_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST1L3

FILE INFORMATION

FILENAME(S): DIST1L3

FILE TYPE(S): PRG

FILE SIZE: 7.6K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

ddc38ce35880f761d1e94b119d4f4c48fb94cc92f73526ee9b30077c6ca4ab8e

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST1L3 PRG Radd Maxx 21 1 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 20 20 20 20 20  20 20 20 20 20 20 40 71  | A            @q|
00000010: 7B 7D 40 64 67 30 34 26  64 28 31 2C 55 2F 6D 65  |{}@dg04&d(1,U/me|
00000020: 61 73 29 26 63 28 32 2C  7B 7D 29 26 63 28 33 2C  |as)&c(2,{})&c(3,|
00000030: 7B 7D 29 26 64 28 34 2C  54 6F 74 2E 29 26 64 28  |{})&d(4,Tot.)&d(|
00000040: 35 2C 52 61 74 65 29 26  64 28 31 30 2C 54 69 6D  |5,Rate)&d(10,Tim|
00000050: 65 29 26 64 28 31 35 2C  44 69 73 74 2E 29 40 72  |e)&d(15,Dist.)@r|
00000060: 52 45 41 44 40 70 52 65  61 64 20 74 68 65 20 77  |READ@pRead the w|
00000070: 68 6F 6C 65 20 70 72 6F  62 6C 65 6D 2E 20 54 68  |hole problem. Th|
00000080: 69 6E 6B 3A 20 57 68 61  74 20 61 72 65 20 74 68  |ink: What are th|
00000090: 65 20 66 61 63 74 73 3F  20 20 57 68 61 74 20 69  |e facts?  What i|
000000A0: 73 20 62 65 69 6E 67 20  61 73 6B 65 64 3F 20 28  |s being asked? (|
000000B0: 50 72 65 73 73 20 61 6E  79 20 6B 65 79 20 74 6F  |Press any key to|
000000C0: 20 63 6F 6E 74 69 6E 75  65 2E 29 40 68 57 68 61  | continue.)@hWha|
000000D0: 74 20 61 72 65 20 74 68  65 20 66 61 63 74 73 3F  |t are the facts?|
000000E0: 20 7B 7D 40 68 57 68 61  74 20 69 73 20 62 65 69  | {}@hWhat is bei|
000000F0: 6E 67 20 61 73 6B 65 64  3F 20 7B 7D 40 69 28 30  |ng asked? {}@i(0|
00000100: 29 20 40 72 50 4C 41 4E  40 70 4C 65 74 20 44 7B  |) @rPLAN@pLet D{|
00000110: 7D 20 3D 20 7B 7D 20 64  69 73 74 2E 20 61 6E 64  |} = {} dist. and|
00000120: 20 44 7B 7D 20 3D 20 7B  7D 20 64 69 73 74 2E 20  | D{} = {} dist. |
00000130: 57 72 69 74 65 20 61 6E  20 65 71 75 61 74 69 6F  |Write an equatio|
00000140: 6E 20 74 6F 20 72 65 6C  61 74 65 20 44 7B 7D 20  |n to relate D{} |
00000150: 61 6E 64 20 44 7B 7D 20  74 6F 20 74 68 65 20 54  |and D{} to the T|
00000160: 6F 74 61 6C 20 64 69 73  74 2E 40 68 54 68 65 79  |otal dist.@hThey|
00000170: 20 7B 7D 20 69 6E 20 6F  70 70 6F 73 69 74 65 20  | {} in opposite |
00000180: 64 69 72 65 63 74 69 6F  6E 73 20 66 6F 72 20 74  |directions for t|
00000190: 68 65 20 73 61 6D 65 20  6C 65 6E 67 74 68 20 6F  |he same length o|
000001A0: 66 20 74 69 6D 65 20 75  6E 74 69 6C 20 74 68 65  |f time until the|
000001B0: 79 20 61 72 65 20 7B 7D  20 61 70 61 72 74 2E 40  |y are {} apart.@|
000001C0: 68 7B 7D 40 69 28 32 30  2C 63 30 2C 20 29 40 70  |h{}@i(20,c0, )@p|
000001D0: 4F 6E 65 20 61 6E 73 77  65 72 20 69 73 20 60 7B  |One answer is `{|
000001E0: 7D 27 2E 20 43 68 61 6E  67 65 20 79 6F 75 72 20  |}'. Change your |
000001F0: 61 6E 73 77 65 72 20 69  66 20 69 74 20 69 73 20  |answer if it is |
00000200: 6E 6F 74 20 65 71 75 69  76 61 6C 65 6E 74 2E 20  |not equivalent. |
00000210: 28 50 72 65 73 73 20 72  65 74 75 72 6E 29 40 68  |(Press return)@h|
00000220: 54 68 65 79 20 7B 7D 20  69 6E 20 6F 70 70 6F 73  |They {} in oppos|
00000230: 69 74 65 20 64 69 72 65  63 74 69 6F 6E 73 20 66  |ite directions f|
00000240: 6F 72 20 74 68 65 20 73  61 6D 65 20 6C 65 6E 67  |or the same leng|
00000250: 74 68 20 6F 66 20 74 69  6D 65 20 75 6E 74 69 6C  |th of time until|
00000260: 20 74 68 65 79 20 61 72  65 20 7B 7D 20 61 70 61  | they are {} apa|
00000270: 72 74 2E 40 68 7B 7D 40  69 28 32 30 2C 63 30 2C  |rt.@h{}@i(20,c0,|
00000280: 20 29 40 72 44 41 54 41  20 45 4E 54 52 59 40 70  | )@rDATA ENTRY@p|
00000290: 46 69 6C 6C 20 69 6E 20  74 68 65 20 75 6E 69 74  |Fill in the unit|
000002A0: 73 20 62 79 20 77 68 69  63 68 20 72 61 74 65 2C  |s by which rate,|
000002B0: 20 74 69 6D 65 20 61 6E  64 20 64 69 73 74 61 6E  | time and distan|
000002C0: 63 65 20 61 72 65 20 6D  65 61 73 75 72 65 64 2E  |ce are measured.|
000002D0: 20 28 55 73 65 20 61 62  62 72 65 76 69 61 74 65  | (Use abbreviate|
000002E0: 64 20 66 6F 72 6D 2E 29  40 68 52 61 74 65 20 6F  |d form.)@hRate o|
000002F0: 66 20 73 70 65 65 64 20  69 73 20 63 6F 6D 6D 6F  |f speed is commo|
00000300: 6E 6C 79 20 6D 65 61 73  75 72 65 64 20 69 6E 20  |nly measured in |
00000310: 6D 69 6C 65 73 20 70 65  72 20 68 6F 75 72 28 6D  |miles per hour(m|
00000320: 69 2F 68 72 29 2C 20 6D  65 74 65 72 73 20 70 65  |i/hr), meters pe|
00000330: 72 20 6D 69 6E 75 74 65  28 6D 2F 6D 69 6E 29 2C  |r minute(m/min),|
00000340: 20 65 74 63 2E 40 68 54  68 65 20 72 61 74 65 20  | etc.@hThe rate |
00000350: 6F 66 20 73 70 65 65 64  20 69 6E 20 74 68 69 73  |of speed in this|
00000360: 20 70 72 6F 62 6C 65 6D  20 69 73 20 6D 65 61 73  | problem is meas|
00000370: 75 72 65 64 20 69 6E 20  7B 7D 2E 40 69 28 36 2C  |ured in {}.@i(6,|
00000380: 63 7B 7D 2C 7B 7D 29 40  68 54 69 6D 65 20 69 73  |c{},{})@hTime is|
00000390: 20 63 6F 6D 6D 6F 6E 6C  79 20 6D 65 61 73 75 72  | commonly measur|
000003A0: 65 64 20 69 6E 20 73 65  63 6F 6E 64 73 20 28 73  |ed in seconds (s|
000003B0: 65 63 29 2C 20 6D 69 6E  75 74 65 73 20 28 6D 69  |ec), minutes (mi|
000003C0: 6E 29 2C 20 68 6F 75 72  73 20 28 68 72 29 2C 20  |n), hours (hr), |
000003D0: 64 61 79 73 20 28 64 61  29 2C 20 65 74 63 2E 40  |days (da), etc.@|
000003E0: 68 54 69 6D 65 20 69 6E  20 74 68 69 73 20 70 72  |hTime in this pr|
000003F0: 6F 62 6C 65 6D 20 69 73  20 6D 65 61 73 75 72 65  |oblem is measure|
00000400: 64 20 69 6E 20 7B 7D 2E  40 69 28 31 31 2C 63 7B  |d in {}.@i(11,c{|
00000410: 7D 2C 7B 7D 29 40 68 44  69 73 74 61 6E 63 65 20  |},{})@hDistance |
00000420: 69 73 20 63 6F 6D 6D 6F  6E 6C 79 20 6D 65 61 73  |is commonly meas|
00000430: 75 72 65 64 20 69 6E 20  66 65 65 74 20 28 66 74  |ured in feet (ft|
00000440: 29 2C 20 79 61 72 64 73  20 28 79 64 29 2C 20 6D  |), yards (yd), m|
00000450: 65 74 65 72 73 20 28 6D  29 2C 20 6D 69 6C 65 73  |eters (m), miles|
00000460: 20 28 6D 69 29 2C 20 6B  69 6C 6F 6D 65 74 65 72  | (mi), kilometer|
00000470: 73 20 28 6B 6D 29 2C 20  65 74 63 2E 40 68 44 69  |s (km), etc.@hDi|
00000480: 73 74 61 6E 63 65 20 69  6E 20 74 68 69 73 20 70  |stance in this p|
00000490: 72 6F 62 6C 65 6D 2C 20  69 73 20 6D 65 61 73 75  |roblem, is measu|
000004A0: 72 65 64 20 69 6E 20 7B  7D 2E 40 69 28 31 36 2C  |red in {}.@i(16,|
000004B0: 63 7B 7D 2C 7B 7D 29 40  70 45 6E 74 65 72 20 74  |c{},{})@pEnter t|
000004C0: 68 65 20 66 61 63 74 73  20 66 72 6F 6D 20 74 68  |he facts from th|
000004D0: 65 20 70 72 6F 62 6C 65  6D 20 69 6E 74 6F 20 74  |e problem into t|
000004E0: 68 65 20 67 72 69 64 2E  40 68 7B 7D 2E 40 68 54  |he grid.@h{}.@hT|
000004F0: 68 65 20 72 61 74 65 20  6F 66 20 73 70 65 65 64  |he rate of speed|
00000500: 20 66 6F 72 20 7B 7D 20  69 73 20 7B 7D 2E 40 69  | for {} is {}.@i|
00000510: 28 37 2C 69 2C 7B 7D 29  40 68 7B 7D 2E 40 68 54  |(7,i,{})@h{}.@hT|
00000520: 68 65 20 72 61 74 65 20  6F 66 20 73 70 65 65 64  |he rate of speed|
00000530: 20 66 6F 72 20 7B 7D 20  69 73 20 7B 7D 2E 40 69  | for {} is {}.@i|
00000540: 28 38 2C 69 2C 7B 7D 29  40 68 45 6E 74 65 72 20  |(8,i,{})@hEnter |
00000550: 74 68 65 20 64 69 73 74  61 6E 63 65 20 62 65 74  |the distance bet|
00000560: 77 65 65 6E 20 7B 7D 2E  40 68 54 68 65 79 20 61  |ween {}.@hThey a|
00000570: 72 65 20 7B 7D 20 61 70  61 72 74 2E 40 69 28 31  |re {} apart.@i(1|
00000580: 39 2C 69 2C 7B 7D 29 40  70 55 73 65 20 61 20 76  |9,i,{})@pUse a v|
00000590: 61 72 69 61 62 6C 65 20  74 6F 20 72 65 70 72 65  |ariable to repre|
000005A0: 73 65 6E 74 20 74 68 65  20 61 6D 6F 75 6E 74 20  |sent the amount |
000005B0: 6F 66 20 74 69 6D 65 20  65 61 63 68 20 7B 7D 20  |of time each {} |
000005C0: 74 72 61 76 65 6C 73 2E  40 68 55 73 65 20 74 68  |travels.@hUse th|
000005D0: 65 20 73 61 6D 65 20 76  61 72 69 61 62 6C 65 20  |e same variable |
000005E0: 74 6F 20 72 65 70 72 65  73 65 6E 74 20 62 6F 74  |to represent bot|
000005F0: 68 20 7B 7D 20 74 69 6D  65 2E 40 68 55 73 65 20  |h {} time.@hUse |
00000600: 61 20 76 61 72 69 62 6C  65 2C 20 73 75 63 68 20  |a varible, such |
00000610: 61 73 20 60 74 27 20 74  6F 20 72 65 70 72 65 73  |as `t' to repres|
00000620: 65 6E 74 20 7B 7D 20 74  69 6D 65 2E 40 69 28 31  |ent {} time.@i(1|
00000630: 32 2C 69 2C 26 76 29 40  68 7B 7D 20 66 6F 72 20  |2,i,&v)@h{} for |
00000640: 74 68 65 20 73 61 6D 65  20 61 6D 6F 75 6E 74 20  |the same amount |
00000650: 6F 66 20 74 69 6D 65 20  61 73 20 7B 7D 2E 40 68  |of time as {}.@h|
00000660: 55 73 65 20 74 68 65 20  73 61 6D 65 20 76 61 72  |Use the same var|
00000670: 69 61 62 6C 65 2C 20 60  26 76 27 20 74 6F 20 72  |iable, `&v' to r|
00000680: 65 70 72 65 73 65 6E 74  20 7B 7D 20 74 69 6D 65  |epresent {} time|
00000690: 2E 40 69 28 31 33 2C 69  2C 26 76 29 40 72 50 41  |.@i(13,i,&v)@rPA|
000006A0: 52 54 53 40 70 57 72 69  74 65 20 61 6E 20 65 78  |RTS@pWrite an ex|
000006B0: 70 72 65 73 73 69 6F 6E  20 74 6F 20 72 65 70 72  |pression to repr|
000006C0: 65 73 65 6E 74 20 74 68  65 20 64 69 73 74 61 6E  |esent the distan|
000006D0: 63 65 20 74 72 61 76 65  6C 6C 65 64 20 62 79 20  |ce travelled by |
000006E0: 65 61 63 68 20 7B 7D 2E  40 68 52 61 74 65 2A 54  |each {}.@hRate*T|
000006F0: 69 6D 65 20 3D 20 44 69  73 74 61 6E 63 65 40 68  |ime = Distance@h|
00000700: 52 61 74 65 20 20 5C 66  30 36 2A 20 20 5C 66 30  |Rate  \f06*  \f0|
00000710: 38 54 69 6D 65 20 20 5C  66 31 34 3D 20 44 69 73  |8Time  \f14= Dis|
00000720: 74 61 6E 63 65 20 5C 6E  60 7B 7D 20 20 5C 66 30  |tance \n`{}  \f0|
00000730: 36 2A 20 20 5C 66 30 38  7B 7D 27 20 5C 66 31 34  |6*  \f08{}' \f14|
00000740: 3D 20 7B 7D 20 44 69 73  74 61 6E 63 65 40 69 28  |= {} Distance@i(|
00000750: 31 37 2C 69 2C 7B 7D 29  40 68 52 61 74 65 2A 54  |17,i,{})@hRate*T|
00000760: 69 6D 65 20 3D 20 44 69  73 74 61 6E 63 65 40 68  |ime = Distance@h|
00000770: 52 61 74 65 20 20 5C 66  30 36 2A 20 20 5C 66 30  |Rate  \f06*  \f0|
00000780: 38 54 69 6D 65 20 5C 66  31 34 3D 20 44 69 73 74  |8Time \f14= Dist|
00000790: 61 6E 63 65 20 5C 6E 60  7B 7D 20 20 5C 66 30 36  |ance \n`{}  \f06|
000007A0: 2A 20 20 5C 66 30 38 7B  7D 27 20 20 5C 66 31 34  |*  \f08{}'  \f14|
000007B0: 3D 20 7B 7D 20 44 69 73  74 61 6E 63 65 40 69 28  |= {} Distance@i(|
000007C0: 31 38 2C 69 2C 7B 7D 29  40 72 57 48 4F 4C 45 26  |18,i,{})@rWHOLE&|
000007D0: 64 28 32 30 2C 20 29 40  70 53 75 62 73 74 69 74  |d(20, )@pSubstit|
000007E0: 75 74 65 20 79 6F 75 72  20 65 78 70 72 65 73 73  |ute your express|
000007F0: 69 6F 6E 73 20 66 6F 72  20 44 7B 7D 2C 20 44 7B  |ions for D{}, D{|
00000800: 7D 20 61 6E 64 20 54 6F  74 61 6C 20 69 6E 20 74  |} and Total in t|
00000810: 68 65 20 65 71 75 61 74  69 6F 6E 3A 20 5C 6E 20  |he equation: \n |
00000820: 20 20 44 7B 7D 2B 44 7B  7D 20 3D 20 54 6F 74 61  |  D{}+D{} = Tota|
00000830: 6C 40 68 44 7B 7D 3D 7B  7D 2C 20 44 7B 7D 3D 7B  |l@hD{}={}, D{}={|
00000840: 7D 20 61 6E 64 20 54 6F  74 61 6C 3D 7B 7D 2E 40  |} and Total={}.@|
00000850: 68 7B 7D 20 64 69 73 74  2E 20 5C 66 31 35 2B 7B  |h{} dist. \f15+{|
00000860: 7D 20 64 69 73 74 2E 20  5C 66 33 30 3D 20 54 6F  |} dist. \f30= To|
00000870: 74 61 6C 20 5C 6E 20 20  60 7B 7D 27 40 69 28 32  |tal \n  `{}'@i(2|
00000880: 30 2C 69 2C 7B 7D 29 40  73 40 72 43 4F 4D 50 55  |0,i,{})@s@rCOMPU|
00000890: 54 45 20 40 70 53 6F 6C  76 65 20 74 68 65 20 65  |TE @pSolve the e|
000008A0: 71 75 61 74 69 6F 6E 20  66 6F 72 20 22 26 76 22  |quation for "&v"|
000008B0: 2E 20 55 73 65 20 70 61  70 65 72 20 61 6E 64 20  |. Use paper and |
000008C0: 70 65 6E 63 69 6C 20 61  6E 64 20 65 6E 74 65 72  |pencil and enter|
000008D0: 20 74 68 65 20 66 69 6E  61 6C 20 65 71 75 61 74  | the final equat|
000008E0: 69 6F 6E 2C 20 6F 72 20  75 73 65 20 74 68 65 20  |ion, or use the |
000008F0: 43 61 6C 63 75 6C 61 74  6F 72 2E 40 68 49 73 6F  |Calculator.@hIso|
00000900: 6C 61 74 65 20 22 26 76  22 20 6F 6E 20 6F 6E 65  |late "&v" on one|
00000910: 20 73 69 64 65 20 6F 66  20 74 68 65 20 65 71 75  | side of the equ|
00000920: 61 74 69 6F 6E 2E 40 68  54 68 65 20 43 61 6C 63  |ation.@hThe Calc|
00000930: 75 6C 61 74 6F 72 20 73  6F 6C 76 65 73 20 65 71  |ulator solves eq|
00000940: 75 61 74 69 6F 6E 73 20  66 6F 72 20 79 6F 75 20  |uations for you |
00000950: 61 6E 64 20 64 69 73 70  6C 61 79 73 20 74 68 65  |and displays the|
00000960: 20 73 74 65 70 73 20 69  6E 20 74 68 65 20 73 6F  | steps in the so|
00000970: 6C 75 74 69 6F 6E 2E 40  69 28 32 30 2C 69 2C 26  |lution.@i(20,i,&|
00000980: 76 3D 7B 7D 29 40 70 4E  6F 77 20 79 6F 75 20 61  |v={})@pNow you a|
00000990: 72 65 20 72 65 61 64 79  20 74 6F 20 65 6E 74 65  |re ready to ente|
000009A0: 72 20 79 6F 75 72 20 61  6E 73 77 65 72 73 20 69  |r your answers i|
000009B0: 6E 20 74 68 65 20 67 72  69 64 2E 20 52 65 6D 65  |n the grid. Reme|
000009C0: 6D 62 65 72 20 74 68 65  20 71 75 65 73 74 69 6F  |mber the questio|
000009D0: 6E 2E 26 71 7B 7D 26 71  40 68 7B 7D 20 61 6E 64  |n.&q{}&q@h{} and|
000009E0: 20 7B 7D 20 74 69 6D 65  73 20 61 72 65 20 62 6F  | {} times are bo|
000009F0: 74 68 20 65 71 75 61 6C  20 74 6F 20 74 68 65 20  |th equal to the |
00000A00: 76 61 6C 75 65 20 6F 66  20 22 26 76 22 2E 40 68  |value of "&v".@h|
00000A10: 26 76 3D 7B 7D 20 2C 73  6F 20 7B 7D 40 69 28 7B  |&v={} ,so {}@i({|
00000A20: 7D 2C 69 2C 7B 7D 29 40  73 26 64 28 31 33 2C 7B  |},i,{})@s&d(13,{|
00000A30: 7D 29 40 72 43 48 45 43  4B 40 70 52 65 72 65 61  |})@rCHECK@pRerea|
00000A40: 64 20 74 68 65 20 70 72  6F 62 6C 65 6D 2E 20 43  |d the problem. C|
00000A50: 68 65 63 6B 20 79 6F 75  72 20 61 6E 73 77 65 72  |heck your answer|
00000A60: 73 2E 20 45 76 61 6C 75  61 74 65 20 74 68 65 20  |s. Evaluate the |
00000A70: 72 65 6D 61 69 6E 69 6E  67 20 65 78 70 72 65 73  |remaining expres|
00000A80: 73 69 6F 6E 73 20 69 6E  20 74 68 65 20 67 72 69  |sions in the gri|
00000A90: 64 2E 40 68 53 75 62 73  74 69 74 75 74 65 20 66  |d.@hSubstitute f|
00000AA0: 6F 72 20 22 26 76 22 20  69 6E 20 74 68 65 20 65  |or "&v" in the e|
00000AB0: 78 70 72 65 73 73 69 6F  6E 20 66 6F 72 20 7B 7D  |xpression for {}|
00000AC0: 20 64 69 73 74 61 6E 63  65 2E 20 54 68 65 6E 20  | distance. Then |
00000AD0: 63 61 6C 63 75 6C 61 74  65 20 74 68 65 20 72 65  |calculate the re|
00000AE0: 73 75 6C 74 2E 40 68 7B  7D 40 69 28 31 37 2C 69  |sult.@h{}@i(17,i|
00000AF0: 2C 7B 7D 29 40 68 53 75  62 73 74 69 74 75 74 65  |,{})@hSubstitute|
00000B00: 20 66 6F 72 20 22 26 76  22 20 69 6E 20 74 68 65  | for "&v" in the|
00000B10: 20 65 78 70 72 65 73 73  69 6F 6E 20 66 6F 72 20  | expression for |
00000B20: 7B 7D 20 64 69 73 74 61  6E 63 65 2E 20 54 68 65  |{} distance. The|
00000B30: 6E 20 63 61 6C 63 75 6C  61 74 65 20 74 68 65 20  |n calculate the |
00000B40: 72 65 73 75 6C 74 2E 40  68 7B 7D 2E 40 69 28 31  |result.@h{}.@i(1|
00000B50: 38 2C 69 2C 7B 7D 29 26  64 28 30 2C 43 68 65 63  |8,i,{})&d(0,Chec|
00000B60: 6B 20 79 6F 75 72 20 77  6F 72 6B 2E 20 54 68 65  |k your work. The|
00000B70: 20 73 75 6D 20 6F 66 20  7B 7D 20 64 69 73 74 61  | sum of {} dista|
00000B80: 6E 63 65 73 20 73 68 6F  75 6C 64 20 62 65 20 7B  |nces should be {|
00000B90: 7D 2E 20 47 65 74 20 72  65 61 64 79 20 66 6F 72  |}. Get ready for|
00000BA0: 20 61 20 6E 65 77 20 70  72 6F 62 6C 65 6D 2E 29  | a new problem.)|
00000BB0: 40 66 4A 61 6E 65 20 61  6E 64 20 41 6C 69 63 65  |@fJane and Alice|
00000BC0: 20 6C 65 66 74 20 4D 6F  6E 74 65 72 65 79 20 42  | left Monterey B|
00000BD0: 61 79 20 61 74 20 34 20  50 2E 4D 2E 20 4A 61 6E  |ay at 4 P.M. Jan|
00000BE0: 65 20 64 72 6F 76 65 20  6E 6F 72 74 68 20 61 74  |e drove north at|
00000BF0: 20 34 38 20 6D 69 2F 68  72 20 61 6E 64 20 41 6C  | 48 mi/hr and Al|
00000C00: 69 63 65 20 64 72 6F 76  65 20 73 6F 75 74 68 20  |ice drove south |
00000C10: 61 74 20 34 35 20 6D 69  2F 68 72 2E 20 48 6F 77  |at 45 mi/hr. How|
00000C20: 20 6C 6F 6E 67 20 64 69  64 20 69 74 20 74 61 6B  | long did it tak|
00000C30: 65 20 74 68 65 6D 20 74  6F 20 67 65 74 20 33 37  |e them to get 37|
00000C40: 32 20 6D 69 6C 65 73 20  61 70 61 72 74 3F 00 4A  |2 miles apart?.J|
00000C50: 61 6E 65 00 41 6C 69 63  65 00 4A 61 6E 65 20 64  |ane.Alice.Jane d|
00000C60: 72 6F 76 65 20 6E 6F 72  74 68 20 61 74 20 34 38  |rove north at 48|
00000C70: 20 6D 69 2F 68 72 20 61  6E 64 20 41 6C 69 63 65  | mi/hr and Alice|
00000C80: 20 64 72 6F 76 65 20 73  6F 75 74 68 20 61 74 20  | drove south at |
00000C90: 34 35 20 6D 69 2F 68 72  20 75 6E 74 69 6C 20 74  |45 mi/hr until t|
00000CA0: 68 65 79 20 77 65 72 65  20 33 37 32 20 6D 69 6C  |hey were 372 mil|
00000CB0: 65 73 20 61 70 61 72 74  2E 00 26 68 48 6F 77 20  |es apart..&hHow |
00000CC0: 6C 6F 6E 67 20 64 69 64  20 69 74 20 74 61 6B 65  |long did it take|
00000CD0: 20 74 68 65 6D 20 74 6F  20 67 65 74 20 33 37 32  | them to get 372|
00000CE0: 20 6D 69 6C 65 73 20 61  70 61 72 74 3F 26 68 00  | miles apart?&h.|
00000CF0: 6A 00 4A 61 6E 65 27 73  00 61 00 41 6C 69 63 65  |j.Jane's.a.Alice|
00000D00: 27 73 00 6A 00 61 00 64  72 69 76 65 00 33 37 32  |'s.j.a.drive.372|
00000D10: 20 6D 69 6C 65 73 00 60  44 6A 2B 44 61 20 3D 20  | miles.`Dj+Da = |
00000D20: 54 6F 74 61 6C 27 20 73  68 6F 77 73 20 74 68 61  |Total' shows tha|
00000D30: 74 20 74 68 65 20 73 75  6D 20 6F 66 20 74 68 65  |t the sum of the|
00000D40: 69 72 20 64 69 73 74 61  6E 63 65 73 20 77 69 6C  |ir distances wil|
00000D50: 6C 20 65 71 75 61 6C 20  33 37 32 20 6D 69 6C 65  |l equal 372 mile|
00000D60: 73 2E 00 44 6A 2B 44 61  20 3D 20 54 6F 74 61 6C  |s..Dj+Da = Total|
00000D70: 00 64 72 69 76 65 00 33  37 32 20 6D 69 6C 65 73  |.drive.372 miles|
00000D80: 00 60 44 6A 2B 44 61 20  3D 20 54 6F 74 61 6C 27  |.`Dj+Da = Total'|
00000D90: 20 73 68 6F 77 73 20 74  68 61 74 20 74 68 65 20  | shows that the |
00000DA0: 73 75 6D 20 6F 66 20 74  68 65 69 72 20 64 69 73  |sum of their dis|
00000DB0: 74 61 6E 63 65 73 20 77  69 6C 6C 20 65 71 75 61  |tances will equa|
00000DC0: 6C 20 33 37 32 20 6D 69  6C 65 73 2E 00 6D 69 6C  |l 372 miles..mil|
00000DD0: 65 73 20 70 65 72 20 68  6F 75 72 20 28 60 6D 69  |es per hour (`mi|
00000DE0: 2F 68 72 27 29 00 35 00  6D 69 2F 68 72 00 68 6F  |/hr').5.mi/hr.ho|
00000DF0: 75 72 73 20 28 60 68 72  27 29 00 32 00 68 72 00  |urs (`hr').2.hr.|
00000E00: 6D 69 6C 65 73 20 28 60  6D 69 27 29 00 32 00 6D  |miles (`mi').2.m|
00000E10: 69 00 26 68 4A 61 6E 65  20 64 72 6F 76 65 20 6E  |i.&hJane drove n|
00000E20: 6F 72 74 68 20 61 74 20  34 38 20 6D 69 2F 68 72  |orth at 48 mi/hr|
00000E30: 26 68 00 4A 61 6E 65 00  27 34 38 27 20 6D 69 2F  |&h.Jane.'48' mi/|
00000E40: 68 72 00 34 38 00 26 68  41 6C 69 63 65 20 64 72  |hr.48.&hAlice dr|
00000E50: 6F 76 65 20 73 6F 75 74  68 20 61 74 20 34 35 20  |ove south at 45 |
00000E60: 6D 69 2F 68 72 26 68 00  41 6C 69 63 65 00 60 34  |mi/hr&h.Alice.`4|
00000E70: 35 27 20 6D 69 2F 68 72  00 34 35 00 4A 61 6E 65  |5' mi/hr.45.Jane|
00000E80: 20 61 6E 64 20 41 6C 69  63 65 00 60 33 37 32 27  | and Alice.`372'|
00000E90: 20 6D 69 6C 65 73 00 33  37 32 00 67 69 72 6C 00  | miles.372.girl.|
00000EA0: 67 69 72 6C 73 27 00 4A  61 6E 65 27 73 00 41 6C  |girls'.Jane's.Al|
00000EB0: 69 63 65 20 64 72 69 76  65 73 00 4A 61 6E 65 00  |ice drives.Jane.|
00000EC0: 41 6C 69 63 65 27 73 00  67 69 72 6C 00 34 38 00  |Alice's.girl.48.|
00000ED0: 26 76 00 4A 61 6E 65 27  73 00 34 38 26 76 00 34  |&v.Jane's.48&v.4|
00000EE0: 35 00 26 76 00 41 6C 69  63 65 27 73 00 34 35 26  |5.&v.Alice's.45&|
00000EF0: 76 00 6A 00 61 00 6A 00  61 00 6A 00 34 38 26 76  |v.j.a.j.a.j.48&v|
00000F00: 00 61 00 34 35 26 76 00  33 37 32 00 4A 61 6E 65  |.a.45&v.372.Jane|
00000F10: 27 73 00 41 6C 69 63 65  27 73 00 34 38 26 76 20  |'s.Alice's.48&v |
00000F20: 20 20 20 20 20 5C 66 31  35 2B 20 20 20 20 34 35  |     \f15+    45|
00000F30: 26 76 20 20 20 20 20 20  20 20 5C 66 33 30 3D 20  |&v        \f30= |
00000F40: 20 33 37 32 00 34 38 26  76 2B 34 35 26 76 3D 33  | 372.48&v+45&v=3|
00000F50: 37 32 00 34 00 48 6F 77  20 6C 6F 6E 67 20 64 69  |72.4.How long di|
00000F60: 64 20 69 74 20 74 61 6B  65 20 74 68 65 6D 20 74  |d it take them t|
00000F70: 6F 20 67 65 74 20 33 37  32 20 6D 69 6C 65 73 20  |o get 372 miles |
00000F80: 61 70 61 72 74 3F 00 4A  61 6E 65 00 41 6C 69 63  |apart?.Jane.Alic|
00000F90: 65 27 73 00 34 00 4A 61  6E 65 20 64 72 6F 76 65  |e's.4.Jane drove|
00000FA0: 20 66 6F 72 20 60 34 27  20 68 6F 75 72 73 2E 00  | for `4' hours..|
00000FB0: 31 32 00 34 00 34 00 4A  61 6E 65 27 73 00 26 76  |12.4.4.Jane's.&v|
00000FC0: 20 3D 20 34 2C 20 61 6E  64 20 34 38 2A 34 20 3D  | = 4, and 48*4 =|
00000FD0: 20 60 31 39 32 27 00 31  39 32 00 41 6C 69 63 65  | `192'.192.Alice|
00000FE0: 27 73 00 26 76 20 3D 20  34 2C 20 61 6E 64 20 34  |'s.&v = 4, and 4|
00000FF0: 35 2A 34 20 3D 20 60 31  38 30 27 00 31 38 30 00  |5*4 = `180'.180.|
00001000: 4A 61 6E 65 27 73 20 61  6E 64 20 41 6C 69 63 65  |Jane's and Alice|
00001010: 27 73 00 33 37 32 00 40  66 4A 65 73 73 69 63 61  |'s.372.@fJessica|
00001020: 20 73 77 69 6D 73 20 32  35 20 79 64 2F 6D 69 6E  | swims 25 yd/min|
00001030: 20 61 6E 64 20 41 6D 61  6E 64 61 20 73 77 69 6D  | and Amanda swim|
00001040: 73 20 33 30 20 79 64 2F  6D 69 6E 2E 20 49 66 20  |s 30 yd/min. If |
00001050: 74 68 65 79 20 73 74 61  72 74 20 61 74 20 74 68  |they start at th|
00001060: 65 20 73 61 6D 65 20 73  70 6F 74 20 61 6E 64 20  |e same spot and |
00001070: 73 77 69 6D 20 69 6E 20  6F 70 70 6F 73 69 74 65  |swim in opposite|
00001080: 20 64 69 72 65 63 74 69  6F 6E 73 2C 20 68 6F 77  | directions, how|
00001090: 20 6C 6F 6E 67 20 77 69  6C 6C 20 69 74 20 74 61  | long will it ta|
000010A0: 6B 65 20 74 68 65 6D 20  74 6F 20 67 65 74 20 31  |ke them to get 1|
000010B0: 33 32 30 20 79 61 72 64  73 20 61 70 61 72 74 3F  |320 yards apart?|
000010C0: 00 4A 65 73 73 69 63 61  00 41 6D 61 6E 64 61 00  |.Jessica.Amanda.|
000010D0: 54 68 65 79 20 73 77 69  6D 20 61 74 20 64 69 66  |They swim at dif|
000010E0: 66 65 72 65 6E 74 20 72  61 74 65 73 20 69 6E 20  |ferent rates in |
000010F0: 6F 70 70 6F 73 69 74 65  20 64 69 72 65 63 74 69  |opposite directi|
00001100: 6F 6E 73 20 66 6F 72 20  74 68 65 20 73 61 6D 65  |ons for the same|
00001110: 20 6C 65 6E 67 74 68 20  6F 66 20 74 69 6D 65 2E  | length of time.|
00001120: 00 26 68 48 6F 77 20 6C  6F 6E 67 20 77 69 6C 6C  |.&hHow long will|
00001130: 20 69 74 20 74 61 6B 65  20 74 68 65 6D 20 74 6F  | it take them to|
00001140: 20 67 65 74 20 31 33 32  30 20 79 61 72 64 73 20  | get 1320 yards |
00001150: 61 70 61 72 74 3F 26 68  00 6A 00 4A 65 73 73 69  |apart?&h.j.Jessi|
00001160: 63 61 27 73 00 61 00 41  6D 61 6E 64 61 27 73 00  |ca's.a.Amanda's.|
00001170: 6A 00 61 00 73 77 69 6D  00 31 33 32 30 20 79 61  |j.a.swim.1320 ya|
00001180: 72 64 73 00 60 44 6A 2B  44 61 20 3D 20 54 6F 74  |rds.`Dj+Da = Tot|
00001190: 61 6C 27 20 73 68 6F 77  73 20 74 68 61 74 20 74  |al' shows that t|
000011A0: 68 65 20 74 6F 74 61 6C  20 64 69 73 74 61 6E 63  |he total distanc|
000011B0: 65 20 62 65 74 77 65 65  6E 20 74 68 65 6D 20 69  |e between them i|
000011C0: 73 20 74 68 65 20 73 75  6D 20 6F 66 20 74 68 65  |s the sum of the|
000011D0: 69 72 20 64 69 73 74 61  6E 63 65 73 2E 00 44 6A  |ir distances..Dj|
000011E0: 2B 44 61 20 3D 20 54 6F  74 61 6C 00 73 77 69 6D  |+Da = Total.swim|
000011F0: 00 31 33 32 30 20 79 61  72 64 73 00 60 44 6A 2B  |.1320 yards.`Dj+|
00001200: 44 61 20 3D 20 54 6F 74  61 6C 27 20 73 68 6F 77  |Da = Total' show|
00001210: 73 20 74 68 61 74 20 74  68 65 20 74 6F 74 61 6C  |s that the total|
00001220: 20 64 69 73 74 61 6E 63  65 20 62 65 74 77 65 65  | distance betwee|
00001230: 6E 20 74 68 65 6D 20 69  73 20 74 68 65 20 73 75  |n them is the su|
00001240: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
00001250: 6E 63 65 73 2E 00 60 79  64 2F 6D 69 6E 27 00 35  |nces..`yd/min'.5|
00001260: 00 79 64 2F 6D 69 6E 00  6D 69 6E 75 74 65 73 20  |.yd/min.minutes |
00001270: 28 60 6D 69 6E 27 29 00  33 00 6D 69 6E 00 79 61  |(`min').3.min.ya|
00001280: 72 64 73 20 28 60 79 64  27 29 00 32 00 79 64 00  |rds (`yd').2.yd.|
00001290: 26 68 4A 65 73 73 69 63  61 20 73 77 69 6D 73 20  |&hJessica swims |
000012A0: 32 35 20 79 64 2F 6D 69  6E 26 68 00 4A 65 73 73  |25 yd/min&h.Jess|
000012B0: 69 63 61 00 60 32 35 27  20 79 64 2F 6D 69 6E 00  |ica.`25' yd/min.|
000012C0: 32 35 00 26 68 41 6D 61  6E 64 61 20 73 77 69 6D  |25.&hAmanda swim|
000012D0: 73 20 33 30 20 79 64 2F  6D 69 6E 26 68 00 41 6D  |s 30 yd/min&h.Am|
000012E0: 61 6E 64 61 00 60 33 30  27 20 79 64 2F 6D 69 6E  |anda.`30' yd/min|
000012F0: 00 33 30 00 4A 65 73 73  69 63 61 20 61 6E 64 20  |.30.Jessica and |
00001300: 41 6D 61 6E 64 61 00 60  31 33 32 30 27 20 79 61  |Amanda.`1320' ya|
00001310: 72 64 73 00 31 33 32 30  00 67 69 72 6C 00 67 69  |rds.1320.girl.gi|
00001320: 72 6C 73 27 00 4A 65 73  73 69 63 61 27 73 00 41  |rls'.Jessica's.A|
00001330: 6D 61 6E 64 61 20 73 77  69 6D 73 00 4A 65 73 73  |manda swims.Jess|
00001340: 69 63 61 00 41 6D 61 6E  64 61 27 73 00 67 69 72  |ica.Amanda's.gir|
00001350: 6C 00 32 35 00 26 76 00  4A 65 73 73 69 63 61 27  |l.25.&v.Jessica'|
00001360: 73 00 32 35 26 76 00 33  30 00 26 76 00 41 6D 61  |s.25&v.30.&v.Ama|
00001370: 6E 64 61 27 73 00 33 30  26 76 00 6A 00 61 00 6A  |nda's.30&v.j.a.j|
00001380: 00 61 00 6A 00 32 35 26  76 00 61 00 33 30 26 76  |.a.j.25&v.a.30&v|
00001390: 00 31 33 32 30 00 4A 65  73 73 69 65 27 73 00 41  |.1320.Jessie's.A|
000013A0: 6D 61 6E 64 61 27 73 00  20 20 32 35 26 76 20 20  |manda's.  25&v  |
000013B0: 5C 66 31 35 2B 20 20 33  30 26 76 20 20 5C 66 33  |\f15+  30&v  \f3|
000013C0: 30 3D 20 20 31 33 32 30  00 32 35 26 76 2B 33 30  |0=  1320.25&v+30|
000013D0: 26 76 3D 31 33 32 30 00  32 34 00 48 6F 77 20 6C  |&v=1320.24.How l|
000013E0: 6F 6E 67 20 77 69 6C 6C  20 69 74 20 74 61 6B 65  |ong will it take|
000013F0: 20 74 68 65 6D 20 74 6F  20 67 65 74 20 31 33 32  | them to get 132|
00001400: 30 20 79 61 72 64 73 20  61 70 61 72 74 3F 00 4A  |0 yards apart?.J|
00001410: 65 73 73 69 63 61 00 41  6D 61 6E 64 61 27 73 00  |essica.Amanda's.|
00001420: 32 34 00 4A 65 73 73 69  63 61 20 73 77 61 6D 20  |24.Jessica swam |
00001430: 66 6F 72 20 60 32 34 27  20 6D 69 6E 75 74 65 73  |for `24' minutes|
00001440: 00 31 32 00 32 34 00 32  34 00 4A 65 73 73 69 63  |.12.24.24.Jessic|
00001450: 61 27 73 00 26 76 20 3D  20 32 34 2C 20 73 6F 20  |a's.&v = 24, so |
00001460: 32 35 26 76 20 3D 20 32  35 20 2A 20 32 34 20 3D  |25&v = 25 * 24 =|
00001470: 20 60 36 30 30 27 00 36  30 30 00 41 6D 61 6E 64  | `600'.600.Amand|
00001480: 61 27 73 00 26 76 20 3D  20 32 34 2C 20 73 6F 20  |a's.&v = 24, so |
00001490: 33 30 26 76 20 3D 20 33  30 20 2A 20 32 34 20 3D  |30&v = 30 * 24 =|
000014A0: 20 27 37 32 30 27 00 37  32 30 00 4A 65 73 73 69  | '720'.720.Jessi|
000014B0: 63 61 20 61 6E 64 20 41  6D 61 6E 64 61 27 73 00  |ca and Amanda's.|
000014C0: 31 33 32 30 00 40 66 41  6E 20 65 78 70 72 65 73  |1320.@fAn expres|
000014D0: 73 20 74 72 61 69 6E 20  6C 65 66 74 20 4B 61 6E  |s train left Kan|
000014E0: 73 61 73 20 43 69 74 79  20 67 6F 69 6E 67 20 73  |sas City going s|
000014F0: 6F 75 74 68 20 61 74 20  36 30 20 6D 69 2F 68 72  |outh at 60 mi/hr|
00001500: 2E 20 41 74 20 74 68 65  20 73 61 6D 65 20 74 69  |. At the same ti|
00001510: 6D 65 2C 20 61 20 6C 6F  63 61 6C 20 74 72 61 69  |me, a local trai|
00001520: 6E 20 6C 65 66 74 20 4B  61 6E 73 61 73 20 43 69  |n left Kansas Ci|
00001530: 74 79 20 67 6F 69 6E 67  20 6E 6F 72 74 68 20 61  |ty going north a|
00001540: 74 20 34 32 20 6D 69 2F  68 72 2E 20 49 6E 20 68  |t 42 mi/hr. In h|
00001550: 6F 77 20 6D 61 6E 79 20  68 6F 75 72 73 20 77 65  |ow many hours we|
00001560: 72 65 20 74 68 65 79 20  31 35 33 30 20 6D 69 6C  |re they 1530 mil|
00001570: 65 73 20 61 70 61 72 74  3F 00 45 78 70 72 65 73  |es apart?.Expres|
00001580: 73 00 4C 6F 63 61 6C 00  54 68 65 20 74 72 61 69  |s.Local.The trai|
00001590: 6E 73 20 68 65 61 64 65  64 20 69 6E 20 6F 70 70  |ns headed in opp|
000015A0: 6F 73 69 74 65 20 64 69  72 65 63 74 69 6F 6E 73  |osite directions|
000015B0: 20 61 74 20 64 69 66 66  65 72 65 6E 74 20 72 61  | at different ra|
000015C0: 74 65 73 2E 00 26 68 49  6E 20 68 6F 77 20 6D 61  |tes..&hIn how ma|
000015D0: 6E 79 20 68 6F 75 72 73  20 77 65 72 65 20 74 68  |ny hours were th|
000015E0: 65 79 20 31 35 33 30 20  6D 69 6C 65 73 20 61 70  |ey 1530 miles ap|
000015F0: 61 72 74 3F 26 68 00 65  00 45 78 70 72 65 73 73  |art?&h.e.Express|
00001600: 00 6C 00 4C 6F 63 61 6C  00 65 00 6C 00 74 72 61  |.l.Local.e.l.tra|
00001610: 76 65 6C 00 31 35 33 30  20 6D 69 6C 65 73 00 60  |vel.1530 miles.`|
00001620: 44 65 2B 44 6C 20 3D 20  54 6F 74 61 6C 27 20 73  |De+Dl = Total' s|
00001630: 68 6F 77 73 20 74 68 61  74 20 74 68 65 20 73 75  |hows that the su|
00001640: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
00001650: 6E 63 65 73 20 69 73 20  65 71 75 61 6C 20 74 6F  |nces is equal to|
00001660: 20 74 68 65 20 74 6F 74  61 6C 20 64 69 73 74 61  | the total dista|
00001670: 6E 63 65 2E 00 44 65 2B  64 6C 20 3D 20 54 6F 74  |nce..De+dl = Tot|
00001680: 61 6C 00 74 72 61 76 65  6C 00 31 35 33 30 00 60  |al.travel.1530.`|
00001690: 44 65 2B 44 6C 20 3D 20  54 6F 74 61 6C 27 20 73  |De+Dl = Total' s|
000016A0: 68 6F 77 73 20 74 68 61  74 20 74 68 65 20 73 75  |hows that the su|
000016B0: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
000016C0: 6E 63 65 73 20 69 73 20  65 71 75 61 6C 20 74 6F  |nces is equal to|
000016D0: 20 74 68 65 20 74 6F 74  61 6C 20 64 69 73 74 61  | the total dista|
000016E0: 6E 63 65 2E 00 60 6D 69  2F 68 72 27 00 34 00 6D  |nce..`mi/hr'.4.m|
000016F0: 69 2F 68 72 00 68 6F 75  72 73 20 28 60 68 72 27  |i/hr.hours (`hr'|
00001700: 29 00 32 00 68 72 00 6D  69 6C 65 73 20 28 60 6D  |).2.hr.miles (`m|
00001710: 69 27 29 00 32 00 6D 69  00 54 68 65 20 65 78 70  |i').2.mi.The exp|
00001720: 72 65 73 73 20 74 72 61  69 6E 20 74 72 61 76 65  |ress train trave|
00001730: 6C 73 20 61 74 20 26 68  36 30 20 6D 69 2F 68 72  |ls at &h60 mi/hr|
00001740: 26 68 00 74 68 65 20 65  78 70 72 65 73 73 20 74  |&h.the express t|
00001750: 72 61 69 6E 00 60 36 30  27 20 6D 69 2F 68 72 00  |rain.`60' mi/hr.|
00001760: 36 30 00 54 68 65 20 6C  6F 63 61 6C 20 74 72 61  |60.The local tra|
00001770: 69 6E 20 74 72 61 76 65  6C 73 20 61 74 20 60 34  |in travels at `4|
00001780: 32 27 20 6D 69 2F 68 72  00 74 68 65 20 6C 6F 63  |2' mi/hr.the loc|
00001790: 61 6C 20 74 72 61 69 6E  00 60 34 32 27 20 6D 69  |al train.`42' mi|
000017A0: 2F 68 72 00 34 32 00 74  68 65 20 65 78 70 72 65  |/hr.42.the expre|
000017B0: 73 73 20 61 6E 64 20 6C  6F 63 61 6C 20 74 72 61  |ss and local tra|
000017C0: 69 6E 73 00 60 31 35 33  30 27 20 6D 69 6C 65 73  |ins.`1530' miles|
000017D0: 00 31 35 33 30 00 74 72  61 69 6E 00 74 72 61 69  |.1530.train.trai|
000017E0: 6E 73 27 00 74 68 65 20  65 78 70 72 65 73 73 20  |ns'.the express |
000017F0: 74 72 61 69 6E 27 73 00  54 68 65 20 6C 6F 63 61  |train's.The loca|
00001800: 6C 20 74 72 61 69 6E 20  74 72 61 76 65 6C 73 00  |l train travels.|
00001810: 74 68 65 20 65 78 70 72  65 73 73 20 74 72 61 69  |the express trai|
00001820: 6E 00 74 68 65 20 6C 6F  63 61 6C 20 74 72 61 69  |n.the local trai|
00001830: 6E 27 73 00 74 72 61 69  6E 00 36 30 00 26 76 00  |n's.train.60.&v.|
00001840: 45 78 70 72 65 73 73 00  36 30 26 76 00 34 32 00  |Express.60&v.42.|
00001850: 26 76 00 4C 6F 63 61 6C  00 34 32 26 76 00 65 00  |&v.Local.42&v.e.|
00001860: 6C 00 65 00 6C 00 65 00  36 30 26 76 00 6C 00 34  |l.e.l.e.60&v.l.4|
00001870: 32 26 76 00 31 35 33 30  00 45 78 70 72 65 73 73  |2&v.1530.Express|
00001880: 00 4C 6F 63 61 6C 00 36  30 26 76 20 5C 66 31 35  |.Local.60&v \f15|
00001890: 2B 20 20 34 32 26 76 20  20 5C 66 33 30 3D 20 31  |+  42&v  \f30= 1|
000018A0: 35 33 30 00 36 30 26 76  2B 34 32 26 76 3D 31 35  |530.60&v+42&v=15|
000018B0: 33 30 00 31 35 00 49 6E  20 68 6F 77 20 6D 61 6E  |30.15.In how man|
000018C0: 79 20 68 6F 75 72 73 20  77 65 72 65 20 74 68 65  |y hours were the|
000018D0: 79 20 31 35 33 30 20 6D  69 6C 65 73 20 61 70 61  |y 1530 miles apa|
000018E0: 72 74 3F 00 54 68 65 20  65 78 70 72 65 73 73 00  |rt?.The express.|
000018F0: 6C 6F 63 61 6C 00 31 35  00 74 68 65 20 74 72 61  |local.15.the tra|
00001900: 69 6E 73 20 74 72 61 76  65 6C 6C 65 64 20 66 6F  |ins travelled fo|
00001910: 72 20 60 31 35 27 20 68  6F 75 72 73 2E 00 31 32  |r `15' hours..12|
00001920: 00 31 35 00 31 35 00 65  78 70 72 65 73 73 20 74  |.15.15.express t|
00001930: 72 61 69 6E 27 73 00 26  76 20 3D 20 31 35 2C 20  |rain's.&v = 15, |
00001940: 73 6F 20 36 30 20 2A 20  26 76 20 3D 20 36 30 20  |so 60 * &v = 60 |
00001950: 2A 20 31 35 20 3D 20 60  39 30 30 27 00 39 30 30  |* 15 = `900'.900|
00001960: 00 6C 6F 63 61 6C 20 74  72 61 69 6E 27 73 00 26  |.local train's.&|
00001970: 76 20 3D 20 31 35 2C 20  73 6F 20 34 32 20 2A 20  |v = 15, so 42 * |
00001980: 26 76 20 3D 20 34 32 20  2A 20 31 35 20 3D 20 60  |&v = 42 * 15 = `|
00001990: 36 33 30 27 00 36 33 30  00 74 68 65 20 74 72 61  |630'.630.the tra|
000019A0: 69 6E 73 27 00 31 35 33  30 00 40 66 41 20 72 6F  |ins'.1530.@fA ro|
000019B0: 62 69 6E 2C 20 66 6C 79  69 6E 67 20 35 20 6B 6D  |bin, flying 5 km|
000019C0: 2F 68 72 20 61 6E 64 20  61 20 62 6C 75 65 20 6A  |/hr and a blue j|
000019D0: 61 79 2C 20 66 6C 79 69  6E 67 20 37 20 6B 6D 2F  |ay, flying 7 km/|
000019E0: 68 72 2C 20 66 6C 79 20  69 6E 20 6F 70 70 6F 73  |hr, fly in oppos|
000019F0: 69 74 65 20 64 69 72 65  63 74 69 6F 6E 73 2E 20  |ite directions. |
00001A00: 48 6F 77 20 6C 6F 6E 67  20 77 69 6C 6C 20 69 74  |How long will it|
00001A10: 20 74 61 6B 65 20 74 68  65 6D 20 74 6F 20 67 65  | take them to ge|
00001A20: 74 20 33 20 6B 69 6C 6F  6D 65 74 65 72 73 20 61  |t 3 kilometers a|
00001A30: 70 61 72 74 3F 00 52 6F  62 69 6E 00 42 6C 75 65  |part?.Robin.Blue|
00001A40: 20 6A 61 79 00 54 68 65  79 20 66 6C 79 20 69 6E  | jay.They fly in|
00001A50: 20 6F 70 70 6F 73 69 74  65 20 64 69 72 65 63 74  | opposite direct|
00001A60: 69 6F 6E 73 20 66 6F 72  20 74 68 65 20 73 61 6D  |ions for the sam|
00001A70: 65 20 61 6D 6F 75 6E 74  20 6F 66 20 74 69 6D 65  |e amount of time|
00001A80: 20 75 6E 74 69 6C 20 74  68 65 79 20 61 72 65 20  | until they are |
00001A90: 33 20 6B 6D 2E 20 61 70  61 72 74 2E 00 26 68 48  |3 km. apart..&hH|
00001AA0: 6F 77 20 6C 6F 6E 67 20  77 69 6C 6C 20 69 74 20  |ow long will it |
00001AB0: 74 61 6B 65 20 74 68 65  6D 20 74 6F 20 67 65 74  |take them to get|
00001AC0: 20 33 20 6B 69 6C 6F 6D  65 74 65 72 73 20 61 70  | 3 kilometers ap|
00001AD0: 61 72 74 3F 26 68 00 72  00 52 6F 62 69 6E 27 73  |art?&h.r.Robin's|
00001AE0: 00 62 00 42 6C 75 65 20  6A 61 79 27 73 00 72 00  |.b.Blue jay's.r.|
00001AF0: 62 00 66 6C 79 00 33 20  6B 6D 2E 00 60 44 72 2B  |b.fly.3 km..`Dr+|
00001B00: 44 62 20 3D 20 54 6F 74  61 6C 27 20 73 68 6F 77  |Db = Total' show|
00001B10: 73 20 74 68 61 74 20 74  68 65 20 73 75 6D 20 6F  |s that the sum o|
00001B20: 66 20 74 68 65 20 62 69  72 64 27 73 20 64 69 73  |f the bird's dis|
00001B30: 74 61 6E 63 65 73 20 69  73 20 65 71 75 61 6C 20  |tances is equal |
00001B40: 74 6F 20 74 68 65 20 74  6F 74 61 6C 20 64 69 73  |to the total dis|
00001B50: 74 61 6E 63 65 2E 00 44  72 2B 44 62 20 3D 20 54  |tance..Dr+Db = T|
00001B60: 6F 74 61 6C 00 66 6C 79  00 33 20 6B 6D 2E 00 60  |otal.fly.3 km..`|
00001B70: 44 72 2B 44 62 20 3D 20  54 6F 74 61 6C 27 20 73  |Dr+Db = Total' s|
00001B80: 68 6F 77 73 20 74 68 61  74 20 74 68 65 20 73 75  |hows that the su|
00001B90: 6D 20 6F 66 20 74 68 65  20 62 69 72 64 27 73 20  |m of the bird's |
00001BA0: 64 69 73 74 61 6E 63 65  73 20 69 73 20 65 71 75  |distances is equ|
00001BB0: 61 6C 20 74 6F 20 74 68  65 20 74 6F 74 61 6C 20  |al to the total |
00001BC0: 64 69 73 74 61 6E 63 65  2E 00 60 6B 6D 2F 68 72  |distance..`km/hr|
00001BD0: 27 00 34 00 6B 6D 2F 68  72 00 68 6F 75 72 73 20  |'.4.km/hr.hours |
00001BE0: 28 60 68 72 27 29 00 32  00 68 72 00 6B 69 6C 6F  |(`hr').2.hr.kilo|
00001BF0: 6D 65 74 65 72 73 20 28  60 6B 6D 27 29 00 32 00  |meters (`km').2.|
00001C00: 6B 6D 00 54 68 65 20 72  6F 62 69 6E 20 66 6C 69  |km.The robin fli|
00001C10: 65 73 20 26 68 35 20 6B  6D 2F 68 72 26 68 00 72  |es &h5 km/hr&h.r|
00001C20: 6F 62 69 6E 00 60 35 27  20 6B 6D 2F 68 72 00 35  |obin.`5' km/hr.5|
00001C30: 00 54 68 65 20 62 6C 75  65 20 6A 61 79 20 66 6C  |.The blue jay fl|
00001C40: 69 65 73 20 26 68 37 20  6B 6D 2F 68 72 26 68 00  |ies &h7 km/hr&h.|
00001C50: 62 6C 75 65 20 6A 61 79  00 60 37 27 20 6B 6D 2F  |blue jay.`7' km/|
00001C60: 68 72 00 37 00 74 68 65  20 72 6F 62 69 6E 20 61  |hr.7.the robin a|
00001C70: 6E 64 20 74 68 65 20 62  6C 75 65 20 6A 61 79 00  |nd the blue jay.|
00001C80: 60 33 27 20 6B 69 6C 6F  6D 65 74 65 72 73 00 33  |`3' kilometers.3|
00001C90: 00 62 69 72 64 00 62 69  72 64 73 27 00 74 68 65  |.bird.birds'.the|
00001CA0: 20 72 6F 62 69 6E 27 73  00 54 68 65 20 62 6C 75  | robin's.The blu|
00001CB0: 65 20 6A 61 79 20 66 6C  69 65 73 00 74 68 65 20  |e jay flies.the |
00001CC0: 72 6F 62 69 6E 00 74 68  65 20 62 6C 75 65 20 6A  |robin.the blue j|
00001CD0: 61 79 27 73 00 62 69 72  64 00 35 00 26 76 00 72  |ay's.bird.5.&v.r|
00001CE0: 6F 62 69 6E 27 73 00 35  26 76 00 37 00 26 76 00  |obin's.5&v.7.&v.|
00001CF0: 62 6C 75 65 20 6A 61 79  27 73 00 37 26 76 00 72  |blue jay's.7&v.r|
00001D00: 00 62 00 72 00 62 00 72  00 35 20 2A 20 26 76 00  |.b.r.b.r.5 * &v.|
00001D10: 62 00 37 20 2A 20 26 76  00 33 00 52 6F 62 69 6E  |b.7 * &v.3.Robin|
00001D20: 27 73 00 42 6C 75 65 20  6A 27 73 00 35 26 76 20  |'s.Blue j's.5&v |
00001D30: 20 5C 66 31 35 2B 20 37  26 76 20 20 5C 66 33 30  | \f15+ 7&v  \f30|
00001D40: 3D 20 33 00 35 26 76 2B  37 26 76 3D 33 00 2E 32  |= 3.5&v+7&v=3..2|
00001D50: 35 00 48 6F 77 20 6C 6F  6E 67 20 77 69 6C 6C 20  |5.How long will |
00001D60: 69 74 20 74 61 6B 65 20  74 68 65 6D 20 74 6F 20  |it take them to |
00001D70: 67 65 74 20 33 20 6B 69  6C 6F 6D 65 74 65 72 73  |get 3 kilometers|
00001D80: 20 61 70 61 72 74 3F 00  54 68 65 20 72 6F 62 69  | apart?.The robi|
00001D90: 6E 27 73 00 74 68 65 20  62 6C 75 65 20 6A 61 79  |n's.the blue jay|
00001DA0: 27 73 00 2E 32 35 00 74  68 65 20 62 69 72 64 73  |'s..25.the birds|
00001DB0: 20 66 6C 65 77 20 60 2E  32 35 27 20 6F 72 20 60  | flew `.25' or `|
00001DC0: 31 2F 34 27 20 6F 66 20  61 6E 20 68 6F 75 72 2E  |1/4' of an hour.|
00001DD0: 00 31 32 00 2E 32 35 00  2E 32 35 00 74 68 65 20  |.12..25..25.the |
00001DE0: 72 6F 62 69 6E 27 73 00  26 76 20 3D 20 2E 32 35  |robin's.&v = .25|
00001DF0: 2C 20 73 6F 20 35 20 2A  20 26 76 20 3D 20 35 20  |, so 5 * &v = 5 |
00001E00: 2A 20 2E 32 35 20 3D 20  60 31 2E 32 35 27 00 31  |* .25 = `1.25'.1|
00001E10: 2E 32 35 00 74 68 65 20  62 6C 75 65 20 6A 61 79  |.25.the blue jay|
00001E20: 27 73 00 26 76 20 3D 20  2E 32 35 2C 20 73 6F 20  |'s.&v = .25, so |
00001E30: 37 20 2A 20 26 76 20 3D  20 37 20 2A 20 2E 32 35  |7 * &v = 7 * .25|
00001E40: 20 3D 20 60 31 2E 37 35  27 00 31 2E 37 35 00 74  | = `1.75'.1.75.t|
00001E50: 68 65 20 62 69 72 64 73  27 00 33 00 7C 20        |he birds'.3.|   |
 A            @Q{}@DG04&D(1,U/MEAS)&C(2,
{})&C(3,{})&D(4,TOT.)&D(5,RATE)&D(10,TIM
E)&D(15,DIST.)@RREAD@PREAD THE WHOLE PRO
BLEM. THINK: WHAT ARE THE FACTS?  WHAT I
S BEING ASKED? (PRESS ANY KEY TO CONTINU
E.)@HWHAT ARE THE FACTS? {}@HWHAT IS BEI
NG ASKED? {}@I(0) @RPLAN@PLET D{} = {} D
IST. AND D{} = {} DIST. WRITE AN EQUATIO
N TO RELATE D{} AND D{} TO THE TOTAL DIS
T.@HTHEY {} IN OPPOSITE DIRECTIONS FOR T
HE SAME LENGTH OF TIME UNTIL THEY ARE {}
 APART.@H{}@I(20,C0, )@PONE ANSWER IS `{
}'. CHANGE YOUR ANSWER IF IT IS NOT EQUI
VALENT. (PRESS RETURN)@HTHEY {} IN OPPOS
ITE DIRECTIONS FOR THE SAME LENGTH OF TI
ME UNTIL THEY ARE {} APART.@H{}@I(20,C0,
 )@RDATA ENTRY@PFILL IN THE UNITS BY WHI
CH RATE, TIME AND DISTANCE ARE MEASURED.
 (USE ABBREVIATED FORM.)@HRATE OF SPEED 
IS COMMONLY MEASURED IN MILES PER HOUR(M
I/HR), METERS PER MINUTE(M/MIN), ETC.@HT
HE RATE OF SPEED IN THIS PROBLEM IS MEAS
URED IN {}.@I(6,C{},{})@HTIME IS COMMONL
Y MEASURED IN SECONDS (SEC), MINUTES (MI
N), HOURS (HR), DAYS (DA), ETC.@HTIME IN
 THIS PROBLEM IS MEASURED IN {}.@I(11,C{
},{})@HDISTANCE IS COMMONLY MEASURED IN 
FEET (FT), YARDS (YD), METERS (M), MILES
 (MI), KILOMETERS (KM), ETC.@HDISTANCE I
N THIS PROBLEM, IS MEASURED IN {}.@I(16,
C{},{})@PENTER THE FACTS FROM THE PROBLE
M INTO THE GRID.@H{}.@HTHE RATE OF SPEED
 FOR {} IS {}.@I(7,I,{})@H{}.@HTHE RATE 
OF SPEED FOR {} IS {}.@I(8,I,{})@HENTER 
THE DISTANCE BETWEEN {}.@HTHEY ARE {} AP
ART.@I(19,I,{})@PUSE A VARIABLE TO REPRE
SENT THE AMOUNT OF TIME EACH {} TRAVELS.
@HUSE THE SAME VARIABLE TO REPRESENT BOT
H {} TIME.@HUSE A VARIBLE, SUCH AS `T' T
O REPRESENT {} TIME.@I(12,I,&V)@H{} FOR 
THE SAME AMOUNT OF TIME AS {}.@HUSE THE 
SAME VARIABLE, `&V' TO REPRESENT {} TIME
.@I(13,I,&V)@RPARTS@PWRITE AN EXPRESSION
 TO REPRESENT THE DISTANCE TRAVELLED BY 
EACH {}.@HRATE*TIME = DISTANCE@HRATE  \F
06*  \F08TIME  \F14= DISTANCE \N`{}  \F0
6*  \F08{}' \F14= {} DISTANCE@I(17,I,{})
@HRATE*TIME = DISTANCE@HRATE  \F06*  \F0
8TIME \F14= DISTANCE \N`{}  \F06*  \F08{
}'  \F14= {} DISTANCE@I(18,I,{})@RWHOLE&
D(20, )@PSUBSTITUTE YOUR EXPRESSIONS FOR
 D{}, D{} AND TOTAL IN THE EQUATION: \N 
  D{}+D{} = TOTAL@HD{}={}, D{}={} AND TO
TAL={}.@H{} DIST. \F15+{} DIST. \F30= TO
TAL \N  `{}'@I(20,I,{})@S@RCOMPUTE @PSOL
VE THE EQUATION FOR "&V". USE PAPER AND 
PENCIL AND ENTER THE FINAL EQUATION, OR 
USE THE CALCULATOR.@HISOLATE "&V" ON ONE
 SIDE OF THE EQUATION.@HTHE CALCULATOR S
OLVES EQUATIONS FOR YOU AND DISPLAYS THE
 STEPS IN THE SOLUTION.@I(20,I,&V={})@PN
OW YOU ARE READY TO ENTER YOUR ANSWERS I
N THE GRID. REMEMBER THE QUESTION.&Q{}&Q
@H{} AND {} TIMES ARE BOTH EQUAL TO THE 
VALUE OF "&V".@H&V={} ,SO {}@I({},I,{})@
S&D(13,{})@RCHECK@PREREAD THE PROBLEM. C
HECK YOUR ANSWERS. EVALUATE THE REMAININ
G EXPRESSIONS IN THE GRID.@HSUBSTITUTE F
OR "&V" IN THE EXPRESSION FOR {} DISTANC
E. THEN CALCULATE THE RESULT.@H{}@I(17,I
,{})@HSUBSTITUTE FOR "&V" IN THE EXPRESS
ION FOR {} DISTANCE. THEN CALCULATE THE 
RESULT.@H{}.@I(18,I,{})&D(0,CHECK YOUR W
ORK. THE SUM OF {} DISTANCES SHOULD BE {
}. GET READY FOR A NEW PROBLEM.)@FJANE A
ND ALICE LEFT MONTEREY BAY AT 4 P.M. JAN
E DROVE NORTH AT 48 MI/HR AND ALICE DROV
E SOUTH AT 45 MI/HR. HOW LONG DID IT TAK
E THEM TO GET 372 MILES APART?.JANE.ALIC
E.JANE DROVE NORTH AT 48 MI/HR AND ALICE
 DROVE SOUTH AT 45 MI/HR UNTIL THEY WERE
 372 MILES APART..&HHOW LONG DID IT TAKE
 THEM TO GET 372 MILES APART?&H.J.JANE'S
.A.ALICE'S.J.A.DRIVE.372 MILES.`DJ+DA = 
TOTAL' SHOWS THAT THE SUM OF THEIR DISTA
NCES WILL EQUAL 372 MILES..DJ+DA = TOTAL
.DRIVE.372 MILES.`DJ+DA = TOTAL' SHOWS T
HAT THE SUM OF THEIR DISTANCES WILL EQUA
L 372 MILES..MILES PER HOUR (`MI/HR').5.
MI/HR.HOURS (`HR').2.HR.MILES (`MI').2.M
I.&HJANE DROVE NORTH AT 48 MI/HR&H.JANE.
'48' MI/HR.48.&HALICE DROVE SOUTH AT 45 
MI/HR&H.ALICE.`45' MI/HR.45.JANE AND ALI
CE.`372' MILES.372.GIRL.GIRLS'.JANE'S.AL
ICE DRIVES.JANE.ALICE'S.GIRL.48.&V.JANE'
S.48&V.45.&V.ALICE'S.45&V.J.A.J.A.J.48&V
.A.45&V.372.JANE'S.ALICE'S.48&V      \F1
5+    45&V        \F30=  372.48&V+45&V=3
72.4.HOW LONG DID IT TAKE THEM TO GET 37
2 MILES APART?.JANE.ALICE'S.4.JANE DROVE
 FOR `4' HOURS..12.4.4.JANE'S.&V = 4, AN
D 48*4 = `192'.192.ALICE'S.&V = 4, AND 4
5*4 = `180'.180.JANE'S AND ALICE'S.372.@
FJESSICA SWIMS 25 YD/MIN AND AMANDA SWIM
S 30 YD/MIN. IF THEY START AT THE SAME S
POT AND SWIM IN OPPOSITE DIRECTIONS, HOW
 LONG WILL IT TAKE THEM TO GET 1320 YARD
S APART?.JESSICA.AMANDA.THEY SWIM AT DIF
FERENT RATES IN OPPOSITE DIRECTIONS FOR 
THE SAME LENGTH OF TIME..&HHOW LONG WILL
 IT TAKE THEM TO GET 1320 YARDS APART?&H
.J.JESSICA'S.A.AMANDA'S.J.A.SWIM.1320 YA
RDS.`DJ+DA = TOTAL' SHOWS THAT THE TOTAL
 DISTANCE BETWEEN THEM IS THE SUM OF THE
IR DISTANCES..DJ+DA = TOTAL.SWIM.1320 YA
RDS.`DJ+DA = TOTAL' SHOWS THAT THE TOTAL
 DISTANCE BETWEEN THEM IS THE SUM OF THE
IR DISTANCES..`YD/MIN'.5.YD/MIN.MINUTES 
(`MIN').3.MIN.YARDS (`YD').2.YD.&HJESSIC
A SWIMS 25 YD/MIN&H.JESSICA.`25' YD/MIN.
25.&HAMANDA SWIMS 30 YD/MIN&H.AMANDA.`30
' YD/MIN.30.JESSICA AND AMANDA.`1320' YA
RDS.1320.GIRL.GIRLS'.JESSICA'S.AMANDA SW
IMS.JESSICA.AMANDA'S.GIRL.25.&V.JESSICA'
S.25&V.30.&V.AMANDA'S.30&V.J.A.J.A.J.25&
V.A.30&V.1320.JESSIE'S.AMANDA'S.  25&V  
\F15+  30&V  \F30=  1320.25&V+30&V=1320.
24.HOW LONG WILL IT TAKE THEM TO GET 132
0 YARDS APART?.JESSICA.AMANDA'S.24.JESSI
CA SWAM FOR `24' MINUTES.12.24.24.JESSIC
A'S.&V = 24, SO 25&V = 25 * 24 = `600'.6
00.AMANDA'S.&V = 24, SO 30&V = 30 * 24 =
 '720'.720.JESSICA AND AMANDA'S.1320.@FA
N EXPRESS TRAIN LEFT KANSAS CITY GOING S
OUTH AT 60 MI/HR. AT THE SAME TIME, A LO
CAL TRAIN LEFT KANSAS CITY GOING NORTH A
T 42 MI/HR. IN HOW MANY HOURS WERE THEY 
1530 MILES APART?.EXPRESS.LOCAL.THE TRAI
NS HEADED IN OPPOSITE DIRECTIONS AT DIFF
ERENT RATES..&HIN HOW MANY HOURS WERE TH
EY 1530 MILES APART?&H.E.EXPRESS.L.LOCAL
.E.L.TRAVEL.1530 MILES.`DE+DL = TOTAL' S
HOWS THAT THE SUM OF THEIR DISTANCES IS 
EQUAL TO THE TOTAL DISTANCE..DE+DL = TOT
AL.TRAVEL.1530.`DE+DL = TOTAL' SHOWS THA
T THE SUM OF THEIR DISTANCES IS EQUAL TO
 THE TOTAL DISTANCE..`MI/HR'.4.MI/HR.HOU
RS (`HR').2.HR.MILES (`MI').2.MI.THE EXP
RESS TRAIN TRAVELS AT &H60 MI/HR&H.THE E
XPRESS TRAIN.`60' MI/HR.60.THE LOCAL TRA
IN TRAVELS AT `42' MI/HR.THE LOCAL TRAIN
.`42' MI/HR.42.THE EXPRESS AND LOCAL TRA
INS.`1530' MILES.1530.TRAIN.TRAINS'.THE 
EXPRESS TRAIN'S.THE LOCAL TRAIN TRAVELS.
THE EXPRESS TRAIN.THE LOCAL TRAIN'S.TRAI
N.60.&V.EXPRESS.60&V.42.&V.LOCAL.42&V.E.
L.E.L.E.60&V.L.42&V.1530.EXPRESS.LOCAL.6
0&V \F15+  42&V  \F30= 1530.60&V+42&V=15
30.15.IN HOW MANY HOURS WERE THEY 1530 M
ILES APART?.THE EXPRESS.LOCAL.15.THE TRA
INS TRAVELLED FOR `15' HOURS..12.15.15.E
XPRESS TRAIN'S.&V = 15, SO 60 * &V = 60 
* 15 = `900'.900.LOCAL TRAIN'S.&V = 15, 
SO 42 * &V = 42 * 15 = `630'.630.THE TRA
INS'.1530.@FA ROBIN, FLYING 5 KM/HR AND 
A BLUE JAY, FLYING 7 KM/HR, FLY IN OPPOS
ITE DIRECTIONS. HOW LONG WILL IT TAKE TH
EM TO GET 3 KILOMETERS APART?.ROBIN.BLUE
 JAY.THEY FLY IN OPPOSITE DIRECTIONS FOR
 THE SAME AMOUNT OF TIME UNTIL THEY ARE 
3 KM. APART..&HHOW LONG WILL IT TAKE THE
M TO GET 3 KILOMETERS APART?&H.R.ROBIN'S
.B.BLUE JAY'S.R.B.FLY.3 KM..`DR+DB = TOT
AL' SHOWS THAT THE SUM OF THE BIRD'S DIS
TANCES IS EQUAL TO THE TOTAL DISTANCE..D
R+DB = TOTAL.FLY.3 KM..`DR+DB = TOTAL' S
HOWS THAT THE SUM OF THE BIRD'S DISTANCE
S IS EQUAL TO THE TOTAL DISTANCE..`KM/HR
'.4.KM/HR.HOURS (`HR').2.HR.KILOMETERS (
`KM').2.KM.THE ROBIN FLIES &H5 KM/HR&H.R
OBIN.`5' KM/HR.5.THE BLUE JAY FLIES &H7 
KM/HR&H.BLUE JAY.`7' KM/HR.7.THE ROBIN A
ND THE BLUE JAY.`3' KILOMETERS.3.BIRD.BI
RDS'.THE ROBIN'S.THE BLUE JAY FLIES.THE 
ROBIN.THE BLUE JAY'S.BIRD.5.&V.ROBIN'S.5
&V.7.&V.BLUE JAY'S.7&V.R.B.R.B.R.5 * &V.
B.7 * &V.3.ROBIN'S.BLUE J'S.5&V  \F15+ 7
&V  \F30= 3.5&V+7&V=3..25.HOW LONG WILL 
IT TAKE THEM TO GET 3 KILOMETERS APART?.
THE ROBIN'S.THE BLUE JAY'S..25.THE BIRDS
 FLEW `.25' OR `1/4' OF AN HOUR..12..25.
.25.THE ROBIN'S.&V = .25, SO 5 * &V = 5 
* .25 = `1.25'.1.25.THE BLUE JAY'S.&V = 
.25, SO 7 * &V = 7 * .25 = `1.75'.1.75.T
HE BIRDS'.3.| 
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL