MIXT3L2
FILE INFORMATION
FILENAME(S): MIXT3L2
FILE TYPE(S): PRG
FILE SIZE: 4.5K
FIRST SEEN: 2025-10-19 22:48:55
APPEARS ON: 1 disk(s)
FILE HASH
e489bdf494c48a2cf0b0b34487fce03e9d9304033a39818410c56c3f0c4a4639
FOUND ON DISKS (1 DISKS)
| DISK TITLE | FILENAME | FILE TYPE | COLLECTION | TRACK | SECTOR | ACTIONS |
|---|---|---|---|---|---|---|
| HHM 100785 44S1 | MIXT3L2 | PRG | Radd Maxx | 28 | 6 | DOWNLOAD FILE |
FILE CONTENT & ANALYSIS
00000000: 20 41 40 71 7B 7D 3F 40 64 67 30 39 26 63 28 31 | A@q{}?@dg09&c(1|
00000010: 2C 7B 7D 29 26 63 28 32 2C 7B 7D 29 26 63 28 33 |,{})&c(2,{})&c(3|
00000020: 2C 4D 69 78 29 26 64 28 34 2C 50 72 69 63 65 2F |,Mix)&d(4,Price/|
00000030: 75 6E 69 74 29 26 64 28 38 2C 23 20 6F 66 20 7B |unit)&d(8,# of {|
00000040: 7D 29 26 64 28 31 32 2C 56 61 6C 75 65 29 40 72 |})&d(12,Value)@r|
00000050: 52 45 41 44 40 70 52 65 61 64 20 74 68 65 20 77 |READ@pRead the w|
00000060: 68 6F 6C 65 20 70 72 6F 62 6C 65 6D 2E 20 54 68 |hole problem. Th|
00000070: 69 6E 6B 3A 20 57 68 61 74 20 61 72 65 20 74 68 |ink: What are th|
00000080: 65 20 66 61 63 74 73 3F 20 57 68 61 74 20 69 73 |e facts? What is|
00000090: 20 62 65 69 6E 67 20 61 73 6B 65 64 3F 20 28 50 | being asked? (P|
000000A0: 72 65 73 73 20 61 6E 79 20 6B 65 79 20 74 6F 20 |ress any key to |
000000B0: 63 6F 6E 74 69 6E 75 65 2E 29 40 68 57 68 61 74 |continue.)@hWhat|
000000C0: 20 61 72 65 20 74 68 65 20 66 61 63 74 73 3F 20 | are the facts? |
000000D0: 7B 7D 40 68 57 68 61 74 20 69 73 20 62 65 69 6E |{}@hWhat is bein|
000000E0: 67 20 61 73 6B 65 64 3F 20 7B 7D 40 69 28 30 29 |g asked? {}@i(0)|
000000F0: 40 72 44 41 54 41 20 45 4E 54 52 59 40 70 46 69 |@rDATA ENTRY@pFi|
00000100: 6C 6C 20 69 6E 20 74 68 65 20 63 68 61 72 74 20 |ll in the chart |
00000110: 2D 2D 20 73 74 61 72 74 20 77 69 74 68 20 74 68 |-- start with th|
00000120: 65 20 70 72 69 63 65 20 70 65 72 20 75 6E 69 74 |e price per unit|
00000130: 2E 20 28 45 78 70 72 65 73 73 20 69 6E 20 63 65 |. (Express in ce|
00000140: 6E 74 73 29 2E 40 68 57 68 61 74 20 69 73 20 74 |nts).@hWhat is t|
00000150: 68 65 20 70 72 69 63 65 20 70 65 72 20 7B 7D 3F |he price per {}?|
00000160: 40 68 54 68 65 20 70 72 69 63 65 20 70 65 72 20 |@hThe price per |
00000170: 7B 7D 27 2E 40 69 28 35 2C 69 2C 7B 7D 29 26 64 |{}'.@i(5,i,{})&d|
00000180: 28 35 2C 7B 7D 29 40 68 57 68 61 74 20 69 73 20 |(5,{})@hWhat is |
00000190: 74 68 65 20 70 72 69 63 65 20 70 65 72 20 7B 7D |the price per {}|
000001A0: 3F 40 68 54 68 65 20 70 72 69 63 65 20 70 65 72 |?@hThe price per|
000001B0: 20 7B 7D 2E 40 69 28 36 2C 69 2C 7B 7D 29 26 64 | {}.@i(6,i,{})&d|
000001C0: 28 36 2C 7B 7D 29 40 68 57 68 61 74 20 69 73 20 |(6,{})@hWhat is |
000001D0: 74 68 65 20 70 72 69 63 65 20 70 65 72 20 7B 7D |the price per {}|
000001E0: 20 6F 66 20 74 68 65 20 6D 69 78 3F 40 68 54 68 | of the mix?@hTh|
000001F0: 65 20 70 72 69 63 65 20 70 65 72 20 7B 7D 2E 40 |e price per {}.@|
00000200: 69 28 37 2C 69 2C 7B 7D 29 40 70 45 6E 74 65 72 |i(7,i,{})@pEnter|
00000210: 20 74 68 65 20 66 61 63 74 20 66 72 6F 6D 20 74 | the fact from t|
00000220: 68 65 20 70 72 6F 62 6C 65 6D 20 69 6E 74 6F 20 |he problem into |
00000230: 74 68 65 20 63 68 61 72 74 2E 40 68 26 68 7B 7D |the chart.@h&h{}|
00000240: 26 68 2E 40 68 7B 7D 2E 40 69 28 7B 7D 2C 69 2C |&h.@h{}.@i({},i,|
00000250: 7B 7D 29 40 70 52 65 70 72 65 73 65 6E 74 20 74 |{})@pRepresent t|
00000260: 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 20 |he number of {} |
00000270: 69 6E 20 74 68 65 20 6D 69 78 2E 40 68 43 68 6F |in the mix.@hCho|
00000280: 6F 73 65 20 61 20 76 61 72 69 61 62 6C 65 20 74 |ose a variable t|
00000290: 6F 20 72 65 70 72 65 73 65 6E 74 20 74 68 65 20 |o represent the |
000002A0: 6E 75 6D 62 65 72 20 7B 7D 2E 40 68 45 6E 74 65 |number {}.@hEnte|
000002B0: 72 20 61 20 6C 65 74 74 65 72 2C 20 73 75 63 68 |r a letter, such|
000002C0: 20 61 73 20 7B 7D 2E 40 69 28 7B 7D 2C 69 2C 26 | as {}.@i({},i,&|
000002D0: 76 29 40 70 52 65 70 72 65 73 65 6E 74 20 74 68 |v)@pRepresent th|
000002E0: 65 20 77 65 69 67 68 74 20 6F 66 20 74 68 65 20 |e weight of the |
000002F0: 6D 69 78 20 69 6E 20 74 65 72 6D 73 20 6F 66 20 |mix in terms of |
00000300: 22 26 76 22 2E 40 68 54 68 65 20 73 75 6D 20 6F |"&v".@hThe sum o|
00000310: 66 20 74 68 65 20 77 65 69 67 68 74 73 20 6F 66 |f the weights of|
00000320: 20 74 68 65 20 7B 7D 20 77 69 6C 6C 20 65 71 75 | the {} will equ|
00000330: 61 6C 20 74 68 65 20 77 65 69 67 68 74 20 6F 66 |al the weight of|
00000340: 20 74 68 65 20 6D 69 78 74 75 72 65 2E 20 40 68 | the mixture. @h|
00000350: 7B 7D 2E 40 69 28 31 31 2C 69 2C 7B 7D 29 40 72 |{}.@i(11,i,{})@r|
00000360: 50 41 52 54 53 40 70 57 72 69 74 65 20 61 6E 20 |PARTS@pWrite an |
00000370: 65 78 70 72 65 73 73 69 6F 6E 20 74 6F 20 72 65 |expression to re|
00000380: 70 72 65 73 65 6E 74 20 74 68 65 20 76 61 6C 75 |present the valu|
00000390: 65 20 6F 66 20 65 61 63 68 20 6F 66 20 74 68 65 |e of each of the|
000003A0: 20 7B 7D 2E 40 68 4D 75 6C 74 69 70 6C 79 20 74 | {}.@hMultiply t|
000003B0: 68 65 20 70 72 69 63 65 20 70 65 72 20 75 6E 69 |he price per uni|
000003C0: 74 20 62 79 20 74 68 65 20 6E 75 6D 62 65 72 20 |t by the number |
000003D0: 6F 66 20 7B 7D 2E 40 68 70 72 69 63 65 20 70 65 |of {}.@hprice pe|
000003E0: 72 20 7B 7D 20 5C 66 31 37 2A 20 23 20 6F 66 20 |r {} \f17* # of |
000003F0: 7B 7D 5C 66 33 30 3D 20 76 61 6C 75 65 20 5C 6E |{}\f30= value \n|
00000400: 20 20 20 60 20 7B 7D 20 20 20 20 20 20 20 20 20 | ` {} |
00000410: 5C 66 31 37 2A 20 20 20 20 7B 7D 20 27 20 20 20 |\f17* {} ' |
00000420: 20 5C 66 33 30 3D 20 76 61 6C 75 65 40 69 28 31 | \f30= value@i(1|
00000430: 33 2C 69 2C 7B 7D 29 40 68 4E 6F 77 20 6D 75 6C |3,i,{})@hNow mul|
00000440: 74 69 70 6C 79 20 74 68 65 20 70 72 69 63 65 20 |tiply the price |
00000450: 70 65 72 20 75 6E 69 74 20 62 79 20 74 68 65 20 |per unit by the |
00000460: 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 2E 40 68 70 |number of {}.@hp|
00000470: 72 69 63 65 20 70 65 72 20 7B 7D 5C 66 31 37 2A |rice per {}\f17*|
00000480: 20 23 20 6F 66 20 7B 7D 5C 66 33 30 3D 20 76 61 | # of {}\f30= va|
00000490: 6C 75 65 20 5C 6E 20 60 20 7B 7D 20 20 20 20 20 |lue \n ` {} |
000004A0: 20 20 20 20 20 5C 66 31 37 2A 20 20 20 7B 7D 20 | \f17* {} |
000004B0: 27 20 20 20 20 20 5C 66 33 30 3D 20 76 61 6C 75 |' \f30= valu|
000004C0: 65 40 69 28 31 34 2C 69 2C 7B 7D 29 40 68 4D 75 |e@i(14,i,{})@hMu|
000004D0: 6C 74 69 70 6C 79 20 74 68 65 20 70 72 69 63 65 |ltiply the price|
000004E0: 20 70 65 72 20 75 6E 69 74 20 62 79 20 74 68 65 | per unit by the|
000004F0: 20 6E 75 6D 62 65 72 20 6F 66 20 7B 7D 20 69 6E | number of {} in|
00000500: 20 74 68 65 20 6D 69 78 2E 40 68 70 72 69 63 65 | the mix.@hprice|
00000510: 20 70 65 72 20 7B 7D 20 5C 66 31 37 2A 20 23 20 | per {} \f17* # |
00000520: 6F 66 20 7B 7D 20 20 5C 66 33 30 3D 20 76 61 6C |of {} \f30= val|
00000530: 75 65 20 5C 6E 20 20 20 20 60 20 7B 7D 20 20 20 |ue \n ` {} |
00000540: 20 20 20 20 5C 66 31 37 2A 20 20 20 7B 7D 20 27 | \f17* {} '|
00000550: 20 5C 66 33 30 3D 20 76 61 6C 75 65 40 69 28 31 | \f30= value@i(1|
00000560: 35 2C 69 2C 7B 7D 29 40 72 57 48 4F 4C 45 40 70 |5,i,{})@rWHOLE@p|
00000570: 55 73 65 20 74 68 65 20 74 61 62 6C 65 20 74 6F |Use the table to|
00000580: 20 77 72 69 74 65 20 61 6E 20 65 71 75 61 74 69 | write an equati|
00000590: 6F 6E 20 74 6F 20 72 65 6C 61 74 65 20 74 68 65 |on to relate the|
000005A0: 20 70 61 72 74 73 20 28 7B 7D 29 20 74 6F 20 74 | parts ({}) to t|
000005B0: 68 65 20 77 68 6F 6C 65 20 28 4D 69 78 29 2E 40 |he whole (Mix).@|
000005C0: 68 28 7B 7D 20 76 61 6C 29 20 2B 20 28 7B 7D 20 |h({} val) + ({} |
000005D0: 76 61 6C 29 20 3D 20 54 6F 74 61 6C 20 76 61 6C |val) = Total val|
000005E0: 40 68 7B 7D 40 69 28 31 36 2C 69 2C 7B 7D 29 40 |@h{}@i(16,i,{})@|
000005F0: 73 40 72 43 4F 4D 50 55 54 45 40 70 53 6F 6C 76 |s@rCOMPUTE@pSolv|
00000600: 65 20 74 68 65 20 65 71 75 61 74 69 6F 6E 20 66 |e the equation f|
00000610: 6F 72 20 22 26 76 22 2E 20 55 73 65 20 70 65 6E |or "&v". Use pen|
00000620: 63 69 6C 20 61 6E 64 20 70 61 70 65 72 2C 20 6F |cil and paper, o|
00000630: 72 20 75 73 65 20 74 68 65 20 43 61 6C 63 75 6C |r use the Calcul|
00000640: 61 74 6F 72 2E 40 68 49 73 6F 6C 61 74 65 20 22 |ator.@hIsolate "|
00000650: 26 76 22 20 6F 6E 20 6F 6E 65 20 73 69 64 65 20 |&v" on one side |
00000660: 6F 66 20 74 68 65 20 65 71 75 61 74 69 6F 6E 2E |of the equation.|
00000670: 40 68 54 68 65 20 43 61 6C 63 75 6C 61 74 6F 72 |@hThe Calculator|
00000680: 20 73 6F 6C 76 65 73 20 65 71 75 61 74 69 6F 6E | solves equation|
00000690: 73 20 66 6F 72 20 79 6F 75 20 61 6E 64 20 64 69 |s for you and di|
000006A0: 73 70 6C 61 79 73 20 74 68 65 20 73 74 65 70 73 |splays the steps|
000006B0: 20 69 6E 20 74 68 65 20 73 6F 6C 75 74 69 6F 6E | in the solution|
000006C0: 2E 40 69 28 31 36 2C 69 2C 7B 7D 29 40 70 4E 6F |.@i(16,i,{})@pNo|
000006D0: 77 20 66 69 6C 6C 20 69 6E 20 74 68 65 20 61 6E |w fill in the an|
000006E0: 73 77 65 72 28 73 29 20 74 6F 20 74 68 65 20 70 |swer(s) to the p|
000006F0: 72 6F 62 6C 65 6D 2E 20 52 65 6D 65 6D 62 65 72 |roblem. Remember|
00000700: 20 74 68 65 20 71 75 65 73 74 69 6F 6E 3A 20 26 | the question: &|
00000710: 71 7B 7D 26 71 26 77 28 31 36 29 40 68 7B 7D 2E |q{}&q&w(16)@h{}.|
00000720: 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B 7D 29 40 |@h{}@i({},i,{})@|
00000730: 73 40 72 43 48 45 43 4B 40 70 52 65 72 65 61 64 |s@rCHECK@pReread|
00000740: 20 74 68 65 20 70 72 6F 62 6C 65 6D 2E 20 43 68 | the problem. Ch|
00000750: 65 63 6B 20 79 6F 75 72 20 61 6E 73 77 65 72 73 |eck your answers|
00000760: 2E 20 52 65 70 6C 61 63 65 20 61 6C 6C 20 76 61 |. Replace all va|
00000770: 72 69 61 62 6C 65 73 20 69 6E 20 74 68 65 20 63 |riables in the c|
00000780: 68 61 72 74 2E 40 68 7B 7D 2E 40 68 7B 7D 40 69 |hart.@h{}.@h{}@i|
00000790: 28 31 31 2C 69 2C 7B 7D 29 40 68 53 75 62 73 74 |(11,i,{})@hSubst|
000007A0: 69 74 75 74 65 20 66 6F 72 20 22 26 76 22 20 69 |itute for "&v" i|
000007B0: 6E 20 74 68 65 20 65 78 70 72 65 73 73 69 6F 6E |n the expression|
000007C0: 20 66 6F 72 20 74 68 65 20 76 61 6C 75 65 20 6F | for the value o|
000007D0: 66 20 74 68 65 20 7B 7D 2C 20 61 6E 64 20 63 61 |f the {}, and ca|
000007E0: 6C 63 75 6C 61 74 65 20 74 68 65 20 72 65 73 75 |lculate the resu|
000007F0: 6C 74 2E 40 68 7B 7D 40 69 28 7B 7D 2C 69 2C 7B |lt.@h{}@i({},i,{|
00000800: 7D 29 40 68 53 75 62 73 74 69 74 75 74 65 20 66 |})@hSubstitute f|
00000810: 6F 72 20 22 26 76 22 20 69 6E 20 74 68 65 20 65 |or "&v" in the e|
00000820: 78 70 72 65 73 73 69 6F 6E 20 66 6F 72 20 74 68 |xpression for th|
00000830: 65 20 76 61 6C 75 65 20 6F 66 20 74 68 65 20 6D |e value of the m|
00000840: 69 78 74 75 72 65 20 61 6E 64 20 63 61 6C 63 75 |ixture and calcu|
00000850: 6C 61 74 65 20 74 68 65 20 72 65 73 75 6C 74 2E |late the result.|
00000860: 40 68 7B 7D 40 69 28 31 35 2C 69 2C 7B 7D 29 26 |@h{}@i(15,i,{})&|
00000870: 64 28 30 2C 4D 61 6B 65 20 73 75 72 65 20 74 68 |d(0,Make sure th|
00000880: 65 20 73 75 6D 20 6F 66 20 74 68 65 20 76 61 6C |e sum of the val|
00000890: 75 65 73 20 6F 66 20 74 68 65 20 7B 7D 20 65 71 |ues of the {} eq|
000008A0: 75 61 6C 73 20 74 68 65 20 74 6F 74 61 6C 20 76 |uals the total v|
000008B0: 61 6C 75 65 2E 20 4F 6E 20 74 6F 20 61 20 6E 65 |alue. On to a ne|
000008C0: 77 20 70 72 6F 62 6C 65 6D 2E 29 40 66 54 77 65 |w problem.)@fTwe|
000008D0: 6E 74 79 20 70 6F 75 6E 64 73 20 6F 66 20 70 65 |nty pounds of pe|
000008E0: 63 61 6E 73 20 77 6F 72 74 68 20 24 31 2F 6C 62 |cans worth $1/lb|
000008F0: 2E 20 61 72 65 20 6D 69 78 65 64 20 77 69 74 68 |. are mixed with|
00000900: 20 77 61 6C 6E 75 74 73 20 77 6F 72 74 68 20 24 | walnuts worth $|
00000910: 31 2E 34 30 2F 6C 62 2E 20 57 69 74 68 20 61 20 |1.40/lb. With a |
00000920: 63 6F 6D 62 69 6E 65 64 20 76 61 6C 75 65 20 6F |combined value o|
00000930: 66 20 24 31 2E 32 34 2F 6C 62 2E 2C 20 68 6F 77 |f $1.24/lb., how|
00000940: 20 6D 61 6E 79 20 70 6F 75 6E 64 73 20 6F 66 20 | many pounds of |
00000950: 77 61 6C 6E 75 74 73 20 77 65 72 65 20 75 73 65 |walnuts were use|
00000960: 64 00 50 65 63 61 6E 73 00 57 61 6C 6E 75 74 73 |d.Pecans.Walnuts|
00000970: 00 70 6F 75 6E 64 73 00 26 71 54 77 65 6E 74 79 |.pounds.&qTwenty|
00000980: 20 70 6F 75 6E 64 73 20 6F 66 20 70 65 63 61 6E | pounds of pecan|
00000990: 73 20 77 6F 72 74 68 20 24 31 2F 6C 62 2E 26 71 |s worth $1/lb.&q|
000009A0: 20 26 71 6D 69 78 65 64 20 77 69 74 68 20 77 61 | &qmixed with wa|
000009B0: 6C 6E 75 74 73 20 77 6F 72 74 68 20 24 31 2E 34 |lnuts worth $1.4|
000009C0: 30 2F 6C 62 26 71 20 26 71 63 6F 6D 62 69 6E 65 |0/lb&q &qcombine|
000009D0: 64 20 76 61 6C 75 65 20 6F 66 20 24 31 2E 32 34 |d value of $1.24|
000009E0: 2F 6C 62 2E 26 71 00 26 68 48 6F 77 20 6D 61 6E |/lb.&q.&hHow man|
000009F0: 79 20 70 6F 75 6E 64 73 20 6F 66 20 77 61 6C 6E |y pounds of waln|
00000A00: 75 74 73 20 77 65 72 65 20 75 73 65 64 26 68 3F |uts were used&h?|
00000A10: 00 70 6F 75 6E 64 20 6F 66 20 74 68 65 20 70 65 |.pound of the pe|
00000A20: 63 61 6E 73 00 70 6F 75 6E 64 20 6F 66 20 74 68 |cans.pound of th|
00000A30: 65 20 70 65 63 61 6E 73 20 69 73 20 60 31 30 30 |e pecans is `100|
00000A40: 20 63 65 6E 74 73 00 31 30 30 00 31 30 30 00 70 | cents.100.100.p|
00000A50: 6F 75 6E 64 20 6F 66 20 74 68 65 20 77 61 6C 6E |ound of the waln|
00000A60: 75 74 73 00 70 6F 75 6E 64 20 6F 66 20 74 68 65 |uts.pound of the|
00000A70: 20 77 61 6C 6E 75 74 73 20 69 73 20 60 31 34 30 | walnuts is `140|
00000A80: 20 63 65 6E 74 73 27 00 31 34 30 00 31 34 30 00 | cents'.140.140.|
00000A90: 70 6F 75 6E 64 00 70 6F 75 6E 64 20 6F 66 20 74 |pound.pound of t|
00000AA0: 68 65 20 6D 69 78 20 69 73 20 60 31 32 34 27 00 |he mix is `124'.|
00000AB0: 31 32 34 00 54 77 65 6E 74 79 20 70 6F 75 6E 64 |124.Twenty pound|
00000AC0: 73 20 6F 66 20 70 65 63 61 6E 73 20 77 6F 72 74 |s of pecans wort|
00000AD0: 68 20 24 31 2F 6C 62 00 54 68 65 20 6E 75 6D 62 |h $1/lb.The numb|
00000AE0: 65 72 20 6F 66 20 70 6F 75 6E 64 73 20 6F 66 20 |er of pounds of |
00000AF0: 70 6F 75 6E 64 73 20 6F 66 20 70 65 63 61 6E 73 |pounds of pecans|
00000B00: 20 69 73 20 60 32 30 27 00 39 00 32 30 00 6F 66 | is `20'.9.20.of|
00000B10: 20 77 61 6C 6E 75 74 73 00 70 6F 75 6E 64 73 20 | walnuts.pounds |
00000B20: 6F 66 20 77 61 6C 6E 75 74 73 00 60 77 27 00 31 |of walnuts.`w'.1|
00000B30: 30 00 70 65 63 61 6E 73 20 61 6E 64 20 77 61 6C |0.pecans and wal|
00000B40: 6E 75 74 73 00 54 68 65 20 6D 69 78 74 75 72 65 |nuts.The mixture|
00000B50: 20 77 69 6C 6C 20 77 65 69 67 68 20 60 26 76 2B | will weigh `&v+|
00000B60: 32 30 27 20 70 6F 75 6E 64 73 00 26 76 2B 32 30 |20' pounds.&v+20|
00000B70: 00 6E 75 74 73 00 70 6F 75 6E 64 73 20 6F 66 20 |.nuts.pounds of |
00000B80: 70 65 63 61 6E 73 00 70 6F 75 6E 64 00 70 6F 75 |pecans.pound.pou|
00000B90: 6E 64 73 00 31 30 30 00 32 30 00 31 30 30 2A 32 |nds.100.20.100*2|
00000BA0: 30 00 70 6F 75 6E 64 73 20 6F 66 20 77 61 6C 6E |0.pounds of waln|
00000BB0: 75 74 73 00 70 6F 75 6E 64 00 70 6F 75 6E 64 73 |uts.pound.pounds|
00000BC0: 00 31 34 30 00 26 76 00 31 34 30 26 76 00 70 6F |.140.&v.140&v.po|
00000BD0: 75 6E 64 73 20 6F 66 20 6E 75 74 73 00 70 6F 75 |unds of nuts.pou|
00000BE0: 6E 64 00 70 6F 75 6E 64 73 00 31 32 34 00 28 26 |nd.pounds.124.(&|
00000BF0: 76 2B 32 30 29 00 31 32 34 28 26 76 2B 32 30 29 |v+20).124(&v+20)|
00000C00: 00 70 65 63 61 6E 73 20 61 6E 64 20 77 61 6C 6E |.pecans and waln|
00000C10: 75 74 73 00 70 65 63 61 6E 00 77 61 6C 6E 75 74 |uts.pecan.walnut|
00000C20: 00 60 32 30 30 30 20 2B 20 31 34 30 26 76 20 3D |.`2000 + 140&v =|
00000C30: 20 31 32 34 28 26 76 2B 32 30 29 27 00 32 30 30 | 124(&v+20)'.200|
00000C40: 30 2B 31 34 30 26 76 3D 31 32 34 28 26 76 2B 32 |0+140&v=124(&v+2|
00000C50: 30 29 00 26 76 3D 33 30 00 48 6F 77 20 6D 61 6E |0).&v=30.How man|
00000C60: 79 20 70 6F 75 6E 64 73 20 6F 66 20 77 61 6C 6E |y pounds of waln|
00000C70: 75 74 73 20 77 65 72 65 20 75 73 65 64 00 54 68 |uts were used.Th|
00000C80: 65 20 6E 75 6D 62 65 72 20 6F 66 20 70 6F 75 6E |e number of poun|
00000C90: 64 73 20 6F 66 20 77 61 6C 6E 75 74 73 20 69 73 |ds of walnuts is|
00000CA0: 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 26 | the value of "&|
00000CB0: 76 22 00 26 76 20 3D 20 60 33 30 27 00 31 30 00 |v".&v = `30'.10.|
00000CC0: 33 30 00 54 68 65 20 6E 75 6D 62 65 72 20 6F 66 |30.The number of|
00000CD0: 20 70 6F 75 6E 64 73 20 6F 66 20 6E 75 74 73 20 | pounds of nuts |
00000CE0: 69 6E 20 74 68 65 20 6D 69 78 20 69 73 20 74 68 |in the mix is th|
00000CF0: 65 20 76 61 6C 75 65 20 6F 66 20 22 26 76 2B 32 |e value of "&v+2|
00000D00: 30 22 00 26 76 2B 32 30 20 3D 20 33 30 2B 32 30 |0".&v+20 = 30+20|
00000D10: 20 3D 20 60 35 30 27 00 35 30 00 77 61 6C 6E 75 | = `50'.50.walnu|
00000D20: 74 73 00 31 34 30 26 76 20 3D 20 31 34 30 2A 33 |ts.140&v = 140*3|
00000D30: 30 20 3D 20 60 34 32 30 30 27 20 63 65 6E 74 73 |0 = `4200' cents|
00000D40: 00 31 34 00 34 32 30 30 00 31 32 34 28 26 76 2B |.14.4200.124(&v+|
00000D50: 32 30 29 20 3D 20 31 32 34 28 33 30 2B 32 30 29 |20) = 124(30+20)|
00000D60: 20 3D 20 31 32 34 2A 35 30 20 3D 20 60 36 32 30 | = 124*50 = `620|
00000D70: 30 27 00 36 32 30 30 00 70 65 63 61 6E 73 20 61 |0'.6200.pecans a|
00000D80: 6E 64 20 77 61 6C 6E 75 74 73 00 40 66 48 6F 77 |nd walnuts.@fHow|
00000D90: 20 6D 61 6E 79 20 70 6F 75 6E 64 73 20 6F 66 20 | many pounds of |
00000DA0: 63 61 6E 64 79 20 77 6F 72 74 68 20 36 30 20 63 |candy worth 60 c|
00000DB0: 65 6E 74 73 2F 6C 62 2E 20 6D 69 78 65 64 20 77 |ents/lb. mixed w|
00000DC0: 69 74 68 20 31 36 20 70 6F 75 6E 64 73 20 6F 66 |ith 16 pounds of|
00000DD0: 20 63 61 73 68 65 77 73 20 77 6F 72 74 68 20 39 | cashews worth 9|
00000DE0: 30 20 63 65 6E 74 73 2F 6C 62 2E 20 70 72 6F 64 |0 cents/lb. prod|
00000DF0: 75 63 65 73 20 61 20 6D 69 78 20 77 6F 72 74 68 |uces a mix worth|
00000E00: 20 38 30 20 63 65 6E 74 73 2F 6C 62 00 43 61 6E | 80 cents/lb.Can|
00000E10: 64 79 00 43 61 73 68 65 77 73 00 70 6F 75 6E 64 |dy.Cashews.pound|
00000E20: 73 00 26 71 63 61 6E 64 79 20 77 6F 72 74 68 20 |s.&qcandy worth |
00000E30: 36 30 20 63 65 6E 74 73 2F 6C 62 2E 26 71 20 26 |60 cents/lb.&q &|
00000E40: 71 6D 69 78 65 64 20 77 69 74 68 20 31 36 20 70 |qmixed with 16 p|
00000E50: 6F 75 6E 64 73 20 6F 66 20 63 61 73 68 65 77 73 |ounds of cashews|
00000E60: 20 77 6F 72 74 68 20 39 30 20 63 65 6E 74 73 2F | worth 90 cents/|
00000E70: 6C 62 2E 26 71 20 26 71 6D 69 78 20 77 6F 72 74 |lb.&q &qmix wort|
00000E80: 68 20 38 30 20 63 65 6E 74 73 2F 6C 62 26 71 00 |h 80 cents/lb&q.|
00000E90: 26 68 48 6F 77 20 6D 61 6E 79 20 70 6F 75 6E 64 |&hHow many pound|
00000EA0: 73 20 6F 66 20 63 61 6E 64 79 26 68 00 70 6F 75 |s of candy&h.pou|
00000EB0: 6E 64 20 6F 66 20 74 68 65 20 63 61 6E 64 79 00 |nd of the candy.|
00000EC0: 70 6F 75 6E 64 20 6F 66 20 74 68 65 20 63 61 6E |pound of the can|
00000ED0: 64 79 20 69 73 20 60 36 30 20 63 65 6E 74 73 00 |dy is `60 cents.|
00000EE0: 36 30 00 36 30 00 70 6F 75 6E 64 20 6F 66 20 74 |60.60.pound of t|
00000EF0: 68 65 20 63 61 73 68 65 77 73 00 70 6F 75 6E 64 |he cashews.pound|
00000F00: 20 6F 66 20 74 68 65 20 63 61 73 68 65 77 73 20 | of the cashews |
00000F10: 69 73 20 60 39 30 20 63 65 6E 74 73 27 00 39 30 |is `90 cents'.90|
00000F20: 00 39 30 00 70 6F 75 6E 64 00 70 6F 75 6E 64 20 |.90.pound.pound |
00000F30: 6F 66 20 74 68 65 20 6D 69 78 20 69 73 20 60 38 |of the mix is `8|
00000F40: 30 27 00 38 30 00 31 36 20 70 6F 75 6E 64 73 20 |0'.80.16 pounds |
00000F50: 6F 66 20 63 61 73 68 65 77 73 20 77 6F 72 74 68 |of cashews worth|
00000F60: 20 39 30 20 63 65 6E 74 73 2F 6C 62 2E 00 54 68 | 90 cents/lb..Th|
00000F70: 65 20 6E 75 6D 62 65 72 20 6F 66 20 70 6F 75 6E |e number of poun|
00000F80: 64 73 20 6F 66 20 63 61 73 68 65 77 73 20 69 73 |ds of cashews is|
00000F90: 20 60 31 36 27 00 31 30 00 31 36 00 6F 66 20 70 | `16'.10.16.of p|
00000FA0: 6F 75 6E 64 73 20 6F 66 20 63 61 6E 64 79 00 70 |ounds of candy.p|
00000FB0: 6F 75 6E 64 73 20 6F 66 20 63 61 6E 64 79 00 60 |ounds of candy.`|
00000FC0: 63 27 00 39 00 63 61 6E 64 79 20 61 6E 64 20 63 |c'.9.candy and c|
00000FD0: 61 73 68 65 77 73 00 53 6F 20 74 68 65 20 6D 69 |ashews.So the mi|
00000FE0: 78 20 77 69 6C 6C 20 77 65 69 67 68 20 22 26 76 |x will weigh "&v|
00000FF0: 2B 31 36 22 20 70 6F 75 6E 64 73 00 26 76 2B 31 |+16" pounds.&v+1|
00001000: 36 00 69 74 65 6D 73 00 70 6F 75 6E 64 73 20 6F |6.items.pounds o|
00001010: 66 20 63 61 6E 64 79 00 70 6F 75 6E 64 00 70 6F |f candy.pound.po|
00001020: 75 6E 64 73 00 36 30 00 26 76 00 36 30 26 76 00 |unds.60.&v.60&v.|
00001030: 70 6F 75 6E 64 73 20 6F 66 20 63 61 73 68 65 77 |pounds of cashew|
00001040: 73 00 70 6F 75 6E 64 00 70 6F 75 6E 64 73 00 39 |s.pound.pounds.9|
00001050: 30 00 31 36 00 39 30 2A 31 36 00 70 6F 75 6E 64 |0.16.90*16.pound|
00001060: 73 00 70 6F 75 6E 64 00 70 6F 75 6E 64 73 00 38 |s.pound.pounds.8|
00001070: 30 00 28 26 76 2B 31 36 29 00 38 30 28 26 76 2B |0.(&v+16).80(&v+|
00001080: 31 36 29 00 63 61 6E 64 79 20 61 6E 64 20 63 61 |16).candy and ca|
00001090: 73 68 65 77 73 00 63 61 6E 64 79 00 63 61 73 68 |shews.candy.cash|
000010A0: 65 77 00 60 36 30 26 76 2B 31 34 34 30 20 3D 20 |ew.`60&v+1440 = |
000010B0: 38 30 28 26 76 2B 31 36 29 27 00 36 30 26 76 2B |80(&v+16)'.60&v+|
000010C0: 31 34 34 30 20 3D 20 38 30 28 26 76 2B 31 36 29 |1440 = 80(&v+16)|
000010D0: 00 26 76 3D 38 00 48 6F 77 20 6D 61 6E 79 20 70 |.&v=8.How many p|
000010E0: 6F 75 6E 64 73 20 6F 66 20 63 61 6E 64 79 00 54 |ounds of candy.T|
000010F0: 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 70 6F 75 |he number of pou|
00001100: 6E 64 73 20 6F 66 20 63 61 6E 64 79 20 69 73 20 |nds of candy is |
00001110: 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 26 76 |the value of "&v|
00001120: 22 00 26 76 20 3D 20 60 38 27 00 39 00 38 00 54 |".&v = `8'.9.8.T|
00001130: 68 65 20 6E 75 6D 62 65 72 20 6F 66 20 70 6F 75 |he number of pou|
00001140: 6E 64 73 20 69 6E 20 74 68 65 20 6D 69 78 20 69 |nds in the mix i|
00001150: 73 20 74 68 65 20 76 61 6C 75 65 20 6F 66 20 22 |s the value of "|
00001160: 26 76 2B 31 36 22 00 26 76 2B 31 36 20 3D 20 38 |&v+16".&v+16 = 8|
00001170: 2B 31 36 20 3D 20 60 32 34 27 00 32 34 00 63 61 |+16 = `24'.24.ca|
00001180: 6E 64 79 00 36 30 26 76 20 3D 20 36 30 2A 38 20 |ndy.60&v = 60*8 |
00001190: 3D 20 60 34 38 30 27 20 63 65 6E 74 73 00 31 33 |= `480' cents.13|
000011A0: 00 34 38 30 00 38 30 28 38 2B 31 36 29 20 3D 20 |.480.80(8+16) = |
000011B0: 38 30 2A 32 34 20 3D 20 60 31 39 32 30 27 20 63 |80*24 = `1920' c|
000011C0: 65 6E 74 73 00 31 39 32 30 00 63 61 6E 64 79 20 |ents.1920.candy |
000011D0: 61 6E 64 20 63 61 73 68 65 77 73 00 7C 6D |and cashews.|m |
A@Q{}?@DG09&C(1,{})&C(2,{})&C(3,MIX)&D(
4,PRICE/UNIT)&D(8,# OF {})&D(12,VALUE)@R
READ@PREAD THE WHOLE PROBLEM. THINK: WHA
T ARE THE FACTS? WHAT IS BEING ASKED? (P
RESS ANY KEY TO CONTINUE.)@HWHAT ARE THE
FACTS? {}@HWHAT IS BEING ASKED? {}@I(0)
@RDATA ENTRY@PFILL IN THE CHART -- START
WITH THE PRICE PER UNIT. (EXPRESS IN CE
NTS).@HWHAT IS THE PRICE PER {}?@HTHE PR
ICE PER {}'.@I(5,I,{})&D(5,{})@HWHAT IS
THE PRICE PER {}?@HTHE PRICE PER {}.@I(6
,I,{})&D(6,{})@HWHAT IS THE PRICE PER {}
OF THE MIX?@HTHE PRICE PER {}.@I(7,I,{}
)@PENTER THE FACT FROM THE PROBLEM INTO
THE CHART.@H&H{}&H.@H{}.@I({},I,{})@PREP
RESENT THE NUMBER OF {} IN THE MIX.@HCHO
OSE A VARIABLE TO REPRESENT THE NUMBER {
}.@HENTER A LETTER, SUCH AS {}.@I({},I,&
V)@PREPRESENT THE WEIGHT OF THE MIX IN T
ERMS OF "&V".@HTHE SUM OF THE WEIGHTS OF
THE {} WILL EQUAL THE WEIGHT OF THE MIX
TURE. @H{}.@I(11,I,{})@RPARTS@PWRITE AN
EXPRESSION TO REPRESENT THE VALUE OF EAC
H OF THE {}.@HMULTIPLY THE PRICE PER UNI
T BY THE NUMBER OF {}.@HPRICE PER {} \F1
7* # OF {}\F30= VALUE \N ` {}
\F17* {} ' \F30= VALUE@I(13,I,{})@
HNOW MULTIPLY THE PRICE PER UNIT BY THE
NUMBER OF {}.@HPRICE PER {}\F17* # OF {}
\F30= VALUE \N ` {} \F17* {}
' \F30= VALUE@I(14,I,{})@HMULTIPLY T
HE PRICE PER UNIT BY THE NUMBER OF {} IN
THE MIX.@HPRICE PER {} \F17* # OF {} \
F30= VALUE \N ` {} \F17* {} '
\F30= VALUE@I(15,I,{})@RWHOLE@PUSE THE
TABLE TO WRITE AN EQUATION TO RELATE THE
PARTS ({}) TO THE WHOLE (MIX).@H({} VAL
) + ({} VAL) = TOTAL VAL@H{}@I(16,I,{})@
S@RCOMPUTE@PSOLVE THE EQUATION FOR "&V".
USE PENCIL AND PAPER, OR USE THE CALCUL
ATOR.@HISOLATE "&V" ON ONE SIDE OF THE E
QUATION.@HTHE CALCULATOR SOLVES EQUATION
S FOR YOU AND DISPLAYS THE STEPS IN THE
SOLUTION.@I(16,I,{})@PNOW FILL IN THE AN
SWER(S) TO THE PROBLEM. REMEMBER THE QUE
STION: &Q{}&Q&W(16)@H{}.@H{}@I({},I,{})@
S@RCHECK@PREREAD THE PROBLEM. CHECK YOUR
ANSWERS. REPLACE ALL VARIABLES IN THE C
HART.@H{}.@H{}@I(11,I,{})@HSUBSTITUTE FO
R "&V" IN THE EXPRESSION FOR THE VALUE O
F THE {}, AND CALCULATE THE RESULT.@H{}@
I({},I,{})@HSUBSTITUTE FOR "&V" IN THE E
XPRESSION FOR THE VALUE OF THE MIXTURE A
ND CALCULATE THE RESULT.@H{}@I(15,I,{})&
D(0,MAKE SURE THE SUM OF THE VALUES OF T
HE {} EQUALS THE TOTAL VALUE. ON TO A NE
W PROBLEM.)@FTWENTY POUNDS OF PECANS WOR
TH $1/LB. ARE MIXED WITH WALNUTS WORTH $
1.40/LB. WITH A COMBINED VALUE OF $1.24/
LB., HOW MANY POUNDS OF WALNUTS WERE USE
D.PECANS.WALNUTS.POUNDS.&QTWENTY POUNDS
OF PECANS WORTH $1/LB.&Q &QMIXED WITH WA
LNUTS WORTH $1.40/LB&Q &QCOMBINED VALUE
OF $1.24/LB.&Q.&HHOW MANY POUNDS OF WALN
UTS WERE USED&H?.POUND OF THE PECANS.POU
ND OF THE PECANS IS `100 CENTS.100.100.P
OUND OF THE WALNUTS.POUND OF THE WALNUTS
IS `140 CENTS'.140.140.POUND.POUND OF T
HE MIX IS `124'.124.TWENTY POUNDS OF PEC
ANS WORTH $1/LB.THE NUMBER OF POUNDS OF
POUNDS OF PECANS IS `20'.9.20.OF WALNUTS
.POUNDS OF WALNUTS.`W'.10.PECANS AND WAL
NUTS.THE MIXTURE WILL WEIGH `&V+20' POUN
DS.&V+20.NUTS.POUNDS OF PECANS.POUND.POU
NDS.100.20.100*20.POUNDS OF WALNUTS.POUN
D.POUNDS.140.&V.140&V.POUNDS OF NUTS.POU
ND.POUNDS.124.(&V+20).124(&V+20).PECANS
AND WALNUTS.PECAN.WALNUT.`2000 + 140&V =
124(&V+20)'.2000+140&V=124(&V+20).&V=30
.HOW MANY POUNDS OF WALNUTS WERE USED.TH
E NUMBER OF POUNDS OF WALNUTS IS THE VAL
UE OF "&V".&V = `30'.10.30.THE NUMBER OF
POUNDS OF NUTS IN THE MIX IS THE VALUE
OF "&V+20".&V+20 = 30+20 = `50'.50.WALNU
TS.140&V = 140*30 = `4200' CENTS.14.4200
.124(&V+20) = 124(30+20) = 124*50 = `620
0'.6200.PECANS AND WALNUTS.@FHOW MANY PO
UNDS OF CANDY WORTH 60 CENTS/LB. MIXED W
ITH 16 POUNDS OF CASHEWS WORTH 90 CENTS/
LB. PRODUCES A MIX WORTH 80 CENTS/LB.CAN
DY.CASHEWS.POUNDS.&QCANDY WORTH 60 CENTS
/LB.&Q &QMIXED WITH 16 POUNDS OF CASHEWS
WORTH 90 CENTS/LB.&Q &QMIX WORTH 80 CEN
TS/LB&Q.&HHOW MANY POUNDS OF CANDY&H.POU
ND OF THE CANDY.POUND OF THE CANDY IS `6
0 CENTS.60.60.POUND OF THE CASHEWS.POUND
OF THE CASHEWS IS `90 CENTS'.90.90.POUN
D.POUND OF THE MIX IS `80'.80.16 POUNDS
OF CASHEWS WORTH 90 CENTS/LB..THE NUMBER
OF POUNDS OF CASHEWS IS `16'.10.16.OF P
OUNDS OF CANDY.POUNDS OF CANDY.`C'.9.CAN
DY AND CASHEWS.SO THE MIX WILL WEIGH "&V
+16" POUNDS.&V+16.ITEMS.POUNDS OF CANDY.
POUND.POUNDS.60.&V.60&V.POUNDS OF CASHEW
S.POUND.POUNDS.90.16.90*16.POUNDS.POUND.
POUNDS.80.(&V+16).80(&V+16).CANDY AND CA
SHEWS.CANDY.CASHEW.`60&V+1440 = 80(&V+16
)'.60&V+1440 = 80(&V+16).&V=8.HOW MANY P
OUNDS OF CANDY.THE NUMBER OF POUNDS OF C
ANDY IS THE VALUE OF "&V".&V = `8'.9.8.T
HE NUMBER OF POUNDS IN THE MIX IS THE VA
LUE OF "&V+16".&V+16 = 8+16 = `24'.24.CA
NDY.60&V = 60*8 = `480' CENTS.13.480.80(
8+16) = 80*24 = `1920' CENTS.1920.CANDY
AND CASHEWS.|M
×
C64 Image
> CLICK IMAGE PREVIEW FOR FULL MODAL