NUMB1L3
FILE INFORMATION
FILENAME(S): NUMB1L3
FILE TYPE(S): PRG
FILE SIZE: 5.5K
FIRST SEEN: 2025-10-19 22:49:00
APPEARS ON: 1 disk(s)
FILE HASH
c4dee5a615c1732a1d9ac318a4743e253de5fe2c0648576606151617158eee52
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 41S2 | NUMB1L3 | PRG | Radd Maxx | 27 | 3 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 09 09 40 71 7B 7D 40 64 67 30 37 26 63 | A ..@q{}@dg07&c|
00000010: 28 31 2C 7B 7D 29 26 63 28 32 2C 7B 7D 29 40 72 |(1,{})&c(2,{})@r|
00000020: 52 45 41 44 40 70 52 65 61 64 20 74 68 65 20 70 |READ@pRead the p|
00000030: 72 6F 62 6C 65 6D 20 73 6C 6F 77 6C 79 20 61 6E |roblem slowly an|
00000040: 64 20 63 61 72 65 66 75 6C 6C 79 2E 20 57 68 61 |d carefully. Wha|
00000050: 74 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 |t is being asked|
00000060: 3F 5C 6E 20 20 28 50 72 65 73 73 20 61 6E 79 20 |?\n (Press any |
00000070: 6B 65 79 20 74 6F 20 63 6F 6E 74 69 6E 75 65 2E |key to continue.|
00000080: 29 40 68 59 6F 75 20 61 72 65 20 62 65 69 6E 67 |)@hYou are being|
00000090: 20 61 73 6B 65 64 20 74 6F 20 66 69 6E 64 20 7B | asked to find {|
000000A0: 7D 2E 40 68 54 68 65 20 70 72 6F 62 6C 65 6D 20 |}.@hThe problem |
000000B0: 69 73 20 74 6F 20 7B 7D 40 69 28 30 29 40 72 50 |is to {}@i(0)@rP|
000000C0: 4C 41 4E 40 70 55 73 69 6E 67 20 6F 6E 65 20 76 |LAN@pUsing one v|
000000D0: 61 72 69 61 62 6C 65 2C 20 65 6E 74 65 72 20 65 |ariable, enter e|
000000E0: 78 70 72 65 73 73 69 6F 6E 73 20 74 6F 20 72 65 |xpressions to re|
000000F0: 70 72 65 73 65 6E 74 20 7B 7D 40 68 43 68 6F 6F |present {}@hChoo|
00000100: 73 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 6F |se a variable to|
00000110: 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 7B | represent the {|
00000120: 7D 2E 40 68 50 69 63 6B 20 61 6E 79 20 6C 65 74 |}.@hPick any let|
00000130: 74 65 72 2C 20 73 75 63 68 20 61 73 20 60 7B 7D |ter, such as `{}|
00000140: 27 2C 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 |', to represent |
00000150: 74 68 65 20 7B 7D 2E 40 69 28 35 2C 69 2C 26 76 |the {}.@i(5,i,&v|
00000160: 29 40 68 52 65 70 72 65 73 65 6E 74 20 74 68 65 |)@hRepresent the|
00000170: 20 7B 7D 2C 20 69 6E 20 74 65 72 6D 73 20 6F 66 | {}, in terms of|
00000180: 20 22 26 76 22 2C 20 7B 7D 2E 40 68 7B 7D 2E 40 | "&v", {}.@h{}.@|
00000190: 69 28 36 2C 69 2C 7B 7D 29 40 70 54 72 61 6E 73 |i(6,i,{})@pTrans|
000001A0: 6C 61 74 65 3A 20 7B 7D 2E 40 68 22 7B 7D 22 20 |late: {}.@h"{}" |
000001B0: 69 73 20 74 68 65 20 70 68 72 61 73 65 20 74 6F |is the phrase to|
000001C0: 20 62 65 20 74 72 61 6E 73 6C 61 74 65 64 2E 40 | be translated.@|
000001D0: 68 7B 7D 2E 40 69 28 39 2C 63 30 2C 20 29 40 70 |h{}.@i(9,c0, )@p|
000001E0: 4E 6F 77 2C 20 74 72 61 6E 73 6C 61 74 65 20 74 |Now, translate t|
000001F0: 68 65 20 72 65 73 74 20 6F 66 20 74 68 65 20 70 |he rest of the p|
00000200: 72 6F 62 6C 65 6D 2E 20 7B 7D 40 68 7B 7D 20 69 |roblem. {}@h{} i|
00000210: 73 20 74 68 65 20 70 68 72 61 73 65 20 74 6F 20 |s the phrase to |
00000220: 62 65 20 74 72 61 6E 73 6C 61 74 65 64 2E 40 68 |be translated.@h|
00000230: 45 6E 74 65 72 20 7B 7D 20 61 6E 64 20 7B 7D 20 |Enter {} and {} |
00000240: 45 6E 74 65 72 20 60 7B 7D 27 2E 40 69 28 39 2C |Enter `{}'.@i(9,|
00000250: 64 30 2C 20 29 40 70 4F 6E 65 20 61 6E 73 77 65 |d0, )@pOne answe|
00000260: 72 20 69 73 3A 20 7B 7D 2E 20 43 68 61 6E 67 65 |r is: {}. Change|
00000270: 20 79 6F 75 72 20 61 6E 73 77 65 72 20 69 66 20 | your answer if |
00000280: 69 74 20 69 73 20 6E 6F 74 20 65 71 75 69 76 61 |it is not equiva|
00000290: 6C 65 6E 74 2E 20 28 50 72 65 73 73 20 52 65 74 |lent. (Press Ret|
000002A0: 75 72 6E 29 40 68 7B 7D 40 68 7B 7D 40 69 28 39 |urn)@h{}@h{}@i(9|
000002B0: 2C 63 30 2C 20 29 40 70 53 75 62 73 74 69 74 75 |,c0, )@pSubstitu|
000002C0: 74 65 20 74 68 65 20 65 78 70 72 65 73 73 69 6F |te the expressio|
000002D0: 6E 73 20 66 6F 72 20 7B 7D 20 69 6E 20 74 68 65 |ns for {} in the|
000002E0: 20 45 71 75 61 74 69 6F 6E 20 49 64 65 61 3A 20 | Equation Idea: |
000002F0: 7B 7D 2E 40 68 7B 7D 2E 40 68 45 6E 74 65 72 20 |{}.@h{}.@hEnter |
00000300: 7B 7D 2E 40 69 28 31 30 2C 69 2C 7B 7D 29 26 64 |{}.@i(10,i,{})&d|
00000310: 28 31 31 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 |(11,{})@s@rCOMPU|
00000320: 54 45 40 70 53 6F 6C 76 65 20 74 68 65 20 65 71 |TE@pSolve the eq|
00000330: 75 61 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 2E |uation for "&v".|
00000340: 20 55 73 65 20 70 61 70 65 72 20 61 6E 64 20 70 | Use paper and p|
00000350: 65 6E 63 69 6C 20 6F 72 20 75 73 65 20 74 68 65 |encil or use the|
00000360: 20 43 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 | Calculator.@hIs|
00000370: 6F 6C 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E |olate "&v" on on|
00000380: 65 20 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 |e side of the eq|
00000390: 75 61 74 69 6F 6E 2E 20 40 68 54 68 65 20 43 61 |uation. @hThe Ca|
000003A0: 6C 63 75 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 |lculator solves |
000003B0: 65 71 75 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F |equations for yo|
000003C0: 75 20 61 6E 64 20 64 69 73 70 6C 61 79 73 20 74 |u and displays t|
000003D0: 68 65 20 73 74 65 70 73 20 69 6E 20 74 68 65 20 |he steps in the |
000003E0: 73 6F 6C 75 74 69 6F 6E 2E 40 69 28 31 31 2C 69 |solution.@i(11,i|
000003F0: 2C 26 76 3D 7B 7D 29 40 70 45 6E 74 65 72 20 79 |,&v={})@pEnter y|
00000400: 6F 75 72 20 61 6E 73 77 65 72 73 20 74 6F 20 74 |our answers to t|
00000410: 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E 20 74 68 |he problem in th|
00000420: 65 20 67 72 69 64 2E 20 52 65 6D 65 6D 62 65 72 |e grid. Remember|
00000430: 20 74 68 65 20 71 75 65 73 74 69 6F 6E 2E 20 26 | the question. &|
00000440: 71 7B 7D 26 71 26 77 28 31 31 29 40 68 7B 7D 20 |q{}&q&w(11)@h{} |
00000450: 69 73 20 65 71 75 61 6C 20 74 6F 20 74 68 65 20 |is equal to the |
00000460: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
00000470: 26 76 20 3D 20 7B 7D 2C 20 73 6F 20 65 6E 74 65 |&v = {}, so ente|
00000480: 72 20 27 7B 7D 27 2E 40 69 28 35 2C 69 2C 7B 7D |r '{}'.@i(5,i,{}|
00000490: 29 40 68 7B 7D 20 69 73 20 65 71 75 61 6C 20 74 |)@h{} is equal t|
000004A0: 6F 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 7B |o the value of {|
000004B0: 7D 2E 40 68 26 76 20 3D 20 7B 7D 2C 20 73 6F 20 |}.@h&v = {}, so |
000004C0: 7B 7D 2E 40 69 28 36 2C 69 2C 7B 7D 29 40 73 40 |{}.@i(6,i,{})@s@|
000004D0: 72 43 48 45 43 4B 26 64 28 30 2C 54 6F 20 63 68 |rCHECK&d(0,To ch|
000004E0: 65 63 6B 20 79 6F 75 72 20 77 6F 72 6B 2C 20 74 |eck your work, t|
000004F0: 68 65 20 76 61 6C 75 65 20 6F 66 20 22 26 76 22 |he value of "&v"|
00000500: 20 69 73 20 73 75 62 73 74 69 74 75 74 65 64 20 | is substituted |
00000510: 69 6E 20 74 68 65 20 65 71 75 61 74 69 6F 6E 2E |in the equation.|
00000520: 29 26 64 28 31 31 2C 7B 7D 29 40 70 53 69 6D 70 |)&d(11,{})@pSimp|
00000530: 6C 69 66 79 20 74 68 65 20 65 71 75 61 74 69 6F |lify the equatio|
00000540: 6E 20 77 69 74 68 20 74 68 65 20 63 61 6C 63 75 |n with the calcu|
00000550: 6C 61 74 6F 72 20 74 6F 20 6D 61 6B 65 20 73 75 |lator to make su|
00000560: 72 65 20 74 68 61 74 20 74 68 65 20 74 77 6F 20 |re that the two |
00000570: 73 69 64 65 73 20 61 72 65 20 65 71 75 61 6C 2E |sides are equal.|
00000580: 40 68 54 68 65 20 73 69 6D 70 6C 69 66 69 65 64 |@hThe simplified|
00000590: 20 65 71 75 61 74 69 6F 6E 20 69 73 20 7B 7D 2E | equation is {}.|
000005A0: 40 68 54 68 65 20 73 69 6D 70 6C 69 66 69 65 64 |@hThe simplified|
000005B0: 20 65 71 75 61 74 69 6F 6E 20 69 73 20 7B 7D 2E | equation is {}.|
000005C0: 40 69 28 31 31 2C 69 2C 7B 7D 29 40 66 4F 6E 65 |@i(11,i,{})@fOne|
000005D0: 20 6E 75 6D 62 65 72 20 69 73 20 33 20 6D 6F 72 | number is 3 mor|
000005E0: 65 20 74 68 61 6E 20 74 77 69 63 65 20 61 6E 6F |e than twice ano|
000005F0: 74 68 65 72 20 6E 75 6D 62 65 72 2E 20 49 66 20 |ther number. If |
00000600: 74 68 65 20 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 |the smaller numb|
00000610: 65 72 20 69 73 20 69 6E 63 72 65 61 73 65 64 20 |er is increased |
00000620: 62 79 20 35 39 2C 20 69 74 20 65 71 75 61 6C 73 |by 59, it equals|
00000630: 20 74 68 65 20 6C 61 72 67 65 72 20 6E 75 6D 62 | the larger numb|
00000640: 65 72 2E 20 57 68 61 74 20 61 72 65 20 74 68 65 |er. What are the|
00000650: 20 6E 75 6D 62 65 72 73 3F 00 53 4D 00 4C 47 00 | numbers?.SM.LG.|
00000660: 74 68 65 20 6E 75 6D 62 65 72 73 00 66 69 6E 64 |the numbers.find|
00000670: 20 74 68 65 20 6E 75 6D 62 65 72 73 2E 00 74 68 | the numbers..th|
00000680: 65 20 74 77 6F 20 6E 75 6D 62 65 72 73 2E 00 73 |e two numbers..s|
00000690: 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 00 73 00 |maller number.s.|
000006A0: 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 00 6C |smaller number.l|
000006B0: 61 72 67 65 72 20 6E 75 6D 62 65 72 00 74 68 65 |arger number.the|
000006C0: 20 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 00 | smaller number.|
000006D0: 54 68 65 20 6C 61 72 67 65 72 20 6E 75 6D 62 65 |The larger numbe|
000006E0: 72 20 26 68 69 73 20 33 20 6D 6F 72 65 20 74 68 |r &his 3 more th|
000006F0: 61 6E 20 74 77 69 63 65 26 68 20 74 68 65 20 73 |an twice&h the s|
00000700: 6D 61 6C 6C 65 72 2C 20 73 6F 20 60 32 26 76 2B |maller, so `2&v+|
00000710: 33 27 20 72 65 70 72 65 73 65 6E 74 73 20 74 68 |3' represents th|
00000720: 65 20 6C 61 72 67 65 72 00 32 26 76 2B 33 00 26 |e larger.2&v+3.&|
00000730: 68 49 66 20 74 68 65 20 73 6D 61 6C 6C 65 72 20 |hIf the smaller |
00000740: 6E 75 6D 62 65 72 20 69 73 20 69 6E 63 72 65 61 |number is increa|
00000750: 73 65 64 20 62 79 20 35 39 26 68 2E 20 55 73 65 |sed by 59&h. Use|
00000760: 20 22 53 4D 22 20 61 6E 64 20 22 4C 47 22 20 74 | "SM" and "LG" t|
00000770: 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 |o represent the |
00000780: 6E 75 6D 62 65 72 73 00 54 68 65 20 73 6D 61 6C |numbers.The smal|
00000790: 6C 65 72 20 6E 75 6D 62 65 72 20 69 73 20 69 6E |ler number is in|
000007A0: 63 72 65 61 73 65 64 20 62 79 20 35 39 00 60 53 |creased by 59.`S|
000007B0: 4D 2B 35 39 27 20 72 65 70 72 65 73 65 6E 74 73 |M+59' represents|
000007C0: 20 74 68 65 20 73 6D 61 6C 6C 65 72 20 6E 75 6D | the smaller num|
000007D0: 62 65 72 20 69 6E 63 72 65 61 73 65 64 20 62 79 |ber increased by|
000007E0: 20 35 39 00 26 71 65 71 75 61 6C 73 20 74 68 65 | 59.&qequals the|
000007F0: 20 6C 61 72 67 65 72 26 71 00 45 71 75 61 6C 73 | larger&q.Equals|
00000800: 20 74 68 65 20 6C 61 72 67 65 72 00 74 68 65 20 | the larger.the |
00000810: 65 71 75 61 6C 20 73 69 67 6E 00 4C 47 20 66 6F |equal sign.LG fo|
00000820: 72 20 74 68 65 20 6C 61 72 67 65 72 20 6E 75 6D |r the larger num|
00000830: 62 65 72 2E 00 3D 4C 47 00 53 4D 2B 35 39 3D 4C |ber..=LG.SM+59=L|
00000840: 47 00 54 68 65 20 65 71 75 61 74 69 6F 6E 20 73 |G.The equation s|
00000850: 68 6F 77 73 20 74 68 61 74 20 69 66 20 74 68 65 |hows that if the|
00000860: 20 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 20 | smaller number |
00000870: 77 65 72 65 20 69 6E 63 72 65 61 73 65 64 20 62 |were increased b|
00000880: 79 20 35 39 20 69 74 20 77 6F 75 6C 64 20 65 71 |y 59 it would eq|
00000890: 75 61 6C 20 74 68 65 20 6C 61 72 67 65 72 20 6E |ual the larger n|
000008A0: 75 6D 62 65 72 2E 00 60 53 4D 2B 35 39 3D 4C 47 |umber..`SM+59=LG|
000008B0: 27 20 69 73 20 74 68 65 20 65 71 75 61 74 69 6F |' is the equatio|
000008C0: 6E 2E 00 53 4D 20 61 6E 64 20 4C 47 00 53 4D 2B |n..SM and LG.SM+|
000008D0: 35 39 3D 4C 47 00 53 4D 20 3D 20 26 76 20 61 6E |59=LG.SM = &v an|
000008E0: 64 20 4C 47 20 3D 20 32 26 76 2B 33 00 60 26 76 |d LG = 2&v+3.`&v|
000008F0: 2B 35 39 3D 32 26 76 2B 33 27 00 26 76 2B 35 39 |+59=2&v+3'.&v+59|
00000900: 3D 32 26 76 2B 33 00 26 76 2B 35 39 20 3D 20 32 |=2&v+3.&v+59 = 2|
00000910: 26 76 2B 33 00 35 36 00 57 68 61 74 20 61 72 65 |&v+3.56.What are|
00000920: 20 74 68 65 20 6E 75 6D 62 65 72 73 3F 00 54 68 | the numbers?.Th|
00000930: 65 20 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 |e smaller number|
00000940: 00 35 36 00 35 36 00 35 36 00 54 68 65 20 6C 61 |.56.56.56.The la|
00000950: 72 67 65 72 20 6E 75 6D 62 65 72 00 32 26 76 2B |rger number.2&v+|
00000960: 33 00 35 36 00 28 32 2A 35 36 29 2B 33 20 3D 20 |3.56.(2*56)+3 = |
00000970: 31 31 32 2B 33 20 3D 20 60 31 31 35 27 00 31 31 |112+3 = `115'.11|
00000980: 35 00 35 36 2B 35 39 20 3D 20 28 32 2A 35 36 29 |5.56+59 = (2*56)|
00000990: 2B 33 00 60 31 31 35 3D 31 31 35 27 00 60 31 31 |+3.`115=115'.`11|
000009A0: 35 3D 31 31 35 27 00 31 31 35 3D 31 31 35 00 40 |5=115'.115=115.@|
000009B0: 66 54 68 65 20 6C 61 72 67 65 72 20 6F 66 20 74 |fThe larger of t|
000009C0: 77 6F 20 6E 75 6D 62 65 72 73 20 69 73 20 34 20 |wo numbers is 4 |
000009D0: 74 69 6D 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 |times the smalle|
000009E0: 72 2E 20 57 68 61 74 20 61 72 65 20 74 68 65 20 |r. What are the |
000009F0: 6E 75 6D 62 65 72 73 20 69 66 20 74 68 65 69 72 |numbers if their|
00000A00: 20 73 75 6D 20 69 73 20 65 71 75 61 6C 20 74 6F | sum is equal to|
00000A10: 20 38 32 20 6D 6F 72 65 20 74 68 61 6E 20 74 68 | 82 more than th|
00000A20: 65 20 6C 61 72 67 65 72 20 6E 75 6D 62 65 72 3F |e larger number?|
00000A30: 00 53 4D 00 4C 47 00 74 68 65 20 6E 75 6D 62 65 |.SM.LG.the numbe|
00000A40: 72 73 00 66 69 6E 64 20 74 68 65 20 6E 75 6D 62 |rs.find the numb|
00000A50: 65 72 73 2E 00 74 68 65 20 6E 75 6D 62 65 72 73 |ers..the numbers|
00000A60: 2E 00 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 |..smaller number|
00000A70: 00 73 00 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 |.s.smaller numbe|
00000A80: 72 00 6C 61 72 67 65 72 00 74 68 65 20 73 6D 61 |r.larger.the sma|
00000A90: 6C 6C 65 72 20 6E 75 6D 62 65 72 00 26 68 54 68 |ller number.&hTh|
00000AA0: 65 20 6C 61 72 67 65 72 20 6F 66 20 74 77 6F 20 |e larger of two |
00000AB0: 6E 75 6D 62 65 72 73 20 69 73 20 34 20 74 69 6D |numbers is 4 tim|
00000AC0: 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 26 68 |es the smaller&h|
00000AD0: 2C 20 73 6F 20 60 34 26 76 27 20 72 65 70 72 65 |, so `4&v' repre|
00000AE0: 73 65 6E 74 73 20 74 68 65 20 6C 61 72 67 65 72 |sents the larger|
00000AF0: 20 6E 75 6D 62 65 72 00 34 26 76 00 22 74 68 65 | number.4&v."the|
00000B00: 69 72 20 73 75 6D 22 2E 20 55 73 65 20 53 4D 20 |ir sum". Use SM |
00000B10: 61 6E 64 20 4C 47 20 74 6F 20 72 65 70 72 65 73 |and LG to repres|
00000B20: 65 6E 74 20 74 68 65 20 6E 75 6D 62 65 72 73 00 |ent the numbers.|
00000B30: 74 68 65 69 72 20 73 75 6D 00 60 53 4D 2B 4C 47 |their sum.`SM+LG|
00000B40: 27 20 72 65 70 72 65 73 65 6E 74 73 20 74 68 65 |' represents the|
00000B50: 20 73 75 6D 20 6F 66 20 74 68 65 20 6C 61 72 67 | sum of the larg|
00000B60: 65 20 61 6E 64 20 73 6D 61 6C 6C 20 6E 75 6D 62 |e and small numb|
00000B70: 65 72 73 00 26 71 69 73 20 65 71 75 61 6C 20 74 |ers.&qis equal t|
00000B80: 6F 20 38 32 20 6D 6F 72 65 20 74 68 61 6E 20 74 |o 82 more than t|
00000B90: 68 65 20 6C 61 72 67 65 72 26 71 00 49 73 20 38 |he larger&q.Is 8|
00000BA0: 32 20 6D 6F 72 65 20 74 68 61 6E 20 74 68 65 20 |2 more than the |
00000BB0: 6C 61 72 67 65 72 00 3D 20 66 6F 72 20 22 69 73 |larger.= for "is|
00000BC0: 20 65 71 75 61 6C 20 74 6F 22 20 00 4C 47 2B 38 | equal to" .LG+8|
00000BD0: 32 20 66 6F 72 20 22 38 32 20 6D 6F 72 65 20 74 |2 for "82 more t|
00000BE0: 68 61 6E 20 74 68 65 20 6C 61 72 67 65 72 2E 00 |han the larger..|
00000BF0: 3D 20 4C 47 2B 38 32 00 53 4D 2B 4C 47 20 3D 20 |= LG+82.SM+LG = |
00000C00: 4C 47 2B 38 32 00 54 68 65 20 73 75 6D 20 6F 66 |LG+82.The sum of|
00000C10: 20 74 68 65 20 6C 61 72 67 65 72 20 61 6E 64 20 | the larger and |
00000C20: 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 73 20 |smaller numbers |
00000C30: 65 71 75 61 6C 73 20 38 32 20 6D 6F 72 65 20 74 |equals 82 more t|
00000C40: 68 61 6E 20 74 68 65 20 6C 61 72 67 65 72 20 6E |han the larger n|
00000C50: 75 6D 62 65 72 2E 00 60 53 4D 2B 4C 47 20 3D 20 |umber..`SM+LG = |
00000C60: 4C 47 2B 38 32 27 00 53 4D 20 61 6E 64 20 4C 47 |LG+82'.SM and LG|
00000C70: 00 53 4D 2B 4C 47 20 3D 20 4C 47 2B 38 32 00 53 |.SM+LG = LG+82.S|
00000C80: 4D 20 3D 20 26 76 20 61 6E 64 20 4C 47 20 3D 20 |M = &v and LG = |
00000C90: 34 26 76 00 60 26 76 2B 34 26 76 20 3D 20 34 26 |4&v.`&v+4&v = 4&|
00000CA0: 76 2B 38 32 27 00 26 76 2B 34 26 76 3D 34 26 76 |v+82'.&v+4&v=4&v|
00000CB0: 2B 38 32 00 26 76 2B 34 26 76 20 3D 20 34 26 76 |+82.&v+4&v = 4&v|
00000CC0: 2B 38 32 00 38 32 00 57 68 61 74 20 61 72 65 20 |+82.82.What are |
00000CD0: 74 68 65 20 6E 75 6D 62 65 72 73 00 54 68 65 20 |the numbers.The |
00000CE0: 73 6D 61 6C 6C 65 72 20 6E 75 6D 62 65 72 00 38 |smaller number.8|
00000CF0: 32 00 38 32 00 38 32 00 54 68 65 20 6C 61 72 67 |2.82.82.The larg|
00000D00: 65 72 20 6E 75 6D 62 65 72 00 34 26 76 00 38 32 |er number.4&v.82|
00000D10: 00 34 2A 38 32 20 3D 20 60 33 32 38 27 00 33 32 |.4*82 = `328'.32|
00000D20: 38 00 38 32 2B 33 32 38 20 3D 20 33 32 38 2B 38 |8.82+328 = 328+8|
00000D30: 32 00 60 34 31 30 3D 34 31 30 27 00 60 34 31 30 |2.`410=410'.`410|
00000D40: 3D 34 31 30 27 00 34 31 30 3D 34 31 30 00 40 66 |=410'.410=410.@f|
00000D50: 54 68 65 20 6C 61 72 67 65 72 20 6F 66 20 74 77 |The larger of tw|
00000D60: 6F 20 6E 75 6D 62 65 72 73 20 69 73 20 31 38 20 |o numbers is 18 |
00000D70: 6D 6F 72 65 20 74 68 61 6E 20 74 68 65 20 73 6D |more than the sm|
00000D80: 61 6C 6C 65 72 2E 20 49 66 20 35 20 74 69 6D 65 |aller. If 5 time|
00000D90: 73 20 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 |s the larger is |
00000DA0: 64 65 63 72 65 61 73 65 64 20 62 79 20 31 32 33 |decreased by 123|
00000DB0: 2C 20 74 68 65 20 72 65 73 75 6C 74 20 69 73 20 |, the result is |
00000DC0: 65 71 75 61 6C 20 74 6F 20 33 20 6D 6F 72 65 20 |equal to 3 more |
00000DD0: 74 68 61 6E 20 74 68 65 20 73 6D 61 6C 6C 65 72 |than the smaller|
00000DE0: 2E 20 57 68 61 74 20 61 72 65 20 74 68 65 20 6E |. What are the n|
00000DF0: 75 6D 62 65 72 73 3F 00 53 4D 00 4C 47 00 74 68 |umbers?.SM.LG.th|
00000E00: 65 20 6E 75 6D 62 65 72 73 00 66 69 6E 64 20 74 |e numbers.find t|
00000E10: 68 65 20 6E 75 6D 62 65 72 73 2E 00 74 68 65 20 |he numbers..the |
00000E20: 6E 75 6D 62 65 72 73 2E 00 73 6D 61 6C 6C 65 72 |numbers..smaller|
00000E30: 20 6E 75 6D 62 65 72 00 73 00 73 6D 61 6C 6C 65 | number.s.smalle|
00000E40: 72 20 6E 75 6D 62 65 72 00 6C 61 72 67 65 72 20 |r number.larger |
00000E50: 6E 75 6D 62 65 72 00 74 68 65 20 73 6D 61 6C 6C |number.the small|
00000E60: 65 72 20 6E 75 6D 62 65 72 00 26 68 54 68 65 20 |er number.&hThe |
00000E70: 6C 61 72 67 65 72 20 6F 66 20 74 77 6F 20 6E 75 |larger of two nu|
00000E80: 6D 62 65 72 73 20 69 73 20 31 38 20 6D 6F 72 65 |mbers is 18 more|
00000E90: 20 74 68 61 6E 20 74 68 65 20 73 6D 61 6C 6C 65 | than the smalle|
00000EA0: 72 26 68 2E 20 60 26 76 2B 31 38 27 20 77 69 6C |r&h. `&v+18' wil|
00000EB0: 6C 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 |l represent the |
00000EC0: 6C 61 72 67 65 72 20 6E 75 6D 62 65 72 00 26 76 |larger number.&v|
00000ED0: 2B 31 38 00 26 68 49 66 20 35 20 74 69 6D 65 73 |+18.&hIf 5 times|
00000EE0: 20 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 64 | the larger is d|
00000EF0: 65 63 72 65 61 73 65 64 20 62 79 20 31 32 33 26 |ecreased by 123&|
00000F00: 68 22 2C 20 75 73 69 6E 67 20 4C 47 20 74 6F 20 |h", using LG to |
00000F10: 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 6C 61 |represent the la|
00000F20: 72 67 65 72 20 6E 75 6D 62 65 72 00 49 66 20 35 |rger number.If 5|
00000F30: 20 74 69 6D 65 73 20 74 68 65 20 6C 61 72 67 65 | times the large|
00000F40: 72 20 69 73 20 64 65 63 72 65 61 73 65 64 20 62 |r is decreased b|
00000F50: 79 20 31 32 33 00 28 60 35 2A 4C 47 29 2D 31 32 |y 123.(`5*LG)-12|
00000F60: 33 27 20 72 65 70 72 65 73 65 6E 74 73 20 35 20 |3' represents 5 |
00000F70: 74 69 6D 65 73 20 74 68 65 20 6C 61 72 67 65 72 |times the larger|
00000F80: 20 64 65 63 72 65 61 73 65 64 20 62 79 20 31 32 | decreased by 12|
00000F90: 33 00 26 71 74 68 65 20 72 65 73 75 6C 74 20 69 |3.&qthe result i|
00000FA0: 73 20 65 71 75 61 6C 20 74 6F 20 33 20 6D 6F 72 |s equal to 3 mor|
00000FB0: 65 20 74 68 61 6E 20 74 68 65 20 73 6D 61 6C 6C |e than the small|
00000FC0: 65 72 26 71 00 54 68 65 20 72 65 73 75 6C 74 20 |er&q.The result |
00000FD0: 69 73 20 65 71 75 61 6C 20 74 6F 20 33 20 6D 6F |is equal to 3 mo|
00000FE0: 72 65 20 74 68 61 6E 20 74 68 65 20 73 6D 61 6C |re than the smal|
00000FF0: 6C 65 72 00 3D 00 53 4D 2B 33 00 3D 53 4D 2B 33 |ler.=.SM+3.=SM+3|
00001000: 00 35 28 4C 47 29 2D 31 32 33 20 3D 20 53 4D 2B |.5(LG)-123 = SM+|
00001010: 33 00 35 20 74 69 6D 65 73 20 74 68 65 20 6C 61 |3.5 times the la|
00001020: 72 67 65 72 20 69 73 20 64 65 63 72 65 61 73 65 |rger is decrease|
00001030: 64 20 62 79 20 31 32 33 20 61 6E 64 20 74 68 65 |d by 123 and the|
00001040: 20 72 65 73 75 6C 74 20 69 73 20 74 68 65 20 73 | result is the s|
00001050: 61 6D 65 20 61 73 20 77 68 65 6E 20 74 68 65 20 |ame as when the |
00001060: 73 6D 61 6C 6C 65 72 20 69 73 20 69 6E 63 72 65 |smaller is incre|
00001070: 61 73 65 64 20 62 79 20 33 2E 00 60 35 28 4C 47 |ased by 3..`5(LG|
00001080: 29 2D 31 32 33 20 3D 20 53 4D 2B 33 27 00 53 4D |)-123 = SM+3'.SM|
00001090: 20 61 6E 64 20 4C 47 00 35 28 4C 47 29 2D 31 32 | and LG.5(LG)-12|
000010A0: 33 20 3D 20 53 4D 2B 33 00 53 4D 20 3D 20 26 76 |3 = SM+3.SM = &v|
000010B0: 20 61 6E 64 20 4C 47 20 3D 20 26 76 2B 31 38 00 | and LG = &v+18.|
000010C0: 60 35 28 26 76 2B 31 38 29 2D 31 32 33 20 3D 20 |`5(&v+18)-123 = |
000010D0: 26 76 2B 33 27 00 35 28 26 76 2B 31 38 29 2D 31 |&v+3'.5(&v+18)-1|
000010E0: 32 33 3D 26 76 2B 33 00 35 28 26 76 2B 31 38 29 |23=&v+3.5(&v+18)|
000010F0: 2D 31 32 33 3D 26 76 2B 33 00 39 00 57 68 61 74 |-123=&v+3.9.What|
00001100: 20 61 72 65 20 74 68 65 20 6E 75 6D 62 65 72 73 | are the numbers|
00001110: 00 54 68 65 20 73 6D 61 6C 6C 65 72 20 6E 75 6D |.The smaller num|
00001120: 62 65 72 00 39 00 39 00 39 00 54 68 65 20 6C 61 |ber.9.9.9.The la|
00001130: 72 67 65 72 20 6E 75 6D 62 65 72 00 22 26 76 2B |rger number."&v+|
00001140: 31 38 22 00 39 00 26 76 2B 31 38 20 3D 20 60 32 |18".9.&v+18 = `2|
00001150: 37 27 00 32 37 00 35 28 39 2B 31 38 29 2D 31 32 |7'.27.5(9+18)-12|
00001160: 33 20 3D 20 39 2B 33 00 60 31 32 3D 31 32 27 00 |3 = 9+3.`12=12'.|
00001170: 60 31 32 3D 31 32 27 00 31 32 3D 31 32 00 40 66 |`12=12'.12=12.@f|
00001180: 46 69 6E 64 20 74 77 6F 20 63 6F 6E 73 65 63 75 |Find two consecu|
00001190: 74 69 76 65 20 69 6E 74 65 67 65 72 73 20 73 75 |tive integers su|
000011A0: 63 68 20 74 68 61 74 20 34 20 74 69 6D 65 73 20 |ch that 4 times |
000011B0: 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 35 32 |the larger is 52|
000011C0: 20 6D 6F 72 65 20 74 68 61 6E 20 33 20 74 69 6D | more than 3 tim|
000011D0: 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 2E 00 |es the smaller..|
000011E0: 31 73 74 00 32 6E 64 00 74 77 6F 20 63 6F 6E 73 |1st.2nd.two cons|
000011F0: 65 63 75 74 69 76 65 20 69 6E 74 65 67 65 72 73 |ecutive integers|
00001200: 00 66 69 6E 64 20 74 77 6F 20 63 6F 6E 73 65 63 |.find two consec|
00001210: 75 74 69 76 65 20 69 6E 74 65 67 65 72 73 2E 00 |utive integers..|
00001220: 74 68 65 20 74 77 6F 20 69 6E 74 65 67 65 72 73 |the two integers|
00001230: 2E 00 73 6D 61 6C 6C 65 72 20 69 6E 74 65 67 65 |..smaller intege|
00001240: 72 00 73 00 73 6D 61 6C 6C 65 72 20 69 6E 74 65 |r.s.smaller inte|
00001250: 67 65 72 2C 20 31 73 74 00 6C 61 72 67 65 72 20 |ger, 1st.larger |
00001260: 69 6E 74 65 67 65 72 2C 20 32 6E 64 00 31 73 74 |integer, 2nd.1st|
00001270: 00 53 69 6E 63 65 20 74 68 65 79 20 61 72 65 20 |.Since they are |
00001280: 63 6F 6E 73 65 63 75 74 69 76 65 20 69 6E 74 65 |consecutive inte|
00001290: 67 65 72 73 2C 20 32 6E 64 20 69 73 20 6F 6E 65 |gers, 2nd is one|
000012A0: 20 6C 61 72 67 65 72 20 74 68 61 6E 20 31 73 74 | larger than 1st|
000012B0: 2E 20 53 6F 20 60 26 76 2B 31 27 20 72 65 70 72 |. So `&v+1' repr|
000012C0: 65 73 65 6E 74 73 20 32 6E 64 00 26 76 2B 31 00 |esents 2nd.&v+1.|
000012D0: 26 68 34 20 74 69 6D 65 73 20 74 68 65 20 6C 61 |&h4 times the la|
000012E0: 72 67 65 72 26 68 2E 20 55 73 65 20 32 6E 64 20 |rger&h. Use 2nd |
000012F0: 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 |to represent the|
00001300: 20 6C 61 72 67 65 72 20 69 6E 74 65 67 65 72 00 | larger integer.|
00001310: 34 20 74 69 6D 65 73 20 74 68 65 20 6C 61 72 67 |4 times the larg|
00001320: 65 72 00 60 34 2A 32 6E 64 27 20 72 65 70 72 65 |er.`4*2nd' repre|
00001330: 73 65 6E 74 73 20 34 20 74 69 6D 65 73 20 74 68 |sents 4 times th|
00001340: 65 20 6C 61 72 67 65 72 00 55 73 65 20 31 73 74 |e larger.Use 1st|
00001350: 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 | to represent th|
00001360: 65 20 73 6D 61 6C 6C 65 72 20 69 6E 74 65 67 65 |e smaller intege|
00001370: 72 2E 26 71 49 73 20 35 32 20 6D 6F 72 65 20 74 |r.&qIs 52 more t|
00001380: 68 61 6E 20 33 20 74 69 6D 65 73 20 74 68 65 20 |han 3 times the |
00001390: 73 6D 61 6C 6C 65 72 26 71 00 22 49 73 20 35 32 |smaller&q."Is 52|
000013A0: 20 6D 6F 72 65 20 74 68 61 6E 20 33 20 74 69 6D | more than 3 tim|
000013B0: 65 73 20 74 68 65 20 73 6D 61 6C 6C 65 72 22 00 |es the smaller".|
000013C0: 3D 20 74 6F 20 72 65 70 72 65 73 65 6E 74 20 22 |= to represent "|
000013D0: 69 73 22 00 28 33 2A 31 73 74 29 2B 35 32 20 74 |is".(3*1st)+52 t|
000013E0: 6F 20 72 65 70 72 65 73 65 6E 74 20 35 32 20 6D |o represent 52 m|
000013F0: 6F 72 65 20 74 68 61 6E 20 33 20 74 69 6D 65 73 |ore than 3 times|
00001400: 20 74 68 65 20 73 6D 61 6C 6C 65 72 2E 00 3D 33 | the smaller..=3|
00001410: 2A 31 73 74 2B 35 32 00 34 2A 32 6E 64 20 3D 20 |*1st+52.4*2nd = |
00001420: 28 33 2A 31 73 74 29 2B 35 32 00 60 34 2A 32 6E |(3*1st)+52.`4*2n|
00001430: 64 3D 28 33 2A 31 73 74 29 2B 35 32 27 20 72 65 |d=(3*1st)+52' re|
00001440: 70 72 65 73 65 6E 74 73 20 22 34 20 74 69 6D 65 |presents "4 time|
00001450: 73 20 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 |s the larger is |
00001460: 65 71 75 61 6C 20 74 6F 20 35 32 20 6D 6F 72 65 |equal to 52 more|
00001470: 20 74 68 61 6E 20 33 20 74 69 6D 65 73 20 74 68 | than 3 times th|
00001480: 65 20 73 6D 61 6C 6C 65 72 22 00 60 34 2A 32 6E |e smaller".`4*2n|
00001490: 64 3D 28 33 2A 31 73 74 29 2B 35 32 27 20 72 65 |d=(3*1st)+52' re|
000014A0: 70 72 65 73 65 6E 74 73 20 22 34 20 74 69 6D 65 |presents "4 time|
000014B0: 73 20 74 68 65 20 6C 61 72 67 65 72 20 69 73 20 |s the larger is |
000014C0: 65 71 75 61 6C 20 74 6F 20 35 32 20 6D 6F 72 65 |equal to 52 more|
000014D0: 20 74 68 61 6E 20 33 20 74 69 6D 65 73 20 74 68 | than 3 times th|
000014E0: 65 20 73 6D 61 6C 6C 65 72 22 00 31 73 74 20 61 |e smaller".1st a|
000014F0: 6E 64 20 32 6E 64 00 34 2A 32 6E 64 3D 28 33 2A |nd 2nd.4*2nd=(3*|
00001500: 31 73 74 29 2B 35 32 00 31 73 74 20 3D 20 26 76 |1st)+52.1st = &v|
00001510: 20 61 6E 64 20 32 6E 64 20 3D 20 26 76 2B 31 00 | and 2nd = &v+1.|
00001520: 60 34 28 26 76 2B 31 29 3D 33 26 76 2B 35 32 27 |`4(&v+1)=3&v+52'|
00001530: 00 34 28 26 76 2B 31 29 3D 33 26 76 2B 35 32 00 |.4(&v+1)=3&v+52.|
00001540: 34 28 26 76 2B 31 29 3D 33 26 76 2B 35 32 00 34 |4(&v+1)=3&v+52.4|
00001550: 38 00 46 69 6E 64 20 74 77 6F 20 63 6F 6E 73 65 |8.Find two conse|
00001560: 63 75 74 69 76 65 20 69 6E 74 65 67 65 72 73 00 |cutive integers.|
00001570: 31 73 74 00 34 38 00 34 38 00 34 38 00 32 6E 64 |1st.48.48.48.2nd|
00001580: 00 26 76 2B 31 00 34 38 00 32 6E 64 20 3D 20 34 |.&v+1.48.2nd = 4|
00001590: 38 2B 31 2C 20 6F 72 20 60 34 39 27 00 34 39 00 |8+1, or `49'.49.|
000015A0: 34 2A 34 39 3D 28 33 2A 34 38 29 2B 35 32 00 60 |4*49=(3*48)+52.`|
000015B0: 31 39 36 3D 31 39 36 27 00 60 31 39 36 3D 31 39 |196=196'.`196=19|
000015C0: 36 27 00 31 39 36 3D 31 39 36 00 7C 54 |6'.196=196.|T |
A ..@Q{}@DG07&C(1,{})&C(2,{})@RREAD@PRE
AD THE PROBLEM SLOWLY AND CAREFULLY. WHA
T IS BEING ASKED?\N (PRESS ANY KEY TO C
ONTINUE.)@HYOU ARE BEING ASKED TO FIND {
}.@HTHE PROBLEM IS TO {}@I(0)@RPLAN@PUSI
NG ONE VARIABLE, ENTER EXPRESSIONS TO RE
PRESENT {}@HCHOOSE A VARIABLE TO REPRESE
NT THE {}.@HPICK ANY LETTER, SUCH AS `{}
', TO REPRESENT THE {}.@I(5,I,&V)@HREPRE
SENT THE {}, IN TERMS OF "&V", {}.@H{}.@
I(6,I,{})@PTRANSLATE: {}.@H"{}" IS THE P
HRASE TO BE TRANSLATED.@H{}.@I(9,C0, )@P
NOW, TRANSLATE THE REST OF THE PROBLEM.
{}@H{} IS THE PHRASE TO BE TRANSLATED.@H
ENTER {} AND {} ENTER `{}'.@I(9,D0, )@PO
NE ANSWER IS: {}. CHANGE YOUR ANSWER IF
IT IS NOT EQUIVALENT. (PRESS RETURN)@H{}
@H{}@I(9,C0, )@PSUBSTITUTE THE EXPRESSIO
NS FOR {} IN THE EQUATION IDEA: {}.@H{}.
@HENTER {}.@I(10,I,{})&D(11,{})@S@RCOMPU
TE@PSOLVE THE EQUATION FOR "&V". USE PAP
ER AND PENCIL OR USE THE CALCULATOR.@HIS
OLATE "&V" ON ONE SIDE OF THE EQUATION.
@HTHE CALCULATOR SOLVES EQUATIONS FOR YO
U AND DISPLAYS THE STEPS IN THE SOLUTION
.@I(11,I,&V={})@PENTER YOUR ANSWERS TO T
HE PROBLEM IN THE GRID. REMEMBER THE QUE
STION. &Q{}&Q&W(11)@H{} IS EQUAL TO THE
VALUE OF "&V".@H&V = {}, SO ENTER '{}'.@
I(5,I,{})@H{} IS EQUAL TO THE VALUE OF {
}.@H&V = {}, SO {}.@I(6,I,{})@S@RCHECK&D
(0,TO CHECK YOUR WORK, THE VALUE OF "&V"
IS SUBSTITUTED IN THE EQUATION.)&D(11,{
})@PSIMPLIFY THE EQUATION WITH THE CALCU
LATOR TO MAKE SURE THAT THE TWO SIDES AR
E EQUAL.@HTHE SIMPLIFIED EQUATION IS {}.
@HTHE SIMPLIFIED EQUATION IS {}.@I(11,I,
{})@FONE NUMBER IS 3 MORE THAN TWICE ANO
THER NUMBER. IF THE SMALLER NUMBER IS IN
CREASED BY 59, IT EQUALS THE LARGER NUMB
ER. WHAT ARE THE NUMBERS?.SM.LG.THE NUMB
ERS.FIND THE NUMBERS..THE TWO NUMBERS..S
MALLER NUMBER.S.SMALLER NUMBER.LARGER NU
MBER.THE SMALLER NUMBER.THE LARGER NUMBE
R &HIS 3 MORE THAN TWICE&H THE SMALLER,
SO `2&V+3' REPRESENTS THE LARGER.2&V+3.&
HIF THE SMALLER NUMBER IS INCREASED BY 5
9&H. USE "SM" AND "LG" TO REPRESENT THE
NUMBERS.THE SMALLER NUMBER IS INCREASED
BY 59.`SM+59' REPRESENTS THE SMALLER NUM
BER INCREASED BY 59.&QEQUALS THE LARGER&
Q.EQUALS THE LARGER.THE EQUAL SIGN.LG FO
R THE LARGER NUMBER..=LG.SM+59=LG.THE EQ
UATION SHOWS THAT IF THE SMALLER NUMBER
WERE INCREASED BY 59 IT WOULD EQUAL THE
LARGER NUMBER..`SM+59=LG' IS THE EQUATIO
N..SM AND LG.SM+59=LG.SM = &V AND LG = 2
&V+3.`&V+59=2&V+3'.&V+59=2&V+3.&V+59 = 2
&V+3.56.WHAT ARE THE NUMBERS?.THE SMALLE
R NUMBER.56.56.56.THE LARGER NUMBER.2&V+
3.56.(2*56)+3 = 112+3 = `115'.115.56+59
= (2*56)+3.`115=115'.`115=115'.115=115.@
FTHE LARGER OF TWO NUMBERS IS 4 TIMES TH
E SMALLER. WHAT ARE THE NUMBERS IF THEIR
SUM IS EQUAL TO 82 MORE THAN THE LARGER
NUMBER?.SM.LG.THE NUMBERS.FIND THE NUMB
ERS..THE NUMBERS..SMALLER NUMBER.S.SMALL
ER NUMBER.LARGER.THE SMALLER NUMBER.&HTH
E LARGER OF TWO NUMBERS IS 4 TIMES THE S
MALLER&H, SO `4&V' REPRESENTS THE LARGER
NUMBER.4&V."THEIR SUM". USE SM AND LG T
O REPRESENT THE NUMBERS.THEIR SUM.`SM+LG
' REPRESENTS THE SUM OF THE LARGE AND SM
ALL NUMBERS.&QIS EQUAL TO 82 MORE THAN T
HE LARGER&Q.IS 82 MORE THAN THE LARGER.=
FOR "IS EQUAL TO" .LG+82 FOR "82 MORE T
HAN THE LARGER..= LG+82.SM+LG = LG+82.TH
E SUM OF THE LARGER AND SMALLER NUMBERS
EQUALS 82 MORE THAN THE LARGER NUMBER..`
SM+LG = LG+82'.SM AND LG.SM+LG = LG+82.S
M = &V AND LG = 4&V.`&V+4&V = 4&V+82'.&V
+4&V=4&V+82.&V+4&V = 4&V+82.82.WHAT ARE
THE NUMBERS.THE SMALLER NUMBER.82.82.82.
THE LARGER NUMBER.4&V.82.4*82 = `328'.32
8.82+328 = 328+82.`410=410'.`410=410'.41
0=410.@FTHE LARGER OF TWO NUMBERS IS 18
MORE THAN THE SMALLER. IF 5 TIMES THE LA
RGER IS DECREASED BY 123, THE RESULT IS
EQUAL TO 3 MORE THAN THE SMALLER. WHAT A
RE THE NUMBERS?.SM.LG.THE NUMBERS.FIND T
HE NUMBERS..THE NUMBERS..SMALLER NUMBER.
S.SMALLER NUMBER.LARGER NUMBER.THE SMALL
ER NUMBER.&HTHE LARGER OF TWO NUMBERS IS
18 MORE THAN THE SMALLER&H. `&V+18' WIL
L REPRESENT THE LARGER NUMBER.&V+18.&HIF
5 TIMES THE LARGER IS DECREASED BY 123&
H", USING LG TO REPRESENT THE LARGER NUM
BER.IF 5 TIMES THE LARGER IS DECREASED B
Y 123.(`5*LG)-123' REPRESENTS 5 TIMES TH
E LARGER DECREASED BY 123.&QTHE RESULT I
S EQUAL TO 3 MORE THAN THE SMALLER&Q.THE
RESULT IS EQUAL TO 3 MORE THAN THE SMAL
LER.=.SM+3.=SM+3.5(LG)-123 = SM+3.5 TIME
S THE LARGER IS DECREASED BY 123 AND THE
RESULT IS THE SAME AS WHEN THE SMALLER
IS INCREASED BY 3..`5(LG)-123 = SM+3'.SM
AND LG.5(LG)-123 = SM+3.SM = &V AND LG
= &V+18.`5(&V+18)-123 = &V+3'.5(&V+18)-1
23=&V+3.5(&V+18)-123=&V+3.9.WHAT ARE THE
NUMBERS.THE SMALLER NUMBER.9.9.9.THE LA
RGER NUMBER."&V+18".9.&V+18 = `27'.27.5(
9+18)-123 = 9+3.`12=12'.`12=12'.12=12.@F
FIND TWO CONSECUTIVE INTEGERS SUCH THAT
4 TIMES THE LARGER IS 52 MORE THAN 3 TIM
ES THE SMALLER..1ST.2ND.TWO CONSECUTIVE
INTEGERS.FIND TWO CONSECUTIVE INTEGERS..
THE TWO INTEGERS..SMALLER INTEGER.S.SMAL
LER INTEGER, 1ST.LARGER INTEGER, 2ND.1ST
.SINCE THEY ARE CONSECUTIVE INTEGERS, 2N
D IS ONE LARGER THAN 1ST. SO `&V+1' REPR
ESENTS 2ND.&V+1.&H4 TIMES THE LARGER&H.
USE 2ND TO REPRESENT THE LARGER INTEGER.
4 TIMES THE LARGER.`4*2ND' REPRESENTS 4
TIMES THE LARGER.USE 1ST TO REPRESENT TH
E SMALLER INTEGER.&QIS 52 MORE THAN 3 TI
MES THE SMALLER&Q."IS 52 MORE THAN 3 TIM
ES THE SMALLER".= TO REPRESENT "IS".(3*1
ST)+52 TO REPRESENT 52 MORE THAN 3 TIMES
THE SMALLER..=3*1ST+52.4*2ND = (3*1ST)+
52.`4*2ND=(3*1ST)+52' REPRESENTS "4 TIME
S THE LARGER IS EQUAL TO 52 MORE THAN 3
TIMES THE SMALLER".`4*2ND=(3*1ST)+52' RE
PRESENTS "4 TIMES THE LARGER IS EQUAL TO
52 MORE THAN 3 TIMES THE SMALLER".1ST A
ND 2ND.4*2ND=(3*1ST)+52.1ST = &V AND 2ND
= &V+1.`4(&V+1)=3&V+52'.4(&V+1)=3&V+52.
4(&V+1)=3&V+52.48.FIND TWO CONSECUTIVE I
NTEGERS.1ST.48.48.48.2ND.&V+1.48.2ND = 4
8+1, OR `49'.49.4*49=(3*48)+52.`196=196'
.`196=196'.196=196.|T
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL