 20 20 20 20 40 71 7B 7D 40 64 67 30 | A @q{}@dg0|
00000010: 35 26 64 28 31 2C 55 6E 69 74 2F 6D 65 61 73 29 |5&d(1,Unit/meas)|
00000020: 26 63 28 32 2C 7B 7D 29 26 63 28 33 2C 7B 7D 29 |&c(2,{})&c(3,{})|
00000030: 26 64 28 34 2C 52 61 74 65 29 26 64 28 38 2C 54 |&d(4,Rate)&d(8,T|
00000040: 69 6D 65 29 26 64 28 31 32 2C 44 69 73 74 2E 29 |ime)&d(12,Dist.)|
00000050: 40 72 52 45 41 44 40 70 52 65 61 64 20 74 68 65 |@rREAD@pRead the|
00000060: 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D 2E 20 | whole problem. |
00000070: 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 65 20 |Think: What are |
00000080: 74 68 65 20 66 61 63 74 73 3F 20 20 57 68 61 74 |the facts? What|
00000090: 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 3F | is being asked?|
000000A0: 20 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 | (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 29 2E 40 68 | to continue).@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 2E 40 68 57 68 61 74 20 69 73 |ts? {}.@hWhat is|
000000E0: 20 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 7B 7D | being asked? {}|
000000F0: 40 69 28 30 29 40 72 50 4C 41 4E 20 40 70 4C 65 |@i(0)@rPLAN @pLe|
00000100: 74 20 44 7B 7D 20 3D 20 7B 7D 20 64 69 73 74 61 |t D{} = {} dista|
00000110: 6E 63 65 20 61 6E 64 20 5C 6E 44 7B 7D 20 3D 20 |nce and \nD{} = |
00000120: 7B 7D 20 64 69 73 74 61 6E 63 65 2E 20 57 72 69 |{} distance. Wri|
00000130: 74 65 20 61 6E 20 65 71 75 61 74 69 6F 6E 20 74 |te an equation t|
00000140: 68 61 74 20 72 65 6C 61 74 65 73 20 44 7B 7D 20 |hat relates D{} |
00000150: 61 6E 64 20 44 7B 7D 2E 40 68 7B 7D 40 68 7B 7D |and D{}.@h{}@h{}|
00000160: 20 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 64 | shows that {} d|
00000170: 69 73 74 61 6E 63 65 20 77 61 73 20 69 6E 63 72 |istance was incr|
00000180: 65 61 73 65 64 20 62 79 20 7B 7D 2C 20 69 74 20 |eased by {}, it |
00000190: 77 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 64 |would equal {} d|
000001A0: 69 73 74 61 6E 63 65 2E 40 69 28 31 36 2C 63 30 |istance.@i(16,c0|
000001B0: 2C 44 7B 7D 3D 44 7B 7D 29 40 70 4F 6E 65 20 61 |,D{}=D{})@pOne a|
000001C0: 6E 73 77 65 72 20 69 73 20 60 7B 7D 27 2E 20 43 |nswer is `{}'. C|
000001D0: 68 61 6E 67 65 20 79 6F 75 72 20 61 6E 73 77 65 |hange your answe|
000001E0: 72 20 69 66 20 69 74 20 69 73 20 6E 6F 74 20 65 |r if it is not e|
000001F0: 71 75 69 76 61 6C 65 6E 74 2E 20 28 50 72 65 73 |quivalent. (Pres|
00000200: 73 20 72 65 74 75 72 6E 29 40 68 7B 7D 40 68 7B |s return)@h{}@h{|
00000210: 7D 20 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 |} shows that {} |
00000220: 64 69 73 74 61 6E 63 65 20 77 61 73 20 69 6E 63 |distance was inc|
00000230: 72 65 61 73 65 64 20 62 79 20 7B 7D 2C 20 69 74 |reased by {}, it|
00000240: 20 77 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 | would equal {} |
00000250: 64 69 73 74 61 6E 63 65 2E 40 69 28 31 36 2C 63 |distance.@i(16,c|
00000260: 30 2C 44 7B 7D 3D 44 7B 7D 29 40 72 44 41 54 41 |0,D{}=D{})@rDATA|
00000270: 20 45 4E 54 52 59 40 70 46 69 6C 6C 20 69 6E 20 | ENTRY@pFill in |
00000280: 74 68 65 20 75 6E 69 74 73 20 62 79 20 77 68 69 |the units by whi|
00000290: 63 68 20 72 61 74 65 2C 20 74 69 6D 65 20 61 6E |ch rate, time an|
000002A0: 64 20 64 69 73 74 61 6E 63 65 20 61 72 65 20 6D |d distance are m|
000002B0: 65 61 73 75 72 65 64 2E 20 28 55 73 65 20 61 62 |easured. (Use ab|
000002C0: 62 72 65 76 69 61 74 65 64 20 66 6F 72 6D 2E 29 |breviated form.)|
000002D0: 40 68 52 61 74 65 20 6F 66 20 73 70 65 65 64 20 |@hRate of speed |
000002E0: 69 73 20 63 6F 6D 6D 6F 6E 6C 79 20 6D 65 61 73 |is commonly meas|
000002F0: 75 72 65 64 20 69 6E 20 6D 69 6C 65 73 20 70 65 |ured in miles pe|
00000300: 72 20 68 6F 75 72 28 6D 69 2F 68 72 29 2C 20 6D |r hour(mi/hr), m|
00000310: 65 74 65 72 73 20 70 65 72 20 6D 69 6E 75 74 65 |eters per minute|
00000320: 28 6D 2F 6D 69 6E 29 2C 20 65 74 63 2E 40 68 54 |(m/min), etc.@hT|
00000330: 68 65 20 72 61 74 65 20 6F 66 20 73 70 65 65 64 |he rate of speed|
00000340: 20 69 6E 20 74 68 69 73 20 70 72 6F 62 6C 65 6D | in this problem|
00000350: 20 69 73 20 6D 65 61 73 75 72 65 64 20 69 6E 20 | is measured in |
00000360: 7B 7D 2E 40 69 28 35 2C 63 7B 7D 2C 7B 7D 29 40 |{}.@i(5,c{},{})@|
00000370: 68 54 69 6D 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C |hTime is commonl|
00000380: 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 73 65 |y measured in se|
00000390: 63 6F 6E 64 73 20 28 73 65 63 29 2C 20 6D 69 6E |conds (sec), min|
000003A0: 75 74 65 73 20 28 6D 69 6E 29 2C 20 68 6F 75 72 |utes (min), hour|
000003B0: 73 20 28 68 72 29 2C 20 64 61 79 73 20 28 64 61 |s (hr), days (da|
000003C0: 29 2C 20 65 74 63 2E 40 68 54 69 6D 65 20 69 6E |), etc.@hTime in|
000003D0: 20 74 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 | this problem is|
000003E0: 20 6D 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 | measured in {}@|
000003F0: 69 28 39 2C 63 7B 7D 2C 7B 7D 29 40 68 44 69 73 |i(9,c{},{})@hDis|
00000400: 74 61 6E 63 65 20 69 73 20 63 6F 6D 6D 6F 6E 6C |tance is commonl|
00000410: 79 20 6D 65 61 73 75 72 65 64 20 69 6E 20 66 65 |y measured in fe|
00000420: 65 74 20 28 66 74 29 2C 20 79 61 72 64 73 20 28 |et (ft), yards (|
00000430: 79 64 29 2C 20 6D 69 6C 65 73 20 28 6D 69 29 2C |yd), miles (mi),|
00000440: 20 6D 65 74 65 72 73 20 28 6D 29 2C 20 6B 69 6C | meters (m), kil|
00000450: 6F 6D 65 74 65 72 73 20 28 6B 6D 29 2C 20 65 74 |ometers (km), et|
00000460: 63 2E 40 68 44 69 73 74 61 6E 63 65 20 69 6E 20 |c.@hDistance in |
00000470: 74 68 69 73 20 70 72 6F 62 6C 65 6D 20 69 73 20 |this problem is |
00000480: 6D 65 61 73 75 72 65 64 20 69 6E 20 7B 7D 40 69 |measured in {}@i|
00000490: 28 31 33 2C 63 7B 7D 2C 7B 7D 29 40 70 45 6E 74 |(13,c{},{})@pEnt|
000004A0: 65 72 20 74 68 65 20 66 61 63 74 73 20 66 72 6F |er the facts fro|
000004B0: 6D 20 74 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E |m the problem in|
000004C0: 74 6F 20 74 68 65 20 67 72 69 64 2E 40 68 7B 7D |to the grid.@h{}|
000004D0: 40 68 7B 7D 40 69 28 36 2C 69 2C 7B 7D 29 40 68 |@h{}@i(6,i,{})@h|
000004E0: 7B 7D 40 68 7B 7D 40 69 28 37 2C 69 2C 7B 7D 29 |{}@h{}@i(7,i,{})|
000004F0: 40 70 55 73 65 20 61 20 76 61 72 69 61 62 6C 65 |@pUse a variable|
00000500: 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 | to represent th|
00000510: 65 20 74 69 6D 65 20 65 61 63 68 20 7B 7D 2E 40 |e time each {}.@|
00000520: 68 7B 7D 20 66 6F 72 20 74 68 65 20 73 61 6D 65 |h{} for the same|
00000530: 20 61 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 2C | amount of time,|
00000540: 20 73 6F 20 75 73 65 20 74 68 65 20 73 61 6D 65 | so use the same|
00000550: 20 76 61 72 69 61 62 6C 65 20 74 6F 20 72 65 70 | variable to rep|
00000560: 72 65 73 65 6E 74 20 62 6F 74 68 20 74 68 65 69 |resent both thei|
00000570: 72 20 74 69 6D 65 73 2E 40 68 55 73 65 20 61 20 |r times.@hUse a |
00000580: 76 61 72 69 61 62 6C 65 2C 20 73 75 63 68 20 61 |variable, such a|
00000590: 73 20 60 7B 7D 27 20 74 6F 20 72 65 70 72 65 73 |s `{}' to repres|
000005A0: 65 6E 74 20 74 68 65 20 7B 7D 2E 40 69 28 31 30 |ent the {}.@i(10|
000005B0: 2C 69 2C 26 76 29 40 68 52 65 70 72 65 73 65 6E |,i,&v)@hRepresen|
000005C0: 74 20 74 68 65 20 74 69 6D 65 20 7B 7D 20 69 6E |t the time {} in|
000005D0: 20 74 65 72 6D 73 20 6F 66 20 22 26 76 22 20 28 | terms of "&v" (|
000005E0: 74 68 65 20 74 69 6D 65 20 7B 7D 29 2E 40 68 53 |the time {}).@hS|
000005F0: 69 6E 63 65 20 62 6F 74 68 20 6F 66 20 74 68 65 |ince both of the|
00000600: 6D 20 7B 7D 20 66 6F 72 20 74 68 65 20 73 61 6D |m {} for the sam|
00000610: 65 20 61 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 |e amount of time|
00000620: 2C 20 75 73 65 20 74 68 65 20 73 61 6D 65 20 76 |, use the same v|
00000630: 61 72 69 61 62 6C 65 2C 20 60 26 76 27 20 74 6F |ariable, `&v' to|
00000640: 20 72 65 70 72 65 73 65 6E 74 20 7B 7D 20 74 69 | represent {} ti|
00000650: 6D 65 2E 40 69 28 31 31 2C 69 2C 26 76 29 40 72 |me.@i(11,i,&v)@r|
00000660: 50 41 52 54 53 40 70 57 72 69 74 65 20 65 78 70 |PARTS@pWrite exp|
00000670: 72 65 73 73 69 6F 6E 73 20 74 6F 20 72 65 70 72 |ressions to repr|
00000680: 65 73 65 6E 74 20 74 62 65 20 64 69 73 74 61 6E |esent tbe distan|
00000690: 63 65 20 7B 7D 2E 40 68 52 61 74 65 2A 54 69 6D |ce {}.@hRate*Tim|
000006A0: 65 20 3D 20 44 69 73 74 61 6E 63 65 40 68 52 61 |e = Distance@hRa|
000006B0: 74 65 20 20 5C 66 30 36 2A 20 5C 66 30 38 54 69 |te \f06* \f08Ti|
000006C0: 6D 65 20 5C 66 31 33 3D 20 44 69 73 74 61 6E 63 |me \f13= Distanc|
000006D0: 65 20 5C 6E 7B 7D 40 69 28 31 34 2C 69 2C 7B 7D |e \n{}@i(14,i,{}|
000006E0: 29 40 68 52 61 74 65 2A 54 69 6D 65 20 3D 20 44 |)@hRate*Time = D|
000006F0: 69 73 74 61 6E 63 65 40 68 52 61 74 65 20 20 5C |istance@hRate \|
00000700: 66 30 36 2A 20 5C 66 30 38 54 69 6D 65 20 5C 66 |f06* \f08Time \f|
00000710: 31 33 3D 20 44 69 73 74 61 6E 63 65 20 5C 6E 7B |13= Distance \n{|
00000720: 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 40 72 57 48 |}@i(15,i,{})@rWH|
00000730: 4F 4C 45 26 64 28 31 36 2C 20 29 40 70 53 75 62 |OLE&d(16, )@pSub|
00000740: 73 74 69 74 75 74 65 20 79 6F 75 72 20 65 78 70 |stitute your exp|
00000750: 72 65 73 73 69 6F 6E 73 20 66 6F 72 20 44 7B 7D |ressions for D{}|
00000760: 20 61 6E 64 20 44 7B 7D 20 69 6E 20 74 68 65 20 | and D{} in the |
00000770: 65 71 75 61 74 69 6F 6E 3A 20 44 7B 7D 20 3D 20 |equation: D{} = |
00000780: 44 7B 7D 40 68 44 7B 7D 20 3D 20 7B 7D 20 61 6E |D{}@hD{} = {} an|
00000790: 64 20 44 7B 7D 20 3D 20 7B 7D 2E 40 68 7B 7D 20 |d D{} = {}.@h{} |
000007A0: 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 64 69 |shows that {} di|
000007B0: 73 74 61 6E 63 65 20 69 73 20 7B 7D 20 67 72 65 |stance is {} gre|
000007C0: 61 74 65 72 20 74 68 61 6E 20 7B 7D 20 64 69 73 |ater than {} dis|
000007D0: 74 61 6E 63 65 2E 40 69 28 31 36 2C 69 2C 7B 7D |tance.@i(16,i,{}|
000007E0: 29 40 73 40 72 43 4F 4D 50 55 54 45 40 70 53 6F |)@s@rCOMPUTE@pSo|
000007F0: 6C 76 65 20 74 68 65 20 65 71 75 61 74 69 6F 6E |lve the equation|
00000800: 20 66 6F 72 20 22 26 76 22 2E 20 55 73 65 20 70 | for "&v". Use p|
00000810: 61 70 65 72 20 61 6E 64 20 70 65 6E 63 69 6C 20 |aper and pencil |
00000820: 61 6E 64 20 65 6E 74 65 72 20 74 68 65 20 66 69 |and enter the fi|
00000830: 6E 61 6C 20 65 71 75 61 74 69 6F 6E 2C 20 6F 72 |nal equation, or|
00000840: 20 75 73 65 20 74 68 65 20 43 61 6C 63 75 6C 61 | use the Calcula|
00000850: 74 6F 72 2E 40 68 49 73 6F 6C 61 74 65 20 22 26 |tor.@hIsolate "&|
00000860: 76 22 20 6F 6E 20 6F 6E 65 20 73 69 64 65 20 6F |v" on one side o|
00000870: 66 20 74 68 65 20 65 71 75 61 74 69 6F 6E 2E 40 |f the equation.@|
00000880: 68 54 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 20 |hThe Calculator |
00000890: 73 6F 6C 76 65 73 20 65 71 75 61 74 69 6F 6E 73 |solves equations|
000008A0: 20 66 6F 72 20 79 6F 75 20 61 6E 64 20 64 69 73 | for you and dis|
000008B0: 70 6C 61 79 73 20 74 68 65 20 73 74 65 70 73 20 |plays the steps |
000008C0: 69 6E 20 74 68 65 20 73 6F 6C 75 74 69 6F 6E 2E |in the solution.|
000008D0: 40 69 28 31 36 2C 69 2C 26 76 3D 7B 7D 29 40 70 |@i(16,i,&v={})@p|
000008E0: 4E 6F 77 20 79 6F 75 20 61 72 65 20 72 65 61 64 |Now you are read|
000008F0: 79 20 74 6F 20 61 6E 73 77 65 72 20 74 68 65 20 |y to answer the |
00000900: 71 75 65 73 74 69 6F 6E 2E 20 45 6E 74 65 72 20 |question. Enter |
00000910: 79 6F 75 72 20 61 6E 73 77 65 72 20 69 6E 20 74 |your answer in t|
00000920: 68 65 20 67 72 69 64 2E 26 71 7B 7D 26 71 26 77 |he grid.&q{}&q&w|
00000930: 28 31 36 29 40 68 54 68 65 20 74 69 6D 65 20 66 |(16)@hThe time f|
00000940: 6F 72 20 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |or {} is equal t|
00000950: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |o the value of "|
00000960: 26 76 22 2E 40 68 54 68 65 20 74 69 6D 65 20 66 |&v".@hThe time f|
00000970: 6F 72 20 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |or {} is equal t|
00000980: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |o the value of "|
00000990: 26 76 22 2E 20 26 76 20 3D 20 7B 7D 2C 20 73 6F |&v". &v = {}, so|
000009A0: 20 65 6E 74 65 72 20 7B 7D 27 2E 40 69 28 31 30 | enter {}'.@i(10|
000009B0: 2C 69 2C 7B 7D 29 26 64 28 31 31 2C 7B 7D 29 40 |,i,{})&d(11,{})@|
000009C0: 73 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 64 |s@rCHECK@pReread|
000009D0: 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 68 | the problem. Ch|
000009E0: 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 73 |eck your answers|
000009F0: 2E 20 45 76 61 6C 75 61 74 65 20 74 68 65 20 72 |. Evaluate the r|
00000A00: 65 6D 61 69 6E 69 6E 67 20 65 78 70 72 65 73 73 |emaining express|
00000A10: 69 6F 6E 73 20 69 6E 20 74 68 65 20 67 72 69 64 |ions in the grid|
00000A20: 2E 40 68 53 75 62 73 74 69 74 75 74 65 20 66 6F |.@hSubstitute fo|
00000A30: 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 78 |r "&v" in the ex|
00000A40: 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 7B 7D 20 |pression for {} |
00000A50: 64 69 73 74 61 6E 63 65 2E 20 54 68 65 6E 20 63 |distance. Then c|
00000A60: 61 6C 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 |alculate the res|
00000A70: 75 6C 74 2E 40 68 7B 7D 20 72 65 70 72 65 73 65 |ult.@h{} represe|
00000A80: 6E 74 73 20 7B 7D 20 64 69 73 74 61 6E 63 65 20 |nts {} distance |
00000A90: 61 6E 64 20 26 76 3D 7B 7D 40 69 28 31 34 2C 69 |and &v={}@i(14,i|
00000AA0: 2C 7B 7D 29 40 68 53 75 62 73 74 69 74 75 74 65 |,{})@hSubstitute|
00000AB0: 20 66 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 | for "&v" in the|
00000AC0: 20 65 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 | expression for |
00000AD0: 7B 7D 20 64 69 73 74 61 6E 63 65 2E 20 54 68 65 |{} distance. The|
00000AE0: 6E 20 63 61 6C 63 75 6C 61 74 65 20 74 68 65 20 |n calculate the |
00000AF0: 72 65 73 75 6C 74 2E 40 68 7B 7D 20 72 65 70 72 |result.@h{} repr|
00000B00: 65 73 65 6E 74 73 20 7B 7D 20 64 69 73 74 61 6E |esents {} distan|
00000B10: 63 65 20 61 6E 64 20 26 76 3D 7B 7D 40 69 28 31 |ce and &v={}@i(1|
00000B20: 35 2C 69 2C 7B 7D 29 26 64 28 30 2C 43 68 65 63 |5,i,{})&d(0,Chec|
00000B30: 6B 20 79 6F 75 72 20 77 6F 72 6B 2E 20 7B 7D 20 |k your work. {} |
00000B40: 64 69 73 74 61 6E 63 65 20 2B 20 7B 7D 20 73 68 |distance + {} sh|
00000B50: 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 64 69 |ould equal {} di|
00000B60: 73 74 61 6E 63 65 2E 20 47 65 74 20 72 65 61 64 |stance. Get read|
00000B70: 79 20 66 6F 72 20 61 20 6E 65 77 20 70 72 6F 62 |y for a new prob|
00000B80: 6C 65 6D 2E 29 40 66 45 6C 6C 65 6E 20 72 75 6E |lem.)@fEllen run|
00000B90: 73 20 61 74 20 61 20 72 61 74 65 20 6F 66 20 39 |s at a rate of 9|
00000BA0: 20 6D 69 2F 68 72 20 62 65 73 69 64 65 20 4A 6F | mi/hr beside Jo|
00000BB0: 68 6E 20 61 73 20 68 65 20 62 69 63 79 63 6C 65 |hn as he bicycle|
00000BC0: 73 2E 20 41 66 74 65 72 20 61 20 77 68 69 6C 65 |s. After a while|
00000BD0: 2C 20 4A 6F 68 6E 20 64 65 63 69 64 65 73 20 74 |, John decides t|
00000BE0: 6F 20 69 6E 63 72 65 61 73 65 20 68 69 73 20 72 |o increase his r|
00000BF0: 61 74 65 20 74 6F 20 31 38 20 6D 69 2F 68 72 2E |ate to 18 mi/hr.|
00000C00: 20 48 6F 77 20 6C 6F 6E 67 20 77 69 6C 6C 20 69 | How long will i|
00000C10: 74 20 74 61 6B 65 20 4A 6F 68 6E 20 74 6F 20 67 |t take John to g|
00000C20: 65 74 20 34 2E 35 20 6D 69 6C 65 73 20 61 68 65 |et 4.5 miles ahe|
00000C30: 61 64 20 6F 66 20 45 6C 6C 65 6E 3F 00 45 6C 6C |ad of Ellen?.Ell|
00000C40: 65 6E 00 4A 6F 68 6E 00 45 6C 6C 65 6E 20 72 75 |en.John.Ellen ru|
00000C50: 6E 73 20 61 74 20 61 20 73 70 65 65 64 20 6F 66 |ns at a speed of|
00000C60: 20 39 20 6D 69 2F 68 72 20 61 6E 64 20 4A 6F 68 | 9 mi/hr and Joh|
00000C70: 6E 20 62 69 63 79 63 6C 65 73 20 61 74 20 31 38 |n bicycles at 18|
00000C80: 20 6D 69 2F 68 72 2C 20 75 6E 74 69 6C 20 74 68 | mi/hr, until th|
00000C90: 65 79 20 61 72 65 20 34 2E 35 20 6D 69 6C 65 73 |ey are 4.5 miles|
00000CA0: 20 61 70 61 72 74 00 26 68 48 6F 77 20 6C 6F 6E | apart.&hHow lon|
00000CB0: 67 20 77 69 6C 6C 20 69 74 20 74 61 6B 65 20 4A |g will it take J|
00000CC0: 6F 68 6E 20 74 6F 20 67 65 74 20 34 2E 35 20 6D |ohn to get 4.5 m|
00000CD0: 69 6C 65 73 20 61 68 65 61 64 20 6F 66 20 45 6C |iles ahead of El|
00000CE0: 6C 65 6E 3F 26 68 00 65 00 45 6C 6C 65 6E 27 73 |len?&h.e.Ellen's|
00000CF0: 00 6A 00 4A 6F 68 6E 27 73 00 65 00 6A 00 4A 6F |.j.John's.e.j.Jo|
00000D00: 68 6E 27 73 20 64 69 73 74 61 6E 63 65 20 77 69 |hn's distance wi|
00000D10: 6C 6C 20 62 65 20 34 2E 35 20 6D 69 6C 65 73 20 |ll be 4.5 miles |
00000D20: 67 72 65 61 74 65 72 20 74 68 61 6E 20 45 6C 6C |greater than Ell|
00000D30: 65 6E 27 73 20 64 69 73 74 61 6E 63 65 2E 00 60 |en's distance..`|
00000D40: 44 65 2B 34 2E 35 3D 44 6A 27 00 69 66 20 45 6C |De+4.5=Dj'.if El|
00000D50: 6C 65 6E 27 73 00 34 2E 35 20 6D 69 6C 65 73 00 |len's.4.5 miles.|
00000D60: 4A 6F 68 6E 27 73 00 65 2B 34 2E 35 00 6A 00 44 |John's.e+4.5.j.D|
00000D70: 65 20 2B 20 34 2E 35 20 3D 20 44 6A 00 4A 6F 68 |e + 4.5 = Dj.Joh|
00000D80: 6E 27 73 20 64 69 73 74 61 6E 63 65 20 77 69 6C |n's distance wil|
00000D90: 6C 20 62 65 20 34 2E 35 20 6D 69 6C 65 73 20 67 |l be 4.5 miles g|
00000DA0: 72 65 61 74 65 72 20 74 68 61 6E 20 45 6C 6C 65 |reater than Elle|
00000DB0: 6E 27 73 20 64 69 73 74 61 6E 63 65 2E 00 60 44 |n's distance..`D|
00000DC0: 65 2B 34 2E 35 3D 44 6A 27 00 69 66 20 45 6C 6C |e+4.5=Dj'.if Ell|
00000DD0: 65 6E 27 73 00 34 2E 35 20 6D 69 6C 65 73 00 4A |en's.4.5 miles.J|
00000DE0: 6F 68 6E 27 73 00 65 2B 34 2E 35 00 6A 00 6D 69 |ohn's.e+4.5.j.mi|
00000DF0: 6C 65 73 20 70 65 72 20 68 6F 75 72 20 28 60 6D |les per hour (`m|
00000E00: 69 2F 68 72 27 29 00 35 00 6D 69 2F 68 72 00 68 |i/hr').5.mi/hr.h|
00000E10: 6F 75 72 73 2E 20 28 60 68 72 27 29 00 32 00 68 |ours. (`hr').2.h|
00000E20: 72 00 6D 69 6C 65 73 2E 20 28 60 6D 69 27 29 00 |r.miles. (`mi').|
00000E30: 32 00 6D 69 00 26 68 45 6C 6C 65 6E 20 72 75 6E |2.mi.&hEllen run|
00000E40: 73 20 61 74 20 61 20 72 61 74 65 20 6F 66 20 39 |s at a rate of 9|
00000E50: 20 6D 69 2F 68 72 26 68 2E 00 45 6C 6C 65 6E 27 | mi/hr&h..Ellen'|
00000E60: 73 20 72 61 74 65 20 6F 66 20 73 70 65 65 64 20 |s rate of speed |
00000E70: 69 73 20 60 39 27 20 6D 69 2F 68 72 2E 00 39 00 |is `9' mi/hr..9.|
00000E80: 4A 6F 68 6E 20 62 69 63 79 63 6C 65 73 20 61 74 |John bicycles at|
00000E90: 20 61 20 72 61 74 65 20 6F 66 20 26 68 31 38 20 | a rate of &h18 |
00000EA0: 6D 69 2F 68 72 26 68 2E 00 4A 6F 68 6E 27 73 20 |mi/hr&h..John's |
00000EB0: 72 61 74 65 20 6F 66 20 73 70 65 65 64 20 69 73 |rate of speed is|
00000EC0: 20 60 31 38 27 20 6D 69 2F 68 72 2E 00 31 38 00 | `18' mi/hr..18.|
00000ED0: 70 65 72 73 6F 6E 20 74 72 61 76 65 6C 73 00 45 |person travels.E|
00000EE0: 6C 6C 65 6E 20 61 6E 64 20 4A 6F 68 6E 20 74 72 |llen and John tr|
00000EF0: 61 76 65 6C 00 74 00 61 6D 6F 75 6E 74 20 6F 66 |avel.t.amount of|
00000F00: 20 74 69 6D 65 20 45 6C 6C 65 6E 20 72 61 6E 20 | time Ellen ran |
00000F10: 61 6C 6F 6E 65 00 74 68 61 74 20 4A 6F 68 6E 20 |alone.that John |
00000F20: 62 69 63 79 63 6C 65 64 20 61 6C 6F 6E 65 00 45 |bicycled alone.E|
00000F30: 6C 6C 65 6E 20 72 61 6E 20 61 6C 6F 6E 65 00 74 |llen ran alone.t|
00000F40: 72 61 76 65 6C 6C 65 64 20 61 6C 6F 6E 65 00 4A |ravelled alone.J|
00000F50: 6F 68 6E 27 73 00 74 68 61 74 20 65 61 63 68 20 |ohn's.that each |
00000F60: 70 65 72 73 6F 6E 20 74 72 61 76 65 6C 6C 65 64 |person travelled|
00000F70: 00 20 60 39 20 20 5C 66 30 36 2A 20 20 20 5C 66 |. `9 \f06* \f|
00000F80: 30 38 20 26 76 27 20 5C 66 31 33 3D 20 45 6C 6C |08 &v' \f13= Ell|
00000F90: 65 6E 27 73 20 64 69 73 74 2E 00 39 26 76 00 20 |en's dist..9&v. |
00000FA0: 60 31 38 20 20 20 5C 66 30 36 2A 20 20 5C 66 30 |`18 \f06* \f0|
00000FB0: 38 26 76 27 20 20 5C 66 31 33 3D 20 4A 6F 68 6E |8&v' \f13= John|
00000FC0: 27 73 20 64 69 73 74 2E 00 31 38 26 76 00 65 00 |'s dist..18&v.e.|
00000FD0: 6A 00 65 2B 34 2E 35 00 6A 00 65 00 39 26 76 00 |j.e+4.5.j.e.9&v.|
00000FE0: 6A 00 31 38 26 76 00 60 39 26 76 20 2B 20 34 2E |j.18&v.`9&v + 4.|
00000FF0: 35 20 3D 20 31 38 26 76 27 00 4A 6F 68 6E 27 73 |5 = 18&v'.John's|
00001000: 00 34 2E 35 20 6D 69 6C 65 73 00 45 6C 6C 65 6E |.4.5 miles.Ellen|
00001010: 27 73 00 39 26 76 2B 34 2E 35 3D 31 38 26 76 00 |'s.9&v+4.5=18&v.|
00001020: 31 2F 32 00 48 6F 77 20 6C 6F 6E 67 20 77 69 6C |1/2.How long wil|
00001030: 6C 20 69 74 20 74 61 6B 65 20 4A 6F 68 6E 20 74 |l it take John t|
00001040: 6F 20 67 65 74 20 34 2E 35 20 6D 69 6C 65 73 20 |o get 4.5 miles |
00001050: 61 68 65 61 64 20 6F 66 20 45 6C 6C 65 6E 2E 00 |ahead of Ellen..|
00001060: 62 6F 74 68 20 4A 6F 68 6E 20 61 6E 64 20 45 6C |both John and El|
00001070: 6C 65 6E 00 62 6F 74 68 20 4A 6F 68 6E 20 61 6E |len.both John an|
00001080: 64 20 45 6C 6C 65 6E 00 2E 35 00 60 2E 35 27 20 |d Ellen..5.`.5' |
00001090: 6F 72 20 60 31 2F 32 27 20 68 72 00 31 2F 32 00 |or `1/2' hr.1/2.|
000010A0: 2E 35 00 45 6C 6C 65 6E 27 73 00 39 26 76 00 45 |.5.Ellen's.9&v.E|
000010B0: 6C 6C 65 6E 27 73 00 2E 35 2C 20 73 6F 20 2E 35 |llen's..5, so .5|
000010C0: 20 2A 20 39 2C 20 6F 72 20 60 34 2E 35 27 20 6D | * 9, or `4.5' m|
000010D0: 69 6C 65 73 20 69 73 20 74 68 65 20 64 69 73 74 |iles is the dist|
000010E0: 61 6E 63 65 20 74 68 61 74 20 45 6C 6C 65 6E 20 |ance that Ellen |
000010F0: 72 61 6E 20 61 6C 6F 6E 65 2E 00 34 2E 35 00 4A |ran alone..4.5.J|
00001100: 6F 68 6E 27 73 00 31 38 26 76 00 4A 6F 68 6E 27 |ohn's.18&v.John'|
00001110: 73 00 2E 35 2C 20 73 6F 20 2E 35 20 2A 20 31 38 |s..5, so .5 * 18|
00001120: 2C 20 6F 72 20 60 39 27 20 6D 69 6C 65 73 20 69 |, or `9' miles i|
00001130: 73 20 74 68 65 20 64 69 73 74 61 6E 63 65 20 74 |s the distance t|
00001140: 68 61 74 20 4A 6F 68 6E 20 72 6F 64 65 20 61 6C |hat John rode al|
00001150: 6F 6E 65 2E 00 39 00 45 6C 6C 65 6E 27 73 00 34 |one..9.Ellen's.4|
00001160: 2E 35 00 4A 6F 68 6E 27 73 00 40 66 4A 75 61 6E |.5.John's.@fJuan|
00001170: 20 61 6E 64 20 41 6C 20 62 6F 74 68 20 62 65 67 | and Al both beg|
00001180: 69 6E 20 64 72 69 76 69 6E 67 20 77 65 73 74 20 |in driving west |
00001190: 66 72 6F 6D 20 42 75 66 66 61 6C 6F 20 61 74 20 |from Buffalo at |
000011A0: 74 68 65 20 73 61 6D 65 20 74 69 6D 65 2E 20 49 |the same time. I|
000011B0: 66 20 4A 75 61 6E 20 64 72 69 76 65 73 20 35 32 |f Juan drives 52|
000011C0: 20 6D 69 2F 68 72 20 61 6E 64 20 41 6C 20 64 72 | mi/hr and Al dr|
000011D0: 69 76 65 73 20 34 34 20 6D 69 2F 68 72 2C 20 61 |ives 44 mi/hr, a|
000011E0: 66 74 65 72 20 68 6F 77 20 6D 75 63 68 20 74 69 |fter how much ti|
000011F0: 6D 65 20 77 69 6C 6C 20 4A 75 61 6E 20 62 65 20 |me will Juan be |
00001200: 34 32 20 6D 69 6C 65 73 20 61 68 65 61 64 20 6F |42 miles ahead o|
00001210: 66 20 41 6C 3F 00 4A 75 61 6E 00 41 6C 00 4A 75 |f Al?.Juan.Al.Ju|
00001220: 61 6E 20 64 72 69 76 65 73 20 61 74 20 35 32 20 |an drives at 52 |
00001230: 6D 69 2F 68 72 20 61 6E 64 20 41 6C 20 64 72 69 |mi/hr and Al dri|
00001240: 76 65 73 20 61 74 20 34 34 20 6D 69 2F 68 72 20 |ves at 44 mi/hr |
00001250: 75 6E 74 69 6C 20 74 68 65 79 20 61 72 65 20 34 |until they are 4|
00001260: 32 20 6D 69 6C 65 73 20 61 70 61 72 74 00 26 68 |2 miles apart.&h|
00001270: 41 66 74 65 72 20 68 6F 77 20 6D 75 63 68 20 74 |After how much t|
00001280: 69 6D 65 20 77 69 6C 6C 20 4A 75 61 6E 20 62 65 |ime will Juan be|
00001290: 20 34 32 20 6D 69 6C 65 73 20 61 68 65 61 64 20 | 42 miles ahead |
000012A0: 6F 66 20 41 6C 3F 26 68 00 6A 00 4A 75 61 6E 27 |of Al?&h.j.Juan'|
000012B0: 73 00 61 00 41 6C 27 73 00 6A 00 61 00 4A 75 61 |s.a.Al's.j.a.Jua|
000012C0: 6E 20 77 69 6C 6C 20 62 65 20 34 32 20 6D 69 6C |n will be 42 mil|
000012D0: 65 73 20 61 68 65 61 64 20 6F 66 20 41 6C 2E 00 |es ahead of Al..|
000012E0: 60 44 61 2B 34 32 3D 44 6A 27 00 69 66 20 41 6C |`Da+42=Dj'.if Al|
000012F0: 27 73 00 34 32 20 6D 69 6C 65 73 00 4A 75 61 6E |'s.42 miles.Juan|
00001300: 27 73 00 61 2B 34 32 00 6A 00 44 61 2B 34 32 20 |'s.a+42.j.Da+42 |
00001310: 3D 20 44 6A 00 4A 75 61 6E 20 77 69 6C 6C 20 62 |= Dj.Juan will b|
00001320: 65 20 34 32 20 6D 69 6C 65 73 20 61 68 65 61 64 |e 42 miles ahead|
00001330: 20 6F 66 20 41 6C 2E 00 60 44 61 2B 34 32 20 3D | of Al..`Da+42 =|
00001340: 20 44 6A 27 00 69 66 20 41 6C 27 73 00 34 32 20 | Dj'.if Al's.42 |
00001350: 6D 69 6C 65 73 00 4A 75 61 6E 27 73 00 61 2B 34 |miles.Juan's.a+4|
00001360: 32 00 6A 00 6E 75 6D 62 65 72 20 6F 66 20 6D 69 |2.j.number of mi|
00001370: 6C 65 73 20 64 72 69 76 65 6E 20 69 6E 20 31 20 |les driven in 1 |
00001380: 68 6F 75 72 20 28 60 6D 69 2F 68 72 27 29 00 35 |hour (`mi/hr').5|
00001390: 00 6D 69 2F 68 72 00 68 6F 75 72 73 20 28 60 68 |.mi/hr.hours (`h|
000013A0: 72 27 29 2E 00 32 00 68 72 00 6D 69 6C 65 73 20 |r')..2.hr.miles |
000013B0: 28 60 6D 69 27 29 2E 00 32 00 6D 69 00 26 68 4A |(`mi')..2.mi.&hJ|
000013C0: 75 61 6E 20 64 72 69 76 65 73 20 35 32 20 6D 69 |uan drives 52 mi|
000013D0: 2F 68 72 26 68 2E 00 4A 75 61 6E 27 73 20 72 61 |/hr&h..Juan's ra|
000013E0: 74 65 20 6F 66 20 73 70 65 65 64 20 69 73 20 60 |te of speed is `|
000013F0: 35 32 27 20 6D 69 2F 68 72 2E 00 35 32 00 26 68 |52' mi/hr..52.&h|
00001400: 41 6C 20 64 72 69 76 65 73 20 34 34 20 6D 69 2F |Al drives 44 mi/|
00001410: 68 72 26 68 2E 00 41 6C 27 73 20 72 61 74 65 20 |hr&h..Al's rate |
00001420: 6F 66 20 73 70 65 65 64 20 69 73 20 60 34 34 27 |of speed is `44'|
00001430: 20 6D 69 2F 68 72 2E 00 34 34 00 6D 61 6E 20 64 | mi/hr..44.man d|
00001440: 72 69 76 65 73 00 42 6F 74 68 20 6D 65 6E 20 64 |rives.Both men d|
00001450: 72 69 76 65 00 74 00 61 6D 6F 75 6E 74 20 6F 66 |rive.t.amount of|
00001460: 20 74 69 6D 65 20 4A 75 61 6E 20 64 72 69 76 65 | time Juan drive|
00001470: 73 00 41 6C 20 64 72 69 76 65 73 00 4A 75 61 6E |s.Al drives.Juan|
00001480: 20 64 72 69 76 65 73 00 64 72 69 76 65 00 41 6C | drives.drive.Al|
00001490: 27 73 00 74 68 61 74 20 65 61 63 68 20 6D 61 6E |'s.that each man|
000014A0: 20 64 72 6F 76 65 00 60 35 32 20 20 5C 66 30 36 | drove.`52 \f06|
000014B0: 2A 20 20 20 5C 66 30 38 26 76 27 20 20 5C 66 31 |* \f08&v' \f1|
000014C0: 33 3D 20 4A 75 61 6E 27 73 20 64 69 73 74 2E 00 |3= Juan's dist..|
000014D0: 35 32 26 76 00 20 60 34 34 20 5C 66 30 36 2A 20 |52&v. `44 \f06* |
000014E0: 20 5C 66 30 38 20 26 76 27 20 5C 66 31 33 3D 20 | \f08 &v' \f13= |
000014F0: 41 6C 27 73 20 64 69 73 74 2E 00 34 34 26 76 00 |Al's dist..44&v.|
00001500: 6A 00 61 00 61 2B 34 32 00 6A 00 6A 00 35 32 26 |j.a.a+42.j.j.52&|
00001510: 76 00 61 00 34 34 26 76 00 60 34 34 26 76 2B 34 |v.a.44&v.`44&v+4|
00001520: 32 20 3D 20 35 32 26 76 27 00 4A 75 61 6E 27 73 |2 = 52&v'.Juan's|
00001530: 00 34 32 20 6D 69 6C 65 73 00 41 6C 27 73 00 34 |.42 miles.Al's.4|
00001540: 34 26 76 2B 34 32 3D 35 32 26 76 00 35 2E 32 35 |4&v+42=52&v.5.25|
00001550: 00 41 66 74 65 72 20 68 6F 77 20 6D 75 63 68 20 |.After how much |
00001560: 74 69 6D 65 20 77 69 6C 6C 20 4A 75 61 6E 20 62 |time will Juan b|
00001570: 65 20 34 32 20 6D 69 6C 65 73 20 61 68 65 61 64 |e 42 miles ahead|
00001580: 20 6F 66 20 41 6C 3F 00 62 6F 74 68 20 4A 75 61 | of Al?.both Jua|
00001590: 6E 20 61 6E 64 20 41 6C 00 4A 75 61 6E 00 35 2E |n and Al.Juan.5.|
000015A0: 32 35 00 60 35 2E 32 35 00 35 2E 32 35 00 35 2E |25.`5.25.5.25.5.|
000015B0: 32 35 00 4A 75 61 6E 27 73 00 35 32 26 76 00 4A |25.Juan's.52&v.J|
000015C0: 75 61 6E 27 73 00 35 2E 32 35 2C 20 73 6F 20 4A |uan's.5.25, so J|
000015D0: 75 61 6E 20 64 72 6F 76 65 20 35 32 20 2A 20 35 |uan drove 52 * 5|
000015E0: 2E 32 35 2C 20 6F 72 20 60 32 37 33 27 20 6D 69 |.25, or `273' mi|
000015F0: 6C 65 73 2E 00 32 37 33 00 41 6C 27 73 00 34 34 |les..273.Al's.44|
00001600: 26 76 00 41 6C 27 73 00 35 2E 32 35 2C 20 73 6F |&v.Al's.5.25, so|
00001610: 20 41 6C 20 64 72 6F 76 65 20 34 34 20 2A 20 35 | Al drove 44 * 5|
00001620: 2E 32 35 2C 20 6F 72 20 60 32 33 31 27 20 6D 69 |.25, or `231' mi|
00001630: 6C 65 73 2E 00 32 33 31 00 41 6C 27 73 00 34 32 |les..231.Al's.42|
00001640: 20 6D 69 6C 65 73 00 4A 75 61 6E 27 73 00 7C 73 | miles.Juan's.|s|
A @Q{}@DG05&D(1,UNIT/MEAS)&C(2,{})
&C(3,{})&D(4,RATE)&D(8,TIME)&D(12,DIST.)
@RREAD@PREAD THE WHOLE PROBLEM. THINK: W
HAT ARE THE FACTS? WHAT IS BEING ASKED?
(PRESS ANY KEY TO CONTINUE).@HWHAT ARE
THE FACTS? {}.@HWHAT IS BEING ASKED? {}
@I(0)@RPLAN @PLET D{} = {} DISTANCE AND
\ND{} = {} DISTANCE. WRITE AN EQUATION T
HAT RELATES D{} AND D{}.@H{}@H{} SHOWS T
HAT {} DISTANCE WAS INCREASED BY {}, IT
WOULD EQUAL {} DISTANCE.@I(16,C0,D{}=D{}
)@PONE ANSWER IS `{}'. CHANGE YOUR ANSWE
R IF IT IS NOT EQUIVALENT. (PRESS RETURN
)@H{}@H{} SHOWS THAT {} DISTANCE WAS INC
REASED BY {}, IT WOULD EQUAL {} DISTANCE
.@I(16,C0,D{}=D{})@RDATA ENTRY@PFILL IN
THE UNITS BY WHICH RATE, TIME AND DISTAN
CE ARE MEASURED. (USE ABBREVIATED FORM.)
@HRATE OF SPEED IS COMMONLY MEASURED IN
MILES PER HOUR(MI/HR), METERS PER MINUTE
(M/MIN), ETC.@HTHE RATE OF SPEED IN THIS
PROBLEM IS MEASURED IN {}.@I(5,C{},{})@
HTIME IS COMMONLY MEASURED IN SECONDS (S
EC), MINUTES (MIN), HOURS (HR), DAYS (DA
), ETC.@HTIME IN THIS PROBLEM IS MEASURE
D IN {}@I(9,C{},{})@HDISTANCE IS COMMONL
Y MEASURED IN FEET (FT), YARDS (YD), MIL
ES (MI), METERS (M), KILOMETERS (KM), ET
C.@HDISTANCE IN THIS PROBLEM IS MEASURED
IN {}@I(13,C{},{})@PENTER THE FACTS FRO
M THE PROBLEM INTO THE GRID.@H{}@H{}@I(6
,I,{})@H{}@H{}@I(7,I,{})@PUSE A VARIABLE
TO REPRESENT THE TIME EACH {}.@H{} FOR
THE SAME AMOUNT OF TIME, SO USE THE SAME
VARIABLE TO REPRESENT BOTH THEIR TIMES.
@HUSE A VARIABLE, SUCH AS `{}' TO REPRES
ENT THE {}.@I(10,I,&V)@HREPRESENT THE TI
ME {} IN TERMS OF "&V" (THE TIME {}).@HS
INCE BOTH OF THEM {} FOR THE SAME AMOUNT
OF TIME, USE THE SAME VARIABLE, `&V' TO
REPRESENT {} TIME.@I(11,I,&V)@RPARTS@PW
RITE EXPRESSIONS TO REPRESENT TBE DISTAN
CE {}.@HRATE*TIME = DISTANCE@HRATE \F06
* \F08TIME \F13= DISTANCE \N{}@I(14,I,{}
)@HRATE*TIME = DISTANCE@HRATE \F06* \F0
8TIME \F13= DISTANCE \N{}@I(15,I,{})@RWH
OLE&D(16, )@PSUBSTITUTE YOUR EXPRESSIONS
FOR D{} AND D{} IN THE EQUATION: D{} =
D{}@HD{} = {} AND D{} = {}.@H{} SHOWS TH
AT {} DISTANCE IS {} GREATER THAN {} DIS
TANCE.@I(16,I,{})@S@RCOMPUTE@PSOLVE THE
EQUATION FOR "&V". USE PAPER AND PENCIL
AND ENTER THE FINAL EQUATION, OR USE THE
CALCULATOR.@HISOLATE "&V" ON ONE SIDE O
F THE EQUATION.@HTHE CALCULATOR SOLVES E
QUATIONS FOR YOU AND DISPLAYS THE STEPS
IN THE SOLUTION.@I(16,I,&V={})@PNOW YOU
ARE READY TO ANSWER THE QUESTION. ENTER
YOUR ANSWER IN THE GRID.&Q{}&Q&W(16)@HTH
E TIME FOR {} IS EQUAL TO THE VALUE OF "
&V".@HTHE TIME FOR {} IS EQUAL TO THE VA
LUE OF "&V". &V = {}, SO ENTER {}'.@I(10
,I,{})&D(11,{})@S@RCHECK@PREREAD THE PRO
BLEM. CHECK YOUR ANSWERS. EVALUATE THE R
EMAINING EXPRESSIONS IN THE GRID.@HSUBST
ITUTE FOR "&V" IN THE EXPRESSION FOR {}
DISTANCE. THEN CALCULATE THE RESULT.@H{}
REPRESENTS {} DISTANCE AND &V={}@I(14,I
,{})@HSUBSTITUTE FOR "&V" IN THE EXPRESS
ION FOR {} DISTANCE. THEN CALCULATE THE
RESULT.@H{} REPRESENTS {} DISTANCE AND &
V={}@I(15,I,{})&D(0,CHECK YOUR WORK. {}
DISTANCE + {} SHOULD EQUAL {} DISTANCE.
GET READY FOR A NEW PROBLEM.)@FELLEN RUN
S AT A RATE OF 9 MI/HR BESIDE JOHN AS HE
BICYCLES. AFTER A WHILE, JOHN DECIDES T
O INCREASE HIS RATE TO 18 MI/HR. HOW LON
G WILL IT TAKE JOHN TO GET 4.5 MILES AHE
AD OF ELLEN?.ELLEN.JOHN.ELLEN RUNS AT A
SPEED OF 9 MI/HR AND JOHN BICYCLES AT 18
MI/HR, UNTIL THEY ARE 4.5 MILES APART.&
HHOW LONG WILL IT TAKE JOHN TO GET 4.5 M
ILES AHEAD OF ELLEN?&H.E.ELLEN'S.J.JOHN'
S.E.J.JOHN'S DISTANCE WILL BE 4.5 MILES
GREATER THAN ELLEN'S DISTANCE..`DE+4.5=D
J'.IF ELLEN'S.4.5 MILES.JOHN'S.E+4.5.J.D
E + 4.5 = DJ.JOHN'S DISTANCE WILL BE 4.5
MILES GREATER THAN ELLEN'S DISTANCE..`D
E+4.5=DJ'.IF ELLEN'S.4.5 MILES.JOHN'S.E+
4.5.J.MILES PER HOUR (`MI/HR').5.MI/HR.H
OURS. (`HR').2.HR.MILES. (`MI').2.MI.&HE
LLEN RUNS AT A RATE OF 9 MI/HR&H..ELLEN'
S RATE OF SPEED IS `9' MI/HR..9.JOHN BIC
YCLES AT A RATE OF &H18 MI/HR&H..JOHN'S
RATE OF SPEED IS `18' MI/HR..18.PERSON T
RAVELS.ELLEN AND JOHN TRAVEL.T.AMOUNT OF
TIME ELLEN RAN ALONE.THAT JOHN BICYCLED
ALONE.ELLEN RAN ALONE.TRAVELLED ALONE.J
OHN'S.THAT EACH PERSON TRAVELLED. `9 \F
06* \F08 &V' \F13= ELLEN'S DIST..9&V.
`18 \F06* \F08&V' \F13= JOHN'S DIST.
.18&V.E.J.E+4.5.J.E.9&V.J.18&V.`9&V + 4.
5 = 18&V'.JOHN'S.4.5 MILES.ELLEN'S.9&V+4
.5=18&V.1/2.HOW LONG WILL IT TAKE JOHN T
O GET 4.5 MILES AHEAD OF ELLEN..BOTH JOH
N AND ELLEN.BOTH JOHN AND ELLEN..5.`.5'
OR `1/2' HR.1/2..5.ELLEN'S.9&V.ELLEN'S..
5, SO .5 * 9, OR `4.5' MILES IS THE DIST
ANCE THAT ELLEN RAN ALONE..4.5.JOHN'S.18
&V.JOHN'S..5, SO .5 * 18, OR `9' MILES I
S THE DISTANCE THAT JOHN RODE ALONE..9.E
LLEN'S.4.5.JOHN'S.@FJUAN AND AL BOTH BEG
IN DRIVING WEST FROM BUFFALO AT THE SAME
TIME. IF JUAN DRIVES 52 MI/HR AND AL DR
IVES 44 MI/HR, AFTER HOW MUCH TIME WILL
JUAN BE 42 MILES AHEAD OF AL?.JUAN.AL.JU
AN DRIVES AT 52 MI/HR AND AL DRIVES AT 4
4 MI/HR UNTIL THEY ARE 42 MILES APART.&H
AFTER HOW MUCH TIME WILL JUAN BE 42 MILE
S AHEAD OF AL?&H.J.JUAN'S.A.AL'S.J.A.JUA
N WILL BE 42 MILES AHEAD OF AL..`DA+42=D
J'.IF AL'S.42 MILES.JUAN'S.A+42.J.DA+42
= DJ.JUAN WILL BE 42 MILES AHEAD OF AL..
`DA+42 = DJ'.IF AL'S.42 MILES.JUAN'S.A+4
2.J.NUMBER OF MILES DRIVEN IN 1 HOUR (`M
I/HR').5.MI/HR.HOURS (`HR')..2.HR.MILES
(`MI')..2.MI.&HJUAN DRIVES 52 MI/HR&H..J
UAN'S RATE OF SPEED IS `52' MI/HR..52.&H
AL DRIVES 44 MI/HR&H..AL'S RATE OF SPEED
IS `44' MI/HR..44.MAN DRIVES.BOTH MEN D
RIVE.T.AMOUNT OF TIME JUAN DRIVES.AL DRI
VES.JUAN DRIVES.DRIVE.AL'S.THAT EACH MAN
DROVE.`52 \F06* \F08&V' \F13= JUAN'
S DIST..52&V. `44 \F06* \F08 &V' \F13=
AL'S DIST..44&V.J.A.A+42.J.J.52&V.A.44&V
.`44&V+42 = 52&V'.JUAN'S.42 MILES.AL'S.4
4&V+42=52&V.5.25.AFTER HOW MUCH TIME WIL
L JUAN BE 42 MILES AHEAD OF AL?.BOTH JUA
N AND AL.JUAN.5.25.`5.25.5.25.5.25.JUAN'
S.52&V.JUAN'S.5.25, SO JUAN DROVE 52 * 5
.25, OR `273' MILES..273.AL'S.44&V.AL'S.
5.25, SO AL DROVE 44 * 5.25, OR `231' MI
LES..231.AL'S.42 MILES.JUAN'S.|S
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL