DIST4L3
FILE INFORMATION
FILENAME(S): DIST4L3
FILE TYPE(S): PRG
FILE SIZE: 5.5K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
d664c7c670ad6a81e08e6df23b428ce17cbf98861db3b8e5e86e8ddaf81870c9
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 43S1 | DIST4L3 | PRG | Radd Maxx | 26 | 1 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 20 20 20 20 20 20 40 71 7B 7D 40 64 67 30 | A @q{}@dg0|
00000010: 35 26 64 28 31 2C 55 6E 69 74 2F 6D 65 61 73 29 |5&d(1,Unit/meas)|
00000020: 26 63 28 32 2C 7B 7D 29 26 63 28 33 2C 7B 7D 29 |&c(2,{})&c(3,{})|
00000030: 26 64 28 34 2C 52 61 74 65 29 26 64 28 38 2C 54 |&d(4,Rate)&d(8,T|
00000040: 69 6D 65 29 26 64 28 31 32 2C 44 69 73 74 2E 29 |ime)&d(12,Dist.)|
00000050: 40 72 52 45 41 44 40 70 52 65 61 64 20 74 68 65 |@rREAD@pRead the|
00000060: 20 77 68 6F 6C 65 20 70 72 6F 62 6C 65 6D 2E 20 | whole problem. |
00000070: 54 68 69 6E 6B 3A 20 57 68 61 74 20 61 72 65 20 |Think: What are |
00000080: 74 68 65 20 66 61 63 74 73 3F 20 20 57 68 61 74 |the facts? What|
00000090: 20 69 73 20 62 65 69 6E 67 20 61 73 6B 65 64 3F | is being asked?|
000000A0: 20 20 28 50 72 65 73 73 20 61 6E 79 20 6B 65 79 | (Press any key|
000000B0: 20 74 6F 20 63 6F 6E 74 69 6E 75 65 29 2E 40 68 | to continue).@h|
000000C0: 57 68 61 74 20 61 72 65 20 74 68 65 20 66 61 63 |What are the fac|
000000D0: 74 73 3F 20 7B 7D 2E 40 68 57 68 61 74 20 69 73 |ts? {}.@hWhat is|
000000E0: 20 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 7B 7D | being asked? {}|
000000F0: 40 69 28 30 29 40 72 50 4C 41 4E 20 40 70 4C 65 |@i(0)@rPLAN @pLe|
00000100: 74 20 44 7B 7D 20 3D 20 7B 7D 20 64 69 73 74 61 |t D{} = {} dista|
00000110: 6E 63 65 20 61 6E 64 20 44 7B 7D 20 3D 20 7B 7D |nce and D{} = {}|
00000120: 20 64 69 73 74 61 6E 63 65 2E 20 57 72 69 74 65 | distance. Write|
00000130: 20 61 6E 20 65 71 75 61 74 69 6F 6E 20 74 68 61 | an equation tha|
00000140: 74 20 72 65 6C 61 74 65 73 20 44 7B 7D 20 74 6F |t relates D{} to|
00000150: 20 44 7B 7D 2E 40 68 7B 7D 20 62 6F 74 68 20 7B | D{}.@h{} both {|
00000160: 7D 20 74 68 65 20 73 61 6D 65 20 64 69 73 74 61 |} the same dista|
00000170: 6E 63 65 2E 40 68 60 44 7B 7D 20 3D 20 44 7B 7D |nce.@h`D{} = D{}|
00000180: 27 20 73 68 6F 77 73 20 74 68 61 74 20 7B 7D 20 |' shows that {} |
00000190: 62 6F 74 68 20 7B 7D 20 74 68 65 20 73 61 6D 65 |both {} the same|
000001A0: 20 64 69 73 74 61 6E 63 65 2E 40 69 28 31 36 2C | distance.@i(16,|
000001B0: 63 30 2C 20 29 40 70 4F 6E 65 20 61 6E 73 77 65 |c0, )@pOne answe|
000001C0: 72 20 69 73 20 60 44 7B 7D 27 2E 20 43 68 61 6E |r is `D{}'. Chan|
000001D0: 67 65 20 79 6F 75 72 20 61 6E 73 77 65 72 20 69 |ge your answer i|
000001E0: 66 20 69 74 20 69 73 20 6E 6F 74 20 65 71 75 69 |f it is not equi|
000001F0: 76 61 6C 65 6E 74 2E 20 28 50 72 65 73 73 20 72 |valent. (Press r|
00000200: 65 74 75 72 6E 29 40 68 7B 7D 20 62 6F 74 68 20 |eturn)@h{} both |
00000210: 74 72 61 76 65 6C 20 74 68 65 20 73 61 6D 65 20 |travel the same |
00000220: 64 69 73 74 61 6E 63 65 2E 40 68 60 44 7B 7D 3D |distance.@h`D{}=|
00000230: 44 7B 7D 27 20 73 68 6F 77 73 20 74 68 61 74 20 |D{}' shows that |
00000240: 7B 7D 20 64 69 73 74 61 6E 63 65 20 69 73 20 65 |{} distance is e|
00000250: 71 75 61 6C 20 74 6F 20 7B 7D 20 64 69 73 74 61 |qual to {} dista|
00000260: 6E 63 65 2E 40 69 28 31 36 2C 63 30 2C 20 29 40 |nce.@i(16,c0, )@|
00000270: 72 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 6C |rDATA ENTRY@pFil|
00000280: 6C 20 69 6E 20 74 68 65 20 75 6E 69 74 73 20 62 |l in the units b|
00000290: 79 20 77 68 69 63 68 20 72 61 74 65 2C 20 74 69 |y which rate, ti|
000002A0: 6D 65 20 61 6E 64 20 64 69 73 74 61 6E 63 65 20 |me and distance |
000002B0: 61 72 65 20 6D 65 61 73 75 72 65 64 2E 20 28 55 |are measured. (U|
000002C0: 73 65 20 61 62 62 72 65 76 69 61 74 65 64 20 66 |se abbreviated f|
000002D0: 6F 72 6D 2E 29 40 68 52 61 74 65 20 69 73 20 63 |orm.)@hRate is c|
000002E0: 6F 6D 6D 6F 6E 6C 79 20 6D 65 61 73 75 72 65 64 |ommonly measured|
000002F0: 20 69 6E 20 6D 69 6C 65 73 20 70 65 72 20 68 6F | in miles per ho|
00000300: 75 72 28 6D 69 2F 68 72 29 2C 20 66 65 65 74 20 |ur(mi/hr), feet |
00000310: 70 65 72 20 73 65 63 6F 6E 64 20 28 66 74 2F 73 |per second (ft/s|
00000320: 65 63 29 2C 20 6D 65 74 65 72 73 20 70 65 72 20 |ec), meters per |
00000330: 6B 69 6C 6F 6D 65 74 65 72 20 28 6D 2F 6B 6D 29 |kilometer (m/km)|
00000340: 2C 20 65 74 63 2E 40 68 54 68 65 20 72 61 74 65 |, etc.@hThe rate|
00000350: 20 6F 66 20 73 70 65 65 64 20 69 6E 20 74 68 69 | of speed in thi|
00000360: 73 20 70 72 6F 62 6C 65 6D 20 69 73 20 6D 65 61 |s problem is mea|
00000370: 73 75 72 65 64 20 69 6E 20 7B 7D 2E 40 69 28 35 |sured in {}.@i(5|
00000380: 2C 63 7B 7D 2C 7B 7D 29 40 68 54 69 6D 65 20 69 |,c{},{})@hTime i|
00000390: 73 20 63 6F 6D 6D 6F 6E 6C 79 20 6D 65 61 73 75 |s commonly measu|
000003A0: 72 65 64 20 69 6E 20 73 65 63 6F 6E 64 73 20 28 |red in seconds (|
000003B0: 73 65 63 29 2C 20 6D 69 6E 75 74 65 73 20 28 6D |sec), minutes (m|
000003C0: 69 6E 29 2C 20 68 6F 75 72 73 20 28 68 72 29 2C |in), hours (hr),|
000003D0: 20 64 61 79 73 20 28 64 61 29 2C 20 65 74 63 2E | days (da), etc.|
000003E0: 40 68 54 69 6D 65 20 69 6E 20 74 68 69 73 20 70 |@hTime in this p|
000003F0: 72 6F 62 6C 65 6D 20 69 73 20 6D 65 61 73 75 72 |roblem is measur|
00000400: 65 64 20 69 6E 20 7B 7D 2E 40 69 28 39 2C 63 7B |ed in {}.@i(9,c{|
00000410: 7D 2C 7B 7D 29 40 68 44 69 73 74 61 6E 63 65 20 |},{})@hDistance |
00000420: 69 73 20 63 6F 6D 6D 6F 6E 6C 79 20 6D 65 61 73 |is commonly meas|
00000430: 75 72 65 64 20 69 6E 20 66 65 65 74 20 28 66 74 |ured in feet (ft|
00000440: 29 2C 20 79 61 72 64 73 20 28 79 64 29 2C 20 6D |), yards (yd), m|
00000450: 69 6C 65 73 20 28 6D 69 29 2C 20 6D 65 74 65 72 |iles (mi), meter|
00000460: 73 20 28 6D 29 2C 20 6B 69 6C 6F 6D 65 74 65 72 |s (m), kilometer|
00000470: 73 20 28 6B 6D 29 2C 20 65 74 63 2E 40 68 44 69 |s (km), etc.@hDi|
00000480: 73 74 61 6E 63 65 20 69 6E 20 74 68 69 73 20 70 |stance in this p|
00000490: 72 6F 62 6C 65 6D 20 69 73 20 6D 65 61 73 75 72 |roblem is measur|
000004A0: 65 64 20 69 6E 20 7B 7D 2E 40 69 28 31 33 2C 63 |ed in {}.@i(13,c|
000004B0: 7B 7D 2C 7B 7D 29 40 70 45 6E 74 65 72 20 74 68 |{},{})@pEnter th|
000004C0: 65 20 66 61 63 74 73 20 66 72 6F 6D 20 74 68 65 |e facts from the|
000004D0: 20 70 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 74 68 | problem into th|
000004E0: 65 20 67 72 69 64 2E 40 68 7B 7D 40 68 7B 7D 40 |e grid.@h{}@h{}@|
000004F0: 69 28 36 2C 69 2C 7B 7D 29 40 68 7B 7D 40 68 7B |i(6,i,{})@h{}@h{|
00000500: 7D 40 69 28 37 2C 69 2C 7B 7D 29 40 70 52 65 70 |}@i(7,i,{})@pRep|
00000510: 72 65 73 65 6E 74 20 74 68 65 20 74 69 6D 65 20 |resent the time |
00000520: 65 61 63 68 20 7B 7D 2E 40 68 55 73 65 20 61 20 |each {}.@hUse a |
00000530: 76 61 72 69 61 62 6C 65 20 74 6F 20 72 65 70 72 |variable to repr|
00000540: 65 73 65 6E 74 20 74 68 65 20 73 6D 61 6C 6C 65 |esent the smalle|
00000550: 72 20 61 6D 6F 75 6E 74 20 6F 66 20 74 69 6D 65 |r amount of time|
00000560: 2E 20 49 6E 20 74 68 69 73 20 63 61 73 65 2C 20 |. In this case, |
00000570: 7B 7D 20 6C 65 73 73 20 74 69 6D 65 20 74 68 61 |{} less time tha|
00000580: 6E 20 7B 7D 2E 40 68 55 73 65 20 61 20 76 61 72 |n {}.@hUse a var|
00000590: 69 61 62 6C 65 2C 20 73 75 63 68 20 61 73 20 60 |iable, such as `|
000005A0: 7B 7D 27 20 74 6F 20 72 65 70 72 65 73 65 6E 74 |{}' to represent|
000005B0: 20 74 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B | the number of {|
000005C0: 7D 2E 40 69 28 7B 7D 2C 69 2C 26 76 29 40 68 52 |}.@i({},i,&v)@hR|
000005D0: 65 70 72 65 73 65 6E 74 20 74 68 65 20 74 69 6D |epresent the tim|
000005E0: 65 20 7B 7D 20 69 6E 20 74 65 72 6D 73 20 6F 66 |e {} in terms of|
000005F0: 20 22 26 76 22 2C 20 7B 7D 2E 40 68 7B 7D 40 69 | "&v", {}.@h{}@i|
00000600: 28 7B 7D 2C 69 2C 7B 7D 29 40 72 50 41 52 54 53 |({},i,{})@rPARTS|
00000610: 40 70 57 72 69 74 65 20 61 6E 20 65 78 70 72 65 |@pWrite an expre|
00000620: 73 73 69 6F 6E 20 74 6F 20 72 65 70 72 65 73 65 |ssion to represe|
00000630: 6E 74 20 74 62 65 20 64 69 73 74 61 6E 63 65 20 |nt tbe distance |
00000640: 74 72 61 76 65 6C 6C 65 64 20 62 79 20 65 61 63 |travelled by eac|
00000650: 68 20 76 65 68 69 63 6C 65 2E 40 68 52 61 74 65 |h vehicle.@hRate|
00000660: 2A 54 69 6D 65 20 3D 20 44 69 73 74 61 6E 63 65 |*Time = Distance|
00000670: 40 68 52 61 74 65 20 20 5C 66 30 36 2A 20 54 69 |@hRate \f06* Ti|
00000680: 6D 65 20 20 5C 66 31 35 3D 20 44 69 73 74 61 6E |me \f15= Distan|
00000690: 63 65 20 5C 6E 7B 7D 40 69 28 31 34 2C 69 2C 7B |ce \n{}@i(14,i,{|
000006A0: 7D 29 40 68 52 61 74 65 2A 54 69 6D 65 20 3D 20 |})@hRate*Time = |
000006B0: 44 69 73 74 61 6E 63 65 40 68 52 61 74 65 20 5C |Distance@hRate \|
000006C0: 66 30 36 2A 20 54 69 6D 65 20 5C 66 31 35 3D 20 |f06* Time \f15= |
000006D0: 44 69 73 74 61 6E 63 65 20 5C 6E 7B 7D 40 69 28 |Distance \n{}@i(|
000006E0: 31 35 2C 69 2C 7B 7D 29 40 72 57 48 4F 4C 45 26 |15,i,{})@rWHOLE&|
000006F0: 64 28 31 36 2C 20 29 40 70 53 75 62 73 74 69 74 |d(16, )@pSubstit|
00000700: 75 74 65 20 79 6F 75 72 20 65 78 70 72 65 73 73 |ute your express|
00000710: 69 6F 6E 73 20 66 6F 72 20 44 7B 7D 20 61 6E 64 |ions for D{} and|
00000720: 20 44 7B 7D 20 69 6E 20 74 68 65 20 65 71 75 61 | D{} in the equa|
00000730: 74 69 6F 6E 20 3A 20 44 7B 7D 20 3D 20 44 7B 7D |tion : D{} = D{}|
00000740: 40 68 44 7B 7D 20 3D 20 7B 7D 20 61 6E 64 20 44 |@hD{} = {} and D|
00000750: 7B 7D 20 3D 20 7B 7D 2E 40 68 7B 7D 40 69 28 31 |{} = {}.@h{}@i(1|
00000760: 36 2C 69 2C 7B 7D 29 40 73 40 72 43 4F 4D 50 55 |6,i,{})@s@rCOMPU|
00000770: 54 45 40 70 53 6F 6C 76 65 20 74 68 65 20 65 71 |TE@pSolve the eq|
00000780: 75 61 74 69 6F 6E 20 66 6F 72 20 22 26 76 22 2E |uation for "&v".|
00000790: 20 55 73 65 20 70 61 70 65 72 20 61 6E 64 20 70 | Use paper and p|
000007A0: 65 6E 63 69 6C 20 61 6E 64 20 65 6E 74 65 72 20 |encil and enter |
000007B0: 74 68 65 20 66 69 6E 61 6C 20 65 71 75 61 74 69 |the final equati|
000007C0: 6F 6E 73 20 6F 72 20 75 73 65 20 74 68 65 20 43 |ons or use the C|
000007D0: 61 6C 63 75 6C 61 74 6F 72 2E 40 68 49 73 6F 6C |alculator.@hIsol|
000007E0: 61 74 65 20 22 26 76 22 20 6F 6E 20 6F 6E 65 20 |ate "&v" on one |
000007F0: 73 69 64 65 20 6F 66 20 74 68 65 20 65 71 75 61 |side of the equa|
00000800: 74 69 6F 6E 2E 40 68 54 68 65 20 43 61 6C 63 75 |tion.@hThe Calcu|
00000810: 6C 61 74 6F 72 20 73 6F 6C 76 65 73 20 65 71 75 |lator solves equ|
00000820: 61 74 69 6F 6E 73 20 66 6F 72 20 79 6F 75 20 61 |ations for you a|
00000830: 6E 64 20 64 69 73 70 6C 61 79 73 20 74 68 65 20 |nd displays the |
00000840: 73 74 65 70 73 20 69 6E 20 74 68 65 20 73 6F 6C |steps in the sol|
00000850: 75 74 69 6F 6E 2E 40 69 28 31 36 2C 69 2C 26 76 |ution.@i(16,i,&v|
00000860: 3D 7B 7D 29 40 70 45 6E 74 65 72 20 79 6F 75 72 |={})@pEnter your|
00000870: 20 61 6E 73 77 65 72 20 74 6F 20 74 68 65 20 70 | answer to the p|
00000880: 72 6F 62 6C 65 6D 20 69 6E 20 74 68 65 20 67 72 |roblem in the gr|
00000890: 69 64 2E 20 52 65 6D 65 6D 62 65 72 20 74 68 65 |id. Remember the|
000008A0: 20 71 75 65 73 74 69 6F 6E 2E 20 26 71 7B 7D 26 | question. &q{}&|
000008B0: 71 26 77 28 31 36 29 40 68 54 68 65 20 74 69 6D |q&w(16)@hThe tim|
000008C0: 65 20 66 6F 72 20 7B 7D 20 69 73 20 74 68 65 20 |e for {} is the |
000008D0: 76 61 6C 75 65 20 6F 66 20 22 26 76 22 2E 40 68 |value of "&v".@h|
000008E0: 54 68 65 20 74 69 6D 65 20 66 6F 72 20 7B 7D 20 |The time for {} |
000008F0: 69 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 |is the value of |
00000900: 22 26 76 22 2E 20 26 76 20 3D 20 7B 7D 2C 20 73 |"&v". &v = {}, s|
00000910: 6F 20 65 6E 74 65 72 20 27 7B 7D 27 2E 40 69 28 |o enter '{}'.@i(|
00000920: 31 31 2C 69 2C 7B 7D 29 40 73 40 72 43 48 45 43 |11,i,{})@s@rCHEC|
00000930: 4B 40 70 52 65 72 65 61 64 20 74 68 65 20 70 72 |K@pReread the pr|
00000940: 6F 62 6C 65 6D 2E 20 43 68 65 63 6B 20 79 6F 75 |oblem. Check you|
00000950: 72 20 61 6E 73 77 65 72 73 2E 20 45 76 61 6C 75 |r answers. Evalu|
00000960: 61 74 65 20 74 68 65 20 72 65 6D 61 69 6E 69 6E |ate the remainin|
00000970: 67 20 65 78 70 72 65 73 73 69 6F 6E 73 20 69 6E |g expressions in|
00000980: 20 74 68 65 20 63 68 61 72 74 2E 40 68 53 75 62 | the chart.@hSub|
00000990: 73 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 |stitute for "&v"|
000009A0: 20 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 | in the expressi|
000009B0: 6F 6E 20 66 6F 72 20 7B 7D 20 74 69 6D 65 2E 20 |on for {} time. |
000009C0: 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 20 74 |Then calculate t|
000009D0: 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D 40 69 |he result.@h{}@i|
000009E0: 28 7B 7D 2C 69 2C 7B 7D 29 40 68 53 75 62 73 74 |({},i,{})@hSubst|
000009F0: 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 |itute for "&v" i|
00000A00: 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E |n the expression|
00000A10: 20 66 6F 72 20 7B 7D 20 64 69 73 74 61 6E 63 65 | for {} distance|
00000A20: 2E 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 74 65 |. Then calculate|
00000A30: 20 74 68 65 20 72 65 73 75 6C 74 2E 40 68 7B 7D | the result.@h{}|
00000A40: 40 69 28 31 34 2C 69 2C 7B 7D 29 40 68 53 75 62 |@i(14,i,{})@hSub|
00000A50: 73 74 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 |stitute for "&v"|
00000A60: 20 69 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 | in the expressi|
00000A70: 6F 6E 20 66 6F 72 20 7B 7D 20 64 69 73 74 61 6E |on for {} distan|
00000A80: 63 65 2E 20 54 68 65 6E 20 63 61 6C 63 75 6C 61 |ce. Then calcula|
00000A90: 74 65 20 74 68 65 20 72 65 73 75 6C 74 2E 40 68 |te the result.@h|
00000AA0: 7B 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 26 64 28 |{}@i(15,i,{})&d(|
00000AB0: 30 2C 43 68 65 63 6B 20 79 6F 75 72 20 77 6F 72 |0,Check your wor|
00000AC0: 6B 2E 20 7B 7D 20 64 69 73 74 61 6E 63 65 20 73 |k. {} distance s|
00000AD0: 68 6F 75 6C 64 20 65 71 75 61 6C 20 7B 7D 20 64 |hould equal {} d|
00000AE0: 69 73 74 61 6E 63 65 2E 20 28 4F 6E 20 74 6F 20 |istance. (On to |
00000AF0: 61 20 6E 65 77 20 70 72 6F 62 6C 65 6D 2E 29 29 |a new problem.))|
00000B00: 40 66 41 20 74 6F 77 20 74 72 75 63 6B 20 74 72 |@fA tow truck tr|
00000B10: 61 76 65 6C 6C 69 6E 67 20 34 30 20 6D 69 2F 68 |avelling 40 mi/h|
00000B20: 72 20 6C 65 66 74 20 4E 65 77 20 59 6F 72 6B 20 |r left New York |
00000B30: 61 74 20 36 20 50 4D 2E 20 41 74 20 38 20 50 4D |at 6 PM. At 8 PM|
00000B40: 20 61 20 63 61 72 20 74 72 61 76 65 6C 6C 69 6E | a car travellin|
00000B50: 67 20 36 30 20 6D 69 2F 68 72 20 62 65 67 69 6E |g 60 mi/hr begin|
00000B60: 73 20 74 72 61 76 65 6C 6C 69 6E 67 20 74 68 65 |s travelling the|
00000B70: 20 73 61 6D 65 20 72 6F 61 64 2E 20 48 6F 77 20 | same road. How |
00000B80: 6C 6F 6E 67 20 77 69 6C 6C 20 69 74 20 74 61 6B |long will it tak|
00000B90: 65 20 74 68 65 20 63 61 72 20 74 6F 20 63 61 74 |e the car to cat|
00000BA0: 63 68 20 75 70 20 74 6F 20 74 68 65 20 74 72 75 |ch up to the tru|
00000BB0: 63 6B 3F 00 54 72 75 63 6B 00 43 61 72 00 54 68 |ck?.Truck.Car.Th|
00000BC0: 65 20 74 6F 77 20 74 72 75 63 6B 20 74 72 61 76 |e tow truck trav|
00000BD0: 65 6C 73 20 61 74 20 61 20 66 61 73 74 65 72 20 |els at a faster |
00000BE0: 72 61 74 65 20 66 6F 72 20 32 20 68 6F 75 72 73 |rate for 2 hours|
00000BF0: 20 6D 6F 72 65 20 74 68 61 6E 20 74 68 65 20 63 | more than the c|
00000C00: 61 72 00 26 68 48 6F 77 20 6C 6F 6E 67 20 77 69 |ar.&hHow long wi|
00000C10: 6C 6C 20 69 74 20 74 61 6B 65 20 74 68 65 20 63 |ll it take the c|
00000C20: 61 72 20 74 6F 20 63 61 74 63 68 20 75 70 20 74 |ar to catch up t|
00000C30: 6F 20 74 68 65 20 74 72 75 63 6B 3F 26 68 00 74 |o the truck?&h.t|
00000C40: 00 74 68 65 20 74 72 75 63 6B 27 73 00 63 00 74 |.the truck's.c.t|
00000C50: 68 65 20 63 61 72 27 73 00 74 00 63 00 54 68 65 |he car's.t.c.The|
00000C60: 20 74 72 75 63 6B 20 61 6E 64 20 74 68 65 20 63 | truck and the c|
00000C70: 61 72 00 74 72 61 76 65 6C 00 74 00 63 00 74 68 |ar.travel.t.c.th|
00000C80: 65 20 74 72 75 63 6B 20 61 6E 64 20 74 68 65 20 |e truck and the |
00000C90: 63 61 72 00 74 72 61 76 65 6C 00 74 20 3D 20 44 |car.travel.t = D|
00000CA0: 63 00 54 68 65 20 74 72 75 63 6B 20 61 6E 64 20 |c.The truck and |
00000CB0: 74 68 65 20 63 61 72 00 74 00 63 00 74 68 65 20 |the car.t.c.the |
00000CC0: 54 72 75 63 6B 27 73 00 74 68 65 20 43 61 72 27 |Truck's.the Car'|
00000CD0: 73 00 6D 69 6C 65 73 20 70 65 72 20 68 6F 75 72 |s.miles per hour|
00000CE0: 20 28 60 6D 69 2F 68 72 27 29 00 35 00 6D 69 2F | (`mi/hr').5.mi/|
00000CF0: 68 72 00 68 6F 75 72 73 20 28 60 68 72 27 29 00 |hr.hours (`hr').|
00000D00: 32 00 68 72 00 6D 69 6C 65 73 20 28 60 6D 69 27 |2.hr.miles (`mi'|
00000D10: 29 00 32 00 6D 69 00 54 68 65 20 74 6F 77 20 74 |).2.mi.The tow t|
00000D20: 72 75 63 6B 20 74 72 61 76 65 6C 73 20 61 74 20 |ruck travels at |
00000D30: 34 30 20 6D 69 2F 68 72 2E 00 54 68 65 20 72 61 |40 mi/hr..The ra|
00000D40: 74 65 20 6F 66 20 73 70 65 65 64 20 66 6F 72 20 |te of speed for |
00000D50: 74 68 65 20 74 72 75 63 6B 20 69 73 20 60 34 30 |the truck is `40|
00000D60: 27 20 6D 69 2F 68 72 2E 00 34 30 00 54 68 65 20 |' mi/hr..40.The |
00000D70: 63 61 72 20 74 72 61 76 65 6C 73 20 61 74 20 36 |car travels at 6|
00000D80: 30 20 6D 69 2F 68 72 2E 00 54 68 65 20 72 61 74 |0 mi/hr..The rat|
00000D90: 65 20 6F 66 20 73 70 65 65 64 20 66 6F 72 20 74 |e of speed for t|
00000DA0: 68 65 20 63 61 72 20 69 73 20 60 36 30 27 20 6D |he car is `60' m|
00000DB0: 69 2F 68 72 2E 00 36 30 00 76 65 68 69 63 6C 65 |i/hr..60.vehicle|
00000DC0: 20 74 72 61 76 65 6C 73 00 74 68 65 20 63 61 72 | travels.the car|
00000DD0: 20 74 72 61 76 65 6C 73 00 74 68 65 20 74 72 75 | travels.the tru|
00000DE0: 63 6B 00 63 00 68 6F 75 72 73 20 74 68 65 20 63 |ck.c.hours the c|
00000DF0: 61 72 20 74 72 61 76 65 6C 73 00 31 31 00 74 68 |ar travels.11.th|
00000E00: 65 20 74 72 75 63 6B 20 74 72 61 76 65 6C 73 00 |e truck travels.|
00000E10: 28 74 68 65 20 74 69 6D 65 20 74 68 65 20 63 61 |(the time the ca|
00000E20: 72 20 74 72 61 76 65 6C 73 29 00 54 68 65 20 74 |r travels).The t|
00000E30: 72 75 63 6B 20 6C 65 66 74 20 32 20 68 6F 75 72 |ruck left 2 hour|
00000E40: 73 20 62 65 66 6F 72 65 20 74 68 65 20 63 61 72 |s before the car|
00000E50: 2E 20 54 68 65 20 74 72 75 63 6B 20 74 72 61 76 |. The truck trav|
00000E60: 65 6C 73 20 32 20 68 6F 75 72 73 20 6D 6F 72 65 |els 2 hours more|
00000E70: 20 74 68 61 6E 20 74 68 65 20 63 61 72 2E 20 60 | than the car. `|
00000E80: 26 76 2B 32 27 20 69 73 20 74 68 65 20 74 72 75 |&v+2' is the tru|
00000E90: 63 6B 27 73 20 74 69 6D 65 2E 00 31 30 00 26 76 |ck's time..10.&v|
00000EA0: 2B 32 00 60 20 34 30 20 20 5C 66 30 36 2A 20 28 |+2.` 40 \f06* (|
00000EB0: 26 76 2B 32 29 5C 66 31 34 3D 20 44 69 73 74 61 |&v+2)\f14= Dista|
00000EC0: 6E 63 65 00 34 30 28 26 76 2B 32 29 00 60 36 30 |nce.40(&v+2).`60|
00000ED0: 20 5C 66 30 36 2A 20 20 26 76 27 20 20 5C 66 31 | \f06* &v' \f1|
00000EE0: 34 3D 20 44 69 73 74 61 6E 63 65 00 36 30 26 76 |4= Distance.60&v|
00000EF0: 00 74 00 63 00 74 00 63 00 74 00 34 30 28 26 76 |.t.c.t.c.t.40(&v|
00000F00: 2B 32 29 00 63 00 36 30 26 76 00 60 34 30 28 26 |+2).c.60&v.`40(&|
00000F10: 76 2B 32 29 20 3D 20 36 30 26 76 27 20 69 73 20 |v+2) = 60&v' is |
00000F20: 74 68 65 20 65 71 75 61 74 69 6F 6E 2E 00 34 30 |the equation..40|
00000F30: 28 26 76 2B 32 29 3D 36 30 26 76 00 34 00 48 6F |(&v+2)=60&v.4.Ho|
00000F40: 77 20 6C 6F 6E 67 20 77 69 6C 6C 20 69 74 20 74 |w long will it t|
00000F50: 61 6B 65 20 74 68 65 20 63 61 72 20 74 6F 20 63 |ake the car to c|
00000F60: 61 74 63 68 20 75 70 20 74 6F 20 74 68 65 20 74 |atch up to the t|
00000F70: 72 75 63 6B 3F 00 74 68 65 20 63 61 72 00 74 68 |ruck?.the car.th|
00000F80: 65 20 63 61 72 00 34 00 34 00 34 00 74 68 65 20 |e car.4.4.4.the |
00000F90: 74 72 75 63 6B 27 73 00 54 68 65 20 74 72 75 63 |truck's.The truc|
00000FA0: 6B 20 74 6F 6F 6B 20 26 76 2B 32 20 68 6F 75 72 |k took &v+2 hour|
00000FB0: 73 2C 20 77 68 69 63 68 20 65 71 75 61 6C 73 20 |s, which equals |
00000FC0: 27 36 27 20 68 6F 75 72 73 2E 00 31 30 00 36 00 |'6' hours..10.6.|
00000FD0: 74 72 75 63 6B 27 73 00 54 68 65 20 74 72 75 63 |truck's.The truc|
00000FE0: 6B 20 64 72 6F 76 65 20 34 30 28 26 76 2B 32 29 |k drove 40(&v+2)|
00000FF0: 20 6D 69 6C 65 73 2C 20 77 68 69 63 68 20 65 71 | miles, which eq|
00001000: 75 61 6C 73 20 27 32 34 30 27 20 6D 69 6C 65 73 |uals '240' miles|
00001010: 2E 00 32 34 30 00 63 61 72 27 73 00 54 68 65 20 |..240.car's.The |
00001020: 63 61 72 20 64 72 6F 76 65 20 36 30 26 76 20 6D |car drove 60&v m|
00001030: 69 6C 65 73 2C 20 77 68 69 63 68 20 65 71 75 61 |iles, which equa|
00001040: 6C 73 20 27 32 34 30 27 20 6D 69 6C 65 73 2E 00 |ls '240' miles..|
00001050: 32 34 30 00 54 68 65 20 74 72 75 63 6B 27 73 00 |240.The truck's.|
00001060: 74 68 65 20 63 61 72 27 73 00 40 66 53 61 6D 20 |the car's.@fSam |
00001070: 67 6F 65 73 20 74 6F 20 73 63 68 6F 6F 6C 20 61 |goes to school a|
00001080: 74 20 38 41 4D 2C 20 62 75 74 20 68 69 73 20 62 |t 8AM, but his b|
00001090: 72 6F 74 68 65 72 20 49 76 61 6E 20 77 61 69 74 |rother Ivan wait|
000010A0: 73 20 75 6E 74 69 6C 20 38 3A 32 30 2E 20 49 66 |s until 8:20. If|
000010B0: 20 53 61 6D 20 77 61 6C 6B 73 20 31 35 30 20 79 | Sam walks 150 y|
000010C0: 64 2F 6D 69 6E 20 61 6E 64 20 49 76 61 6E 20 77 |d/min and Ivan w|
000010D0: 61 6C 6B 73 20 74 77 69 63 65 20 61 73 20 66 61 |alks twice as fa|
000010E0: 73 74 2E 20 49 66 20 74 68 65 79 20 61 72 72 69 |st. If they arri|
000010F0: 76 65 20 61 74 20 74 68 65 20 73 61 6D 65 20 74 |ve at the same t|
00001100: 69 6D 65 2C 20 68 6F 77 20 6D 75 63 68 20 74 69 |ime, how much ti|
00001110: 6D 65 20 64 6F 65 73 20 49 76 61 6E 20 73 70 65 |me does Ivan spe|
00001120: 6E 64 20 77 61 6C 6B 69 6E 67 3F 00 53 61 6D 00 |nd walking?.Sam.|
00001130: 49 76 61 6E 00 49 76 61 6E 20 61 6E 64 20 53 61 |Ivan.Ivan and Sa|
00001140: 6D 20 77 61 6C 6B 20 61 74 20 64 69 66 66 65 72 |m walk at differ|
00001150: 65 6E 74 20 72 61 74 65 73 20 66 6F 72 20 74 68 |ent rates for th|
00001160: 65 20 73 61 6D 65 20 6C 65 6E 67 74 68 20 6F 66 |e same length of|
00001170: 20 74 69 6D 65 00 26 68 48 6F 77 20 6D 75 63 68 | time.&hHow much|
00001180: 20 74 69 6D 65 20 64 6F 65 73 20 49 76 61 6E 20 | time does Ivan |
00001190: 73 70 65 6E 64 20 77 61 6C 6B 69 6E 67 3F 26 68 |spend walking?&h|
000011A0: 00 73 00 53 61 6D 27 73 00 69 00 49 76 61 6E 27 |.s.Sam's.i.Ivan'|
000011B0: 73 00 73 00 69 00 54 68 65 20 62 6F 79 73 00 77 |s.s.i.The boys.w|
000011C0: 61 6C 6B 00 73 00 69 00 74 68 65 20 62 6F 79 73 |alk.s.i.the boys|
000011D0: 00 77 61 6C 6B 00 73 20 3D 20 44 69 00 54 68 65 |.walk.s = Di.The|
000011E0: 20 62 6F 79 73 00 73 00 69 00 53 61 6D 27 73 00 | boys.s.i.Sam's.|
000011F0: 49 76 61 6E 27 73 00 79 61 72 64 73 20 70 65 72 |Ivan's.yards per|
00001200: 20 6D 69 6E 75 74 65 20 28 60 79 64 2F 6D 69 6E | minute (`yd/min|
00001210: 27 29 00 36 00 79 64 2F 6D 69 6E 00 6D 69 6E 75 |').6.yd/min.minu|
00001220: 74 65 73 20 28 60 6D 69 6E 27 29 00 33 00 6D 69 |tes (`min').3.mi|
00001230: 6E 00 79 61 72 64 73 20 28 60 79 64 27 29 00 32 |n.yards (`yd').2|
00001240: 00 79 64 00 26 68 53 61 6D 20 77 61 6C 6B 73 20 |.yd.&hSam walks |
00001250: 31 35 30 20 79 64 2F 6D 69 6E 26 68 2E 00 53 61 |150 yd/min&h..Sa|
00001260: 6D 27 73 20 72 61 74 65 20 69 73 20 60 31 35 30 |m's rate is `150|
00001270: 27 20 79 64 2F 6D 69 6E 2E 00 31 35 30 00 26 68 |' yd/min..150.&h|
00001280: 49 76 61 6E 20 77 61 6C 6B 73 20 74 77 69 63 65 |Ivan walks twice|
00001290: 20 61 73 20 66 61 73 74 26 68 20 61 73 20 53 61 | as fast&h as Sa|
000012A0: 6D 2C 20 61 6E 64 20 53 61 6D 20 77 61 6C 6B 73 |m, and Sam walks|
000012B0: 20 31 35 30 20 79 64 2F 6D 69 6E 2E 00 53 69 6E | 150 yd/min..Sin|
000012C0: 63 65 20 49 76 61 6E 27 73 20 72 61 74 65 20 69 |ce Ivan's rate i|
000012D0: 73 20 74 77 69 63 65 20 53 61 6D 27 73 20 72 61 |s twice Sam's ra|
000012E0: 74 65 2C 20 49 76 61 6E 20 77 61 6C 6B 73 20 60 |te, Ivan walks `|
000012F0: 33 30 30 27 20 79 64 2F 6D 69 6E 2E 00 33 30 30 |300' yd/min..300|
00001300: 00 62 6F 79 20 73 70 65 6E 64 73 20 77 61 6C 6B |.boy spends walk|
00001310: 69 6E 67 00 49 76 61 6E 20 77 61 6C 6B 73 20 66 |ing.Ivan walks f|
00001320: 6F 72 00 53 61 6D 00 69 00 6D 69 6E 75 74 65 73 |or.Sam.i.minutes|
00001330: 20 49 76 61 6E 20 77 61 6C 6B 73 00 31 31 00 53 | Ivan walks.11.S|
00001340: 61 6D 20 73 70 65 6E 64 73 20 77 61 6C 6B 69 6E |am spends walkin|
00001350: 67 00 49 76 61 6E 27 73 20 74 69 6D 65 00 53 69 |g.Ivan's time.Si|
00001360: 6E 63 65 20 53 61 6D 20 6C 65 61 76 65 73 20 32 |nce Sam leaves 2|
00001370: 30 20 6D 69 6E 75 74 65 73 20 62 65 66 6F 72 65 |0 minutes before|
00001380: 20 49 76 61 6E 2C 20 68 65 20 77 61 6C 6B 73 20 | Ivan, he walks |
00001390: 66 6F 72 20 32 30 20 6D 6F 72 65 20 6D 69 6E 75 |for 20 more minu|
000013A0: 74 65 73 2E 20 60 26 76 2B 32 30 27 20 69 73 20 |tes. `&v+20' is |
000013B0: 53 61 6D 27 73 20 74 69 6D 65 2E 00 31 30 00 26 |Sam's time..10.&|
000013C0: 76 2B 32 30 00 60 31 35 30 20 5C 66 30 36 2A 20 |v+20.`150 \f06* |
000013D0: 28 26 76 2B 32 30 29 27 20 5C 66 31 35 3D 20 53 |(&v+20)' \f15= S|
000013E0: 61 6D 27 73 00 31 35 30 28 26 76 2B 32 30 29 00 |am's.150(&v+20).|
000013F0: 60 33 30 30 20 5C 66 30 36 2A 20 20 26 76 27 20 |`300 \f06* &v' |
00001400: 5C 66 31 34 3D 20 49 76 61 6E 27 73 20 44 69 73 |\f14= Ivan's Dis|
00001410: 74 2E 00 33 30 30 26 76 00 73 00 69 00 73 00 69 |t..300&v.s.i.s.i|
00001420: 00 73 00 31 35 30 28 26 76 2B 32 30 29 00 69 00 |.s.150(&v+20).i.|
00001430: 33 30 30 26 76 00 53 61 6D 20 61 6E 64 20 49 76 |300&v.Sam and Iv|
00001440: 61 6E 20 77 61 6C 6B 20 74 68 65 20 73 61 6D 65 |an walk the same|
00001450: 20 64 69 73 74 61 6E 63 65 2C 20 73 6F 20 74 68 | distance, so th|
00001460: 65 20 65 71 75 61 74 69 6F 6E 20 69 73 20 60 31 |e equation is `1|
00001470: 35 30 28 26 76 2B 32 30 29 20 3D 20 33 30 30 26 |50(&v+20) = 300&|
00001480: 76 27 00 31 35 30 28 26 76 2B 32 30 29 3D 33 30 |v'.150(&v+20)=30|
00001490: 30 26 76 00 32 30 00 48 6F 77 20 6D 75 63 68 20 |0&v.20.How much |
000014A0: 74 69 6D 65 20 64 6F 65 73 20 49 76 61 6E 20 73 |time does Ivan s|
000014B0: 70 65 6E 64 20 77 61 6C 6B 69 6E 67 3F 00 49 76 |pend walking?.Iv|
000014C0: 61 6E 00 49 76 61 6E 00 32 30 00 32 30 00 32 30 |an.Ivan.20.20.20|
000014D0: 00 53 61 6D 27 73 00 26 76 2B 32 30 20 72 65 70 |.Sam's.&v+20 rep|
000014E0: 72 65 73 65 6E 74 73 20 53 61 6D 27 73 20 74 69 |resents Sam's ti|
000014F0: 6D 65 20 61 6E 64 20 26 76 20 3D 20 32 30 2C 20 |me and &v = 20, |
00001500: 73 6F 20 53 61 6D 20 77 61 6C 6B 73 20 66 6F 72 |so Sam walks for|
00001510: 20 60 34 30 27 20 6D 69 6E 75 74 65 73 2E 00 31 | `40' minutes..1|
00001520: 30 00 34 30 00 53 61 6D 27 73 00 31 35 30 28 26 |0.40.Sam's.150(&|
00001530: 76 2B 32 30 29 20 72 65 70 72 65 73 65 6E 74 73 |v+20) represents|
00001540: 20 53 61 6D 27 73 20 64 69 73 74 61 6E 63 65 20 | Sam's distance |
00001550: 61 6E 64 20 26 76 3D 32 30 2C 20 73 6F 20 53 61 |and &v=20, so Sa|
00001560: 6D 27 73 20 64 69 73 74 61 6E 63 65 20 69 73 20 |m's distance is |
00001570: 31 35 30 2A 34 30 2C 20 6F 72 20 60 36 30 30 30 |150*40, or `6000|
00001580: 27 20 79 61 72 64 73 00 36 30 30 30 00 49 76 61 |' yards.6000.Iva|
00001590: 6E 27 73 00 33 30 30 26 76 20 72 65 70 72 65 73 |n's.300&v repres|
000015A0: 65 6E 74 73 20 49 76 61 6E 27 73 20 64 69 73 74 |ents Ivan's dist|
000015B0: 61 6E 63 65 20 61 6E 64 20 26 76 3D 32 30 2C 20 |ance and &v=20, |
000015C0: 73 6F 20 49 76 61 6E 27 73 20 64 69 73 74 61 6E |so Ivan's distan|
000015D0: 63 65 20 69 73 20 33 30 30 2A 32 30 2C 20 6F 72 |ce is 300*20, or|
000015E0: 20 60 36 30 30 30 27 20 79 61 72 64 73 20 61 6C | `6000' yards al|
000015F0: 73 6F 2E 00 36 30 30 30 00 53 61 6D 27 73 00 49 |so..6000.Sam's.I|
00001600: 76 61 6E 27 73 00 7C 65 |van's.|e |
A @Q{}@DG05&D(1,UNIT/MEAS)&C(2,{})
&C(3,{})&D(4,RATE)&D(8,TIME)&D(12,DIST.)
@RREAD@PREAD THE WHOLE PROBLEM. THINK: W
HAT ARE THE FACTS? WHAT IS BEING ASKED?
(PRESS ANY KEY TO CONTINUE).@HWHAT ARE
THE FACTS? {}.@HWHAT IS BEING ASKED? {}
@I(0)@RPLAN @PLET D{} = {} DISTANCE AND
D{} = {} DISTANCE. WRITE AN EQUATION THA
T RELATES D{} TO D{}.@H{} BOTH {} THE SA
ME DISTANCE.@H`D{} = D{}' SHOWS THAT {}
BOTH {} THE SAME DISTANCE.@I(16,C0, )@PO
NE ANSWER IS `D{}'. CHANGE YOUR ANSWER I
F IT IS NOT EQUIVALENT. (PRESS RETURN)@H
{} BOTH TRAVEL THE SAME DISTANCE.@H`D{}=
D{}' SHOWS THAT {} DISTANCE IS EQUAL TO
{} DISTANCE.@I(16,C0, )@RDATA ENTRY@PFIL
L IN THE UNITS BY WHICH RATE, TIME AND D
ISTANCE ARE MEASURED. (USE ABBREVIATED F
ORM.)@HRATE IS COMMONLY MEASURED IN MILE
S PER HOUR(MI/HR), FEET PER SECOND (FT/S
EC), METERS PER KILOMETER (M/KM), ETC.@H
THE RATE OF SPEED IN THIS PROBLEM IS MEA
SURED IN {}.@I(5,C{},{})@HTIME IS COMMON
LY MEASURED IN SECONDS (SEC), MINUTES (M
IN), HOURS (HR), DAYS (DA), ETC.@HTIME I
N THIS PROBLEM IS MEASURED IN {}.@I(9,C{
},{})@HDISTANCE IS COMMONLY MEASURED IN
FEET (FT), YARDS (YD), MILES (MI), METER
S (M), KILOMETERS (KM), ETC.@HDISTANCE I
N THIS PROBLEM IS MEASURED IN {}.@I(13,C
{},{})@PENTER THE FACTS FROM THE PROBLEM
INTO THE GRID.@H{}@H{}@I(6,I,{})@H{}@H{
}@I(7,I,{})@PREPRESENT THE TIME EACH {}.
@HUSE A VARIABLE TO REPRESENT THE SMALLE
R AMOUNT OF TIME. IN THIS CASE, {} LESS
TIME THAN {}.@HUSE A VARIABLE, SUCH AS `
{}' TO REPRESENT THE NUMBER OF {}.@I({},
I,&V)@HREPRESENT THE TIME {} IN TERMS OF
"&V", {}.@H{}@I({},I,{})@RPARTS@PWRITE
AN EXPRESSION TO REPRESENT TBE DISTANCE
TRAVELLED BY EACH VEHICLE.@HRATE*TIME =
DISTANCE@HRATE \F06* TIME \F15= DISTAN
CE \N{}@I(14,I,{})@HRATE*TIME = DISTANCE
@HRATE \F06* TIME \F15= DISTANCE \N{}@I(
15,I,{})@RWHOLE&D(16, )@PSUBSTITUTE YOUR
EXPRESSIONS FOR D{} AND D{} IN THE EQUA
TION : D{} = D{}@HD{} = {} AND D{} = {}.
@H{}@I(16,I,{})@S@RCOMPUTE@PSOLVE THE EQ
UATION FOR "&V". USE PAPER AND PENCIL AN
D ENTER THE FINAL EQUATIONS OR USE THE C
ALCULATOR.@HISOLATE "&V" ON ONE SIDE OF
THE EQUATION.@HTHE CALCULATOR SOLVES EQU
ATIONS FOR YOU AND DISPLAYS THE STEPS IN
THE SOLUTION.@I(16,I,&V={})@PENTER YOUR
ANSWER TO THE PROBLEM IN THE GRID. REME
MBER THE QUESTION. &Q{}&Q&W(16)@HTHE TIM
E FOR {} IS THE VALUE OF "&V".@HTHE TIME
FOR {} IS THE VALUE OF "&V". &V = {}, S
O ENTER '{}'.@I(11,I,{})@S@RCHECK@PREREA
D THE PROBLEM. CHECK YOUR ANSWERS. EVALU
ATE THE REMAINING EXPRESSIONS IN THE CHA
RT.@HSUBSTITUTE FOR "&V" IN THE EXPRESSI
ON FOR {} TIME. THEN CALCULATE THE RESUL
T.@H{}@I({},I,{})@HSUBSTITUTE FOR "&V" I
N THE EXPRESSION FOR {} DISTANCE. THEN C
ALCULATE THE RESULT.@H{}@I(14,I,{})@HSUB
STITUTE FOR "&V" IN THE EXPRESSION FOR {
} DISTANCE. THEN CALCULATE THE RESULT.@H
{}@I(15,I,{})&D(0,CHECK YOUR WORK. {} DI
STANCE SHOULD EQUAL {} DISTANCE. (ON TO
A NEW PROBLEM.))@FA TOW TRUCK TRAVELLING
40 MI/HR LEFT NEW YORK AT 6 PM. AT 8 PM
A CAR TRAVELLING 60 MI/HR BEGINS TRAVEL
LING THE SAME ROAD. HOW LONG WILL IT TAK
E THE CAR TO CATCH UP TO THE TRUCK?.TRUC
K.CAR.THE TOW TRUCK TRAVELS AT A FASTER
RATE FOR 2 HOURS MORE THAN THE CAR.&HHOW
LONG WILL IT TAKE THE CAR TO CATCH UP T
O THE TRUCK?&H.T.THE TRUCK'S.C.THE CAR'S
.T.C.THE TRUCK AND THE CAR.TRAVEL.T.C.TH
E TRUCK AND THE CAR.TRAVEL.T = DC.THE TR
UCK AND THE CAR.T.C.THE TRUCK'S.THE CAR'
S.MILES PER HOUR (`MI/HR').5.MI/HR.HOURS
(`HR').2.HR.MILES (`MI').2.MI.THE TOW T
RUCK TRAVELS AT 40 MI/HR..THE RATE OF SP
EED FOR THE TRUCK IS `40' MI/HR..40.THE
CAR TRAVELS AT 60 MI/HR..THE RATE OF SPE
ED FOR THE CAR IS `60' MI/HR..60.VEHICLE
TRAVELS.THE CAR TRAVELS.THE TRUCK.C.HOU
RS THE CAR TRAVELS.11.THE TRUCK TRAVELS.
(THE TIME THE CAR TRAVELS).THE TRUCK LEF
T 2 HOURS BEFORE THE CAR. THE TRUCK TRAV
ELS 2 HOURS MORE THAN THE CAR. `&V+2' IS
THE TRUCK'S TIME..10.&V+2.` 40 \F06* (
&V+2)\F14= DISTANCE.40(&V+2).`60 \F06*
&V' \F14= DISTANCE.60&V.T.C.T.C.T.40(&V
+2).C.60&V.`40(&V+2) = 60&V' IS THE EQUA
TION..40(&V+2)=60&V.4.HOW LONG WILL IT T
AKE THE CAR TO CATCH UP TO THE TRUCK?.TH
E CAR.THE CAR.4.4.4.THE TRUCK'S.THE TRUC
K TOOK &V+2 HOURS, WHICH EQUALS '6' HOUR
S..10.6.TRUCK'S.THE TRUCK DROVE 40(&V+2)
MILES, WHICH EQUALS '240' MILES..240.CA
R'S.THE CAR DROVE 60&V MILES, WHICH EQUA
LS '240' MILES..240.THE TRUCK'S.THE CAR'
S.@FSAM GOES TO SCHOOL AT 8AM, BUT HIS B
ROTHER IVAN WAITS UNTIL 8:20. IF SAM WAL
KS 150 YD/MIN AND IVAN WALKS TWICE AS FA
ST. IF THEY ARRIVE AT THE SAME TIME, HOW
MUCH TIME DOES IVAN SPEND WALKING?.SAM.
IVAN.IVAN AND SAM WALK AT DIFFERENT RATE
S FOR THE SAME LENGTH OF TIME.&HHOW MUCH
TIME DOES IVAN SPEND WALKING?&H.S.SAM'S
.I.IVAN'S.S.I.THE BOYS.WALK.S.I.THE BOYS
.WALK.S = DI.THE BOYS.S.I.SAM'S.IVAN'S.Y
ARDS PER MINUTE (`YD/MIN').6.YD/MIN.MINU
TES (`MIN').3.MIN.YARDS (`YD').2.YD.&HSA
M WALKS 150 YD/MIN&H..SAM'S RATE IS `150
' YD/MIN..150.&HIVAN WALKS TWICE AS FAST
&H AS SAM, AND SAM WALKS 150 YD/MIN..SIN
CE IVAN'S RATE IS TWICE SAM'S RATE, IVAN
WALKS `300' YD/MIN..300.BOY SPENDS WALK
ING.IVAN WALKS FOR.SAM.I.MINUTES IVAN WA
LKS.11.SAM SPENDS WALKING.IVAN'S TIME.SI
NCE SAM LEAVES 20 MINUTES BEFORE IVAN, H
E WALKS FOR 20 MORE MINUTES. `&V+20' IS
SAM'S TIME..10.&V+20.`150 \F06* (&V+20)'
\F15= SAM'S.150(&V+20).`300 \F06* &V'
\F14= IVAN'S DIST..300&V.S.I.S.I.S.150(&
V+20).I.300&V.SAM AND IVAN WALK THE SAME
DISTANCE, SO THE EQUATION IS `150(&V+20
) = 300&V'.150(&V+20)=300&V.20.HOW MUCH
TIME DOES IVAN SPEND WALKING?.IVAN.IVAN.
20.20.20.SAM'S.&V+20 REPRESENTS SAM'S TI
ME AND &V = 20, SO SAM WALKS FOR `40' MI
NUTES..10.40.SAM'S.150(&V+20) REPRESENTS
SAM'S DISTANCE AND &V=20, SO SAM'S DIST
ANCE IS 150*40, OR `6000' YARDS.6000.IVA
N'S.300&V REPRESENTS IVAN'S DISTANCE AND
&V=20, SO IVAN'S DISTANCE IS 300*20, OR
`6000' YARDS ALSO..6000.SAM'S.IVAN'S.|E
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL