00000000: 31 00 00 01 04 02 5C 04 00 00 AA A2 0C BD 6B 9D |1.....\.......k.|
00000010: 9D 55 9D CA D0 F7 38 B0 12 AD B6 AA D0 04 A9 20 |.U....8........ |
00000020: D0 05 0A 10 05 A9 4C 20 B2 A5 18 08 20 51 A8 A9 |......L .... Q..|
00000030: 00 8D 5E AA 8D 52 AA 28 6A 8D 51 AA 30 03 6C 5E |..^..R.(j.Q.0.l^|
00000040: 9D 6C 5C 9D 0A 10 19 8D B6 AA A2 0C BD 77 9D 9D |.l\..........w..|
00000050: 55 9D CA D0 F7 A2 1D BD 93 AA 9D 75 AA CA 10 F7 |U..........u....|
00000060: AD B1 AA 8D 57 AA 20 D4 A7 AD B3 AA F0 09 48 20 |....W. .......H |
00000070: 9D A6 68 A0 00 91 40 20 5B A7 AD 5F AA D0 20 A2 |..h...@ [.._.. .|
00000080: 2F BD 51 9E 9D D0 03 CA 10 F7 AD 53 9E 8D F3 03 |/.Q........S....|
00000090: 49 A5 8D F4 03 AD 52 9E 8D F2 03 A9 06 D0 05 AD |I.....R.........|
000000A0: 62 AA F0 06 8D 5F AA 4C 80 A1 60 4C BF 9D 4C 84 |b...._.L..`L..L.|
000000B0: 9D 4C FD AA 4C B5 B7 AD 0F 9D AC 0E 9D 60 AD C2 |.L..L........`..|
000000C0: AA AC C1 AA 60 4C 51 A8 EA EA 4C 59 FA 4C 65 FF |....`LQ...LY.Le.|
000000D0: 4C 58 FF 4C 65 FF 4C 65 FF 65 FF 20 D1 9E AD 51 |LX.Le.Le.e. ...Q|
000000E0: AA F0 15 48 AD 5C AA 91 28 68 30 03 4C 26 A6 20 |...H.\..(h0.L&. |
000000F0: EA 9D A4 24 A9 60 91 28 AD B3 AA F0 03 20 82 A6 |...$.`.(..... ..|
00000100: A9 03 8D 52 AA 20 BA 9F 20 BA 9E 8D 5C AA 8E 5A |...R. .. ...\..Z|
00000110: AA 4C B3 9F 6C 38 00 20 D1 9E AD 52 AA 0A AA BD |.L..l8. ...R....|
00000120: 11 9D 48 BD 10 9D 48 AD 5C AA 60 8D 5C AA 8E 5A |..H...H.\.`.\..Z|
00000130: AA 8C 5B AA BA E8 E8 8E 59 AA A2 03 BD 53 AA 95 |..[.....Y....S..|
00000140: 36 CA 10 F8 60 89 EE F3 89 EE F0 89 EE F3 9E F7 |6...`...........|
00000150: 9E 0A E5 74 00 89 EE FD 9E 44 9F DC E4 73 00 69 |...t.....D...s.i|
00000160: A8 74 66 61 63 32 74 72 69 6E 6F 6D 69 61 6C 73 |.tfac2trinomials|
00000170: 00 66 FF 6F F7 1C 9F 22 9F 01 00 01 00 01 00 48 |.f.o...".......H|
00000180: 9F 01 00 01 00 01 00 9F 2E 9E 01 00 00 28 4E 28 |.............(N(|
00000190: 4E 37 9F 3F 9F 3D 9E 01 00 48 9F 01 50 00 FF FF |N7.?.=...H..P...|
000001A0: 00 00 5C A8 20 D0 DA A7 5B A8 1E 00 00 A8 FF FF |..\. ...[.......|
000001B0: 02 00 06 00 07 A3 DA A7 DA A7 89 EE 62 9F 6E 9F |............b.n.|
000001C0: C9 E1 5D A9 DA A7 BB B5 00 00 00 00 03 00 89 EE |..].............|
000001D0: 76 9F 80 9F 53 E1 E5 A0 00 00 01 00 01 00 00 00 |v...S...........|
000001E0: 57 49 88 9F 94 9F 8C 9E E5 A0 00 00 0C 62 00 42 |WI...........b.B|
000001F0: 11 42 11 FF A0 48 9D 9F A5 9F A3 9E 08 0C 62 E5 |.B...H........b.|
00000200: A0 5E 41 14 26 4D 75 6C 74 69 70 6C 79 20 74 68 |.^A.&Multiply th|
00000210: 65 20 6E 75 6D 65 72 69 63 61 6C 20 63 6F 65 66 |e numerical coef|
00000220: 66 69 63 69 65 6E 74 00 6F 66 20 74 68 65 20 66 |ficient.of the f|
00000230: 69 72 73 74 20 74 65 72 6D 20 62 79 20 74 68 65 |irst term by the|
00000240: 20 6C 61 73 74 20 74 65 72 6D 2E 00 42 65 20 73 | last term..Be s|
00000250: 75 72 65 20 74 6F 20 63 6F 6E 73 69 64 65 72 20 |ure to consider |
00000260: 74 68 65 20 73 69 67 6E 20 6F 66 00 65 61 63 68 |the sign of.each|
00000270: 20 74 65 72 6D 2E 00 26 46 69 6E 64 20 74 68 65 | term..&Find the|
00000280: 20 74 77 6F 20 66 61 63 74 6F 72 73 20 6F 66 20 | two factors of |
00000290: 74 68 65 20 70 72 6F 64 75 63 74 00 28 66 72 6F |the product.(fro|
000002A0: 6D 20 53 54 45 50 20 31 29 20 77 68 6F 73 65 20 |m STEP 1) whose |
000002B0: 73 75 6D 20 65 71 75 61 6C 73 20 74 68 65 00 63 |sum equals the.c|
000002C0: 6F 65 66 66 69 63 69 65 6E 74 20 6F 66 20 74 68 |oefficient of th|
000002D0: 65 20 6D 69 64 64 6C 65 20 74 65 72 6D 2E 00 54 |e middle term..T|
000002E0: 68 65 73 65 20 66 61 63 74 6F 72 73 20 77 69 6C |hese factors wil|
000002F0: 6C 20 62 65 20 75 73 65 64 20 69 6E 20 53 54 45 |l be used in STE|
00000300: 50 00 33 20 74 6F 20 72 65 77 72 69 74 65 20 74 |P.3 to rewrite t|
00000310: 68 65 20 6D 69 64 64 6C 65 20 74 65 72 6D 20 6F |he middle term o|
00000320: 66 20 74 68 65 00 74 72 69 6E 6F 6D 69 61 6C 2E |f the.trinomial.|
00000330: 00 26 52 65 77 72 69 74 65 20 74 68 65 20 6D 69 |.&Rewrite the mi|
00000340: 64 64 6C 65 20 74 65 72 6D 20 61 73 20 74 68 65 |ddle term as the|
00000350: 20 73 75 6D 00 6F 66 20 74 68 65 20 66 61 63 74 | sum.of the fact|
00000360: 6F 72 73 20 66 6F 75 6E 64 20 69 6E 20 53 54 45 |ors found in STE|
00000370: 50 20 32 2E 00 26 55 73 69 6E 67 20 74 68 65 20 |P 2..&Using the |
00000380: 66 6F 75 72 20 74 65 72 6D 73 20 66 72 6F 6D 20 |four terms from |
00000390: 53 54 45 50 20 33 2C 00 66 61 63 74 6F 72 20 74 |STEP 3,.factor t|
000003A0: 68 65 20 47 43 46 20 66 72 6F 6D 20 74 68 65 20 |he GCF from the |
000003B0: 66 69 72 73 74 20 61 6E 64 00 73 65 63 6F 6E 64 |first and.second|
000003C0: 20 74 65 72 6D 73 2E 20 54 68 65 6E 20 66 61 63 | terms. Then fac|
000003D0: 74 6F 72 20 74 68 65 20 47 43 46 00 66 72 6F 6D |tor the GCF.from|
000003E0: 20 74 68 65 20 74 68 69 72 64 20 61 6E 64 20 66 | the third and f|
000003F0: 6F 75 72 74 68 20 74 65 72 6D 73 2E 20 00 00 57 |ourth terms. ..W|
00000400: 72 69 74 65 20 74 68 65 20 72 65 73 75 6C 74 20 |rite the result |
00000410: 61 73 20 6F 6E 65 20 65 78 70 72 65 73 73 69 6F |as one expressio|
00000420: 6E 2E 00 26 52 65 77 72 69 74 65 20 74 68 65 20 |n..&Rewrite the |
00000430: 65 78 70 72 65 73 73 69 6F 6E 20 61 73 20 74 68 |expression as th|
00000440: 65 00 70 72 6F 64 75 63 74 20 6F 66 20 74 77 6F |e.product of two|
00000450: 20 62 69 6E 6F 6D 69 61 6C 73 2E 00 00 00 00 00 | binomials......|
00000460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000490: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000004F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
1.....\.......K..U.JP.8.....P.. P.....L
.... Q....^..R.(J.Q.0.L^.L\..........W..
U.JP.......U.J......W. T......H ..H ..@
[.._.P ./.Q..P.J...S....I.....R......P..
B...._.L..`L..L..L..L........`.B..A.`LQ.
..LY.LE.LX.LE.LE.E. Q..Q...H.\..(H0.L&.
...$.`.(..... .....R. .. ...\..Z.L..L8.
Q..R......H...H.\.`.\..Z..[.....Y....S..
6J..`..............T.....D...S.I.TFAC2TR
INOMIALS.F.O...".......H.............(N(
N7.?.=...H..P.....\. PZ.[.............Z.
Z...B.N.I.].Z...........V...S.. ........
WI....... ...B.B.B.. H........B. ^A.&MUL
TIPLY THE NUMERICAL COEFFICIENT.OF THE F
IRST TERM BY THE LAST TERM..BE SURE TO C
ONSIDER THE SIGN OF.EACH TERM..&FIND THE
TWO FACTORS OF THE PRODUCT.(FROM STEP 1
) WHOSE SUM EQUALS THE.COEFFICIENT OF TH
E MIDDLE TERM..THESE FACTORS WILL BE USE
D IN STEP.3 TO REWRITE THE MIDDLE TERM O
F THE.TRINOMIAL..&REWRITE THE MIDDLE TER
M AS THE SUM.OF THE FACTORS FOUND IN STE
P 2..&USING THE FOUR TERMS FROM STEP 3,.
FACTOR THE GCF FROM THE FIRST AND.SECOND
TERMS. THEN FACTOR THE GCF.FROM THE THI
RD AND FOURTH TERMS. ..WRITE THE RESULT
AS ONE EXPRESSION..&REWRITE THE EXPRESSI
ON AS THE.PRODUCT OF TWO BINOMIALS......
........................................
........................................
........................................
........................................
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL