_  __   _  _         _ _     _      _           _           
  __| |/ /_ | || |     __| (_)___| | __ (_)_ __   __| | _____  __
 / _` | '_ \| || |_   / _` | / __| |/ / | | '_ \ / _` |/ _ \ \/ /
| (_| | (_) |__   _| | (_| | \__ \   <  | | | | | (_| |  __/>  < 
 \__,_|\___/   |_|    \__,_|_|___/_|\_\ |_|_| |_|\__,_|\___/_/\_\
                                                                 
            

DIST1L4

FILE INFORMATION

FILENAME(S): DIST1L4

FILE TYPE(S): PRG

FILE SIZE: 5.8K

FIRST SEEN: 2025-10-19 22:48:55

APPEARS ON: 1 disk(s)

FILE HASH

e7f4788dd4d11683200dc12626d1f2bca6788db6545af44b0ce77049f9160e6c

FOUND ON DISKS (1 DISKS)

DISK TITLE FILENAME FILE TYPE COLLECTION TRACK SECTOR ACTIONS
HHM 100785 43S1 DIST1L4 PRG Radd Maxx 24 0 DOWNLOAD FILE

FILE CONTENT & ANALYSIS

00000000: 20 41 20 40 71 7B 7D 40  64 67 30 34 26 64 28 31  | A @q{}@dg04&d(1|
00000010: 2C 55 2F 6D 65 61 73 29  26 63 28 32 2C 7B 7D 29  |,U/meas)&c(2,{})|
00000020: 26 63 28 33 2C 7B 7D 29  26 64 28 34 2C 54 6F 74  |&c(3,{})&d(4,Tot|
00000030: 2E 29 26 64 28 35 2C 52  61 74 65 29 26 64 28 31  |.)&d(5,Rate)&d(1|
00000040: 30 2C 54 69 6D 65 29 26  64 28 31 35 2C 44 69 73  |0,Time)&d(15,Dis|
00000050: 74 2E 29 40 72 52 45 41  44 40 70 52 65 61 64 20  |t.)@rREAD@pRead |
00000060: 74 68 65 20 77 68 6F 6C  65 20 70 72 6F 62 6C 65  |the whole proble|
00000070: 6D 2E 20 54 68 69 6E 6B  3A 20 57 68 61 74 20 61  |m. Think: What a|
00000080: 72 65 20 74 68 65 20 66  61 63 74 73 3F 20 57 68  |re the facts? Wh|
00000090: 61 74 20 69 73 20 62 65  69 6E 67 20 61 73 6B 65  |at is being aske|
000000A0: 64 3F 20 28 50 72 65 73  73 20 61 6E 79 20 6B 65  |d? (Press any ke|
000000B0: 79 20 74 6F 20 63 6F 6E  74 69 6E 75 65 29 40 68  |y to continue)@h|
000000C0: 57 68 61 74 20 61 72 65  20 74 68 65 20 66 61 63  |What are the fac|
000000D0: 74 73 3F 20 7B 7D 40 68  57 68 61 74 20 69 73 20  |ts? {}@hWhat is |
000000E0: 62 65 69 6E 67 20 61 73  6B 65 64 3F 20 26 68 7B  |being asked? &h{|
000000F0: 7D 26 68 3F 40 69 28 30  29 40 72 50 4C 41 4E 20  |}&h?@i(0)@rPLAN |
00000100: 40 70 4C 65 74 20 44 7B  7D 20 3D 20 7B 7D 20 64  |@pLet D{} = {} d|
00000110: 69 73 74 2E 20 61 6E 64  20 44 7B 7D 20 3D 20 7B  |ist. and D{} = {|
00000120: 7D 20 64 69 73 74 2E 20  57 72 69 74 65 20 61 6E  |} dist. Write an|
00000130: 20 65 71 75 61 74 69 6F  6E 20 74 6F 20 72 65 6C  | equation to rel|
00000140: 61 74 65 20 44 7B 7D 2C  20 44 7B 7D 20 61 6E 64  |ate D{}, D{} and|
00000150: 20 54 6F 74 61 6C 20 64  69 73 74 2E 40 68 54 68  | Total dist.@hTh|
00000160: 65 79 20 7B 7D 20 74 6F  77 61 72 64 73 20 65 61  |ey {} towards ea|
00000170: 63 68 20 6F 74 68 65 72  20 75 6E 74 69 6C 20 74  |ch other until t|
00000180: 68 65 79 20 6D 65 65 74  2E 20 54 68 65 20 73 75  |hey meet. The su|
00000190: 6D 20 6F 66 20 74 68 65  69 72 20 64 69 73 74 61  |m of their dista|
000001A0: 6E 63 65 73 20 69 73 20  74 68 65 20 54 6F 74 61  |nces is the Tota|
000001B0: 6C 20 64 69 73 74 61 6E  63 65 2E 40 68 7B 7D 20  |l distance.@h{} |
000001C0: 73 68 6F 77 73 20 74 68  61 74 20 7B 7D 40 69 28  |shows that {}@i(|
000001D0: 32 30 2C 63 30 2C 20 29  40 70 4F 6E 65 20 61 6E  |20,c0, )@pOne an|
000001E0: 73 77 65 72 20 69 73 20  7B 7D 2E 20 43 68 61 6E  |swer is {}. Chan|
000001F0: 67 65 20 79 6F 75 72 20  61 6E 73 77 65 72 20 69  |ge your answer i|
00000200: 66 20 69 74 20 69 73 20  6E 6F 74 20 65 71 75 69  |f it is not equi|
00000210: 76 61 6C 65 6E 74 2E 20  28 50 72 65 73 73 20 72  |valent. (Press r|
00000220: 65 74 75 72 6E 29 40 68  54 68 65 79 20 7B 7D 20  |eturn)@hThey {} |
00000230: 74 6F 77 61 72 64 73 20  65 61 63 68 20 6F 74 68  |towards each oth|
00000240: 65 72 20 75 6E 74 69 6C  20 74 68 65 79 20 6D 65  |er until they me|
00000250: 65 74 2E 20 54 68 65 20  73 75 6D 20 6F 66 20 74  |et. The sum of t|
00000260: 68 65 69 72 20 64 69 73  74 61 6E 63 65 73 20 69  |heir distances i|
00000270: 73 20 74 68 65 20 54 6F  74 61 6C 20 64 69 73 74  |s the Total dist|
00000280: 61 6E 63 65 2E 40 68 7B  7D 20 73 68 6F 77 73 20  |ance.@h{} shows |
00000290: 74 68 61 74 20 7B 7D 40  69 28 32 30 2C 63 30 2C  |that {}@i(20,c0,|
000002A0: 20 29 40 72 44 41 54 41  20 45 4E 54 52 59 40 70  | )@rDATA ENTRY@p|
000002B0: 46 69 6C 6C 20 69 6E 20  74 68 65 20 75 6E 69 74  |Fill in the unit|
000002C0: 73 20 62 79 20 77 68 69  63 68 20 72 61 74 65 2C  |s by which rate,|
000002D0: 20 74 69 6D 65 20 61 6E  64 20 64 69 73 74 61 6E  | time and distan|
000002E0: 63 65 20 61 72 65 20 6D  65 61 73 75 72 65 64 2E  |ce are measured.|
000002F0: 20 28 55 73 65 20 61 62  62 72 65 76 69 61 74 65  | (Use abbreviate|
00000300: 64 20 66 6F 72 6D 29 2E  40 68 52 61 74 65 20 6F  |d form).@hRate o|
00000310: 66 20 73 70 65 65 64 20  69 73 20 63 6F 6D 6D 6F  |f speed is commo|
00000320: 6E 6C 79 20 6D 65 61 73  75 72 65 64 20 69 6E 20  |nly measured in |
00000330: 6D 69 6C 65 73 20 70 65  72 20 68 6F 75 72 20 28  |miles per hour (|
00000340: 6D 69 2F 68 72 29 2C 20  6D 65 74 65 72 73 20 70  |mi/hr), meters p|
00000350: 65 72 20 6D 69 6E 75 74  65 20 28 6D 2F 6D 69 6E  |er minute (m/min|
00000360: 29 2C 20 65 74 63 2E 40  68 54 68 65 20 72 61 74  |), etc.@hThe rat|
00000370: 65 20 6F 66 20 73 70 65  65 64 20 69 6E 20 74 68  |e of speed in th|
00000380: 69 73 20 70 72 6F 62 6C  65 6D 20 69 73 20 6D 65  |is problem is me|
00000390: 61 73 75 72 65 64 20 69  6E 20 7B 7D 2E 40 69 28  |asured in {}.@i(|
000003A0: 36 2C 63 7B 7D 2C 7B 7D  29 40 68 54 69 6D 65 20  |6,c{},{})@hTime |
000003B0: 69 73 20 63 6F 6D 6D 6F  6E 6C 79 20 6D 65 61 73  |is commonly meas|
000003C0: 75 72 65 64 20 69 6E 20  73 65 63 6F 6E 64 73 28  |ured in seconds(|
000003D0: 73 65 63 29 2C 20 6D 69  6E 75 74 65 73 28 6D 69  |sec), minutes(mi|
000003E0: 6E 29 2C 20 68 6F 75 72  73 28 68 72 29 2C 20 64  |n), hours(hr), d|
000003F0: 61 79 73 28 64 61 29 2C  20 65 74 63 2E 40 68 54  |ays(da), etc.@hT|
00000400: 69 6D 65 20 69 6E 20 74  68 69 73 20 70 72 6F 62  |ime in this prob|
00000410: 6C 65 6D 20 69 73 20 6D  65 61 73 75 72 65 64 20  |lem is measured |
00000420: 69 6E 20 7B 7D 2E 40 69  28 31 31 2C 63 7B 7D 2C  |in {}.@i(11,c{},|
00000430: 7B 7D 29 40 68 44 69 73  74 61 6E 63 65 20 69 73  |{})@hDistance is|
00000440: 20 63 6F 6D 6D 6F 6E 6C  79 20 6D 65 61 73 75 72  | commonly measur|
00000450: 65 64 20 69 6E 20 66 65  65 74 28 66 74 29 2C 20  |ed in feet(ft), |
00000460: 79 61 72 64 73 28 79 64  29 2C 20 6D 65 74 65 72  |yards(yd), meter|
00000470: 73 28 6D 29 2C 20 6D 69  6C 65 73 28 6D 69 29 2C  |s(m), miles(mi),|
00000480: 20 6B 69 6C 6F 6D 65 74  65 72 73 28 6B 6D 29 2C  | kilometers(km),|
00000490: 20 65 74 63 2E 40 68 44  69 73 74 61 6E 63 65 20  | etc.@hDistance |
000004A0: 69 6E 20 74 68 69 73 20  70 72 6F 62 6C 65 6D 20  |in this problem |
000004B0: 69 73 20 6D 65 61 73 75  72 65 64 20 69 6E 20 7B  |is measured in {|
000004C0: 7D 2E 40 69 28 31 36 2C  63 7B 7D 2C 7B 7D 29 40  |}.@i(16,c{},{})@|
000004D0: 70 45 6E 74 65 72 20 74  68 65 20 66 61 63 74 73  |pEnter the facts|
000004E0: 20 66 72 6F 6D 20 74 68  65 20 70 72 6F 62 6C 65  | from the proble|
000004F0: 6D 20 69 6E 74 6F 20 74  68 65 20 67 72 69 64 2E  |m into the grid.|
00000500: 40 68 7B 7D 40 68 54 68  65 20 74 69 6D 65 20 66  |@h{}@hThe time f|
00000510: 6F 72 20 7B 7D 40 69 28  31 32 2C 7B 7D 2C 7B 7D  |or {}@i(12,{},{}|
00000520: 29 40 68 54 68 65 20 74  69 6D 65 20 66 6F 72 20  |)@hThe time for |
00000530: 7B 7D 20 69 73 20 74 68  65 20 73 61 6D 65 20 61  |{} is the same a|
00000540: 73 20 74 68 65 20 74 69  6D 65 20 66 6F 72 20 7B  |s the time for {|
00000550: 7D 2E 40 68 54 68 65 20  74 69 6D 65 20 66 6F 72  |}.@hThe time for|
00000560: 20 7B 7D 20 69 73 20 61  6C 73 6F 20 7B 7D 2E 40  | {} is also {}.@|
00000570: 69 28 31 33 2C 7B 7D 2C  7B 7D 29 40 68 7B 7D 40  |i(13,{},{})@h{}@|
00000580: 68 54 68 65 20 74 6F 74  61 6C 20 64 69 73 74 61  |hThe total dista|
00000590: 6E 63 65 20 69 73 20 7B  7D 40 69 28 31 39 2C 69  |nce is {}@i(19,i|
000005A0: 2C 7B 7D 29 40 70 43 68  6F 6F 73 65 20 61 20 76  |,{})@pChoose a v|
000005B0: 61 72 69 61 62 6C 65 20  74 6F 20 72 65 70 72 65  |ariable to repre|
000005C0: 73 65 6E 74 20 74 68 65  20 72 61 74 65 20 6F 66  |sent the rate of|
000005D0: 20 73 70 65 65 64 20 66  6F 72 20 65 61 63 68 20  | speed for each |
000005E0: 7B 7D 2E 40 68 55 73 65  20 61 20 76 61 72 69 61  |{}.@hUse a varia|
000005F0: 62 6C 65 20 74 6F 20 72  65 70 72 65 73 65 6E 74  |ble to represent|
00000600: 20 74 68 65 20 73 6C 6F  77 65 72 20 73 70 65 65  | the slower spee|
00000610: 64 2E 20 49 6E 20 74 68  69 73 20 63 61 73 65 2C  |d. In this case,|
00000620: 20 7B 7D 40 68 55 73 65  20 61 20 6C 65 74 74 65  | {}@hUse a lette|
00000630: 72 20 73 75 63 68 20 61  73 20 27 7B 7D 27 20 74  |r such as '{}' t|
00000640: 6F 20 72 65 70 72 65 73  65 6E 74 20 7B 7D 20 72  |o represent {} r|
00000650: 61 74 65 20 6F 66 20 73  70 65 65 64 2E 40 69 28  |ate of speed.@i(|
00000660: 7B 7D 2C 69 2C 26 76 29  40 68 52 65 70 72 65 73  |{},i,&v)@hRepres|
00000670: 65 6E 74 20 7B 7D 20 72  61 74 65 20 69 6E 20 74  |ent {} rate in t|
00000680: 65 72 6D 73 20 6F 66 20  22 26 76 22 20 28 7B 7D  |erms of "&v" ({}|
00000690: 29 20 72 61 74 65 2E 20  7B 7D 40 68 60 7B 7D 27  |) rate. {}@h`{}'|
000006A0: 20 73 68 6F 77 73 20 74  68 61 74 20 7B 7D 20 7B  | shows that {} {|
000006B0: 7D 20 65 61 63 68 20 7B  7D 2E 40 69 28 7B 7D 2C  |} each {}.@i({},|
000006C0: 69 2C 26 76 7B 7D 29 40  72 50 41 52 54 53 40 70  |i,&v{})@rPARTS@p|
000006D0: 57 72 69 74 65 20 61 6E  20 65 78 70 72 65 73 73  |Write an express|
000006E0: 69 6F 6E 20 74 6F 20 72  65 70 72 65 73 65 6E 74  |ion to represent|
000006F0: 20 74 68 65 20 64 69 73  74 61 6E 63 65 20 74 72  | the distance tr|
00000700: 61 76 65 6C 6C 65 64 20  62 79 20 65 61 63 68 20  |avelled by each |
00000710: 7B 7D 2E 40 68 52 61 74  65 20 2A 20 54 69 6D 65  |{}.@hRate * Time|
00000720: 20 3D 20 44 69 73 74 61  6E 63 65 40 68 52 61 74  | = Distance@hRat|
00000730: 65 20 20 5C 66 30 36 2A  20 54 69 6D 65 20 5C 66  |e  \f06* Time \f|
00000740: 31 33 3D 20 44 69 73 74  61 6E 63 65 20 5C 6E 7B  |13= Distance \n{|
00000750: 7D 40 69 28 31 37 2C 69  2C 7B 7D 29 40 68 52 61  |}@i(17,i,{})@hRa|
00000760: 74 65 20 2A 20 54 69 6D  65 20 3D 20 44 69 73 74  |te * Time = Dist|
00000770: 61 6E 63 65 40 68 52 61  74 65 20 20 5C 66 30 36  |ance@hRate  \f06|
00000780: 2A 20 54 69 6D 65 20 20  5C 66 31 33 3D 20 44 69  |* Time  \f13= Di|
00000790: 73 74 61 6E 63 65 20 5C  6E 7B 7D 40 69 28 31 38  |stance \n{}@i(18|
000007A0: 2C 69 2C 7B 7D 29 26 64  28 32 30 2C 20 29 40 72  |,i,{})&d(20, )@r|
000007B0: 57 48 4F 4C 45 40 70 53  75 62 73 74 69 74 75 74  |WHOLE@pSubstitut|
000007C0: 65 20 79 6F 75 72 20 65  78 70 72 65 73 73 69 6F  |e your expressio|
000007D0: 6E 73 20 66 6F 72 20 44  7B 7D 20 61 6E 64 20 44  |ns for D{} and D|
000007E0: 7B 7D 20 69 6E 20 74 68  65 20 65 71 75 61 74 69  |{} in the equati|
000007F0: 6F 6E 20 3A 20 44 7B 7D  2B 44 7B 7D 3D 20 54 6F  |on : D{}+D{}= To|
00000800: 74 61 6C 2E 40 68 7B 7D  20 64 69 73 74 61 6E 63  |tal.@h{} distanc|
00000810: 65 20 3D 20 7B 7D 2C 20  7B 7D 20 64 69 73 74 61  |e = {}, {} dista|
00000820: 6E 63 65 20 3D 20 7B 7D  20 61 6E 64 20 54 6F 74  |nce = {} and Tot|
00000830: 61 6C 20 3D 20 7B 7D 2E  40 68 7B 7D 20 64 69 73  |al = {}.@h{} dis|
00000840: 74 2E 2B 7B 7D 20 64 69  73 74 2E 20 3D 20 54 6F  |t.+{} dist. = To|
00000850: 74 61 6C 20 64 69 73 74  2E 20 5C 6E 7B 7D 40 69  |tal dist. \n{}@i|
00000860: 28 32 30 2C 69 2C 7B 7D  29 40 73 40 72 43 4F 4D  |(20,i,{})@s@rCOM|
00000870: 50 55 54 45 40 70 53 6F  6C 76 65 20 74 68 65 20  |PUTE@pSolve the |
00000880: 65 71 75 61 74 69 6F 6E  20 66 6F 72 20 22 26 76  |equation for "&v|
00000890: 22 2E 20 55 73 65 20 70  61 70 65 72 20 61 6E 64  |". Use paper and|
000008A0: 20 70 65 6E 63 69 6C 20  61 6E 64 20 65 6E 74 65  | pencil and ente|
000008B0: 72 20 74 68 65 20 66 69  6E 61 6C 20 65 71 75 61  |r the final equa|
000008C0: 74 69 6F 6E 2C 20 6F 72  20 75 73 65 20 74 68 65  |tion, or use the|
000008D0: 20 43 61 6C 63 75 6C 61  74 6F 72 2E 40 68 49 73  | Calculator.@hIs|
000008E0: 6F 6C 61 74 65 20 22 26  76 22 20 6F 6E 20 6F 6E  |olate "&v" on on|
000008F0: 65 20 73 69 64 65 20 6F  66 20 74 68 65 20 65 71  |e side of the eq|
00000900: 75 61 74 69 6F 6E 2E 40  68 54 68 65 20 43 61 6C  |uation.@hThe Cal|
00000910: 63 75 6C 61 74 6F 72 20  73 6F 6C 76 65 73 20 65  |culator solves e|
00000920: 71 75 61 74 69 6F 6E 73  20 66 6F 72 20 79 6F 75  |quations for you|
00000930: 20 61 6E 64 20 64 69 73  70 6C 61 79 73 20 74 68  | and displays th|
00000940: 65 20 73 74 65 70 73 20  69 6E 20 74 68 65 20 73  |e steps in the s|
00000950: 6F 6C 75 74 69 6F 6E 2E  40 69 28 32 30 2C 69 2C  |olution.@i(20,i,|
00000960: 26 76 3D 7B 7D 29 40 70  45 6E 74 65 72 20 79 6F  |&v={})@pEnter yo|
00000970: 75 72 20 61 6E 73 77 65  72 73 20 74 6F 20 74 68  |ur answers to th|
00000980: 65 20 70 72 6F 62 6C 65  6D 20 69 6E 20 74 68 65  |e problem in the|
00000990: 20 63 68 61 72 74 2E 20  52 65 6D 65 6D 62 65 72  | chart. Remember|
000009A0: 20 74 68 65 20 71 75 65  73 74 69 6F 6E 2E 20 7B  | the question. {|
000009B0: 7D 26 77 28 32 30 29 40  68 54 68 65 20 72 61 74  |}&w(20)@hThe rat|
000009C0: 65 20 6F 66 20 73 70 65  65 64 20 66 6F 72 20 7B  |e of speed for {|
000009D0: 7D 20 69 73 20 74 68 65  20 76 61 6C 75 65 20 6F  |} is the value o|
000009E0: 66 20 22 26 76 22 2E 40  68 54 68 65 20 72 61 74  |f "&v".@hThe rat|
000009F0: 65 20 6F 66 20 73 70 65  65 64 20 66 6F 72 20 7B  |e of speed for {|
00000A00: 7D 20 69 73 20 74 68 65  20 76 61 6C 75 65 20 6F  |} is the value o|
00000A10: 66 20 22 26 76 22 2E 20  26 76 20 3D 20 7B 7D 2C  |f "&v". &v = {},|
00000A20: 20 73 6F 20 65 6E 74 65  72 20 60 7B 7D 27 2E 40  | so enter `{}'.@|
00000A30: 69 28 7B 7D 2C 69 2C 7B  7D 29 40 73 26 77 28 32  |i({},i,{})@s&w(2|
00000A40: 30 29 40 68 54 68 65 20  72 61 74 65 20 6F 66 20  |0)@hThe rate of |
00000A50: 73 70 65 65 64 20 66 6F  72 20 7B 7D 20 69 73 20  |speed for {} is |
00000A60: 74 68 65 20 76 61 6C 75  65 20 6F 66 20 7B 7D 2E  |the value of {}.|
00000A70: 40 68 54 68 65 20 72 61  74 65 20 6F 66 20 73 70  |@hThe rate of sp|
00000A80: 65 65 64 20 66 6F 72 20  7B 7D 20 69 73 20 74 68  |eed for {} is th|
00000A90: 65 20 76 61 6C 75 65 20  6F 66 20 7B 7D 2E 20 7B  |e value of {}. {|
00000AA0: 7D 2C 20 73 6F 20 65 6E  74 65 72 20 60 7B 7D 27  |}, so enter `{}'|
00000AB0: 2E 40 69 28 7B 7D 2C 69  2C 7B 7D 29 40 73 40 72  |.@i({},i,{})@s@r|
00000AC0: 43 48 45 43 4B 40 70 52  65 72 65 61 64 20 74 68  |CHECK@pReread th|
00000AD0: 65 20 71 75 65 73 74 69  6F 6E 2E 20 43 68 65 63  |e question. Chec|
00000AE0: 6B 20 79 6F 75 72 20 61  6E 73 77 65 72 73 2E 20  |k your answers. |
00000AF0: 45 76 61 6C 75 61 74 65  20 74 68 65 20 72 65 6D  |Evaluate the rem|
00000B00: 61 69 6E 69 6E 67 20 65  78 70 72 65 73 73 69 6F  |aining expressio|
00000B10: 6E 73 20 69 6E 20 74 68  65 20 63 68 61 72 74 2E  |ns in the chart.|
00000B20: 40 68 53 75 62 73 74 69  74 75 74 65 20 66 6F 72  |@hSubstitute for|
00000B30: 20 22 26 76 22 20 69 6E  20 74 68 65 20 65 78 70  | "&v" in the exp|
00000B40: 72 65 73 73 69 6F 6E 20  66 6F 72 20 7B 7D 20 64  |ression for {} d|
00000B50: 69 73 74 61 6E 63 65 2E  20 54 68 65 6E 20 63 61  |istance. Then ca|
00000B60: 6C 63 75 6C 61 74 65 20  74 68 65 20 72 65 73 75  |lculate the resu|
00000B70: 6C 74 2E 40 68 7B 7D 40  69 28 31 37 2C 69 2C 7B  |lt.@h{}@i(17,i,{|
00000B80: 7D 29 40 68 53 75 62 73  74 69 74 75 74 65 20 66  |})@hSubstitute f|
00000B90: 6F 72 20 22 26 76 22 20  69 6E 20 74 68 65 20 65  |or "&v" in the e|
00000BA0: 78 70 72 65 73 73 69 6F  6E 20 66 6F 72 20 7B 7D  |xpression for {}|
00000BB0: 20 64 69 73 74 61 6E 63  65 2E 20 54 68 65 6E 20  | distance. Then |
00000BC0: 63 61 6C 63 75 6C 61 74  65 20 74 68 65 20 72 65  |calculate the re|
00000BD0: 73 75 6C 74 2E 40 68 7B  7D 40 69 28 31 38 2C 69  |sult.@h{}@i(18,i|
00000BE0: 2C 7B 7D 29 26 64 28 30  2C 43 68 65 63 6B 20 79  |,{})&d(0,Check y|
00000BF0: 6F 75 72 20 77 6F 72 6B  2E 20 54 68 65 20 73 75  |our work. The su|
00000C00: 6D 20 6F 66 20 7B 7D 20  64 69 73 74 61 6E 63 65  |m of {} distance|
00000C10: 73 20 73 68 6F 75 6C 64  20 62 65 20 7B 7D 2E 20  |s should be {}. |
00000C20: 47 65 74 20 72 65 61 64  79 20 66 6F 72 20 61 20  |Get ready for a |
00000C30: 6E 65 77 20 70 72 6F 62  6C 65 6D 2E 29 40 66 4B  |new problem.)@fK|
00000C40: 65 76 69 6E 20 63 61 6E  20 72 75 6E 20 32 20 6D  |evin can run 2 m|
00000C50: 65 74 65 72 73 20 66 75  72 74 68 65 72 20 74 68  |eters further th|
00000C60: 61 6E 20 4A 69 6D 20 65  61 63 68 20 73 65 63 6F  |an Jim each seco|
00000C70: 6E 64 2E 20 54 68 65 79  20 6C 69 76 65 20 36 20  |nd. They live 6 |
00000C80: 6B 69 6C 6F 6D 65 74 65  72 73 20 61 70 61 72 74  |kilometers apart|
00000C90: 2E 20 49 66 20 74 68 65  79 20 72 75 6E 20 74 6F  |. If they run to|
00000CA0: 77 61 72 64 73 20 65 61  63 68 20 6F 74 68 65 72  |wards each other|
00000CB0: 2C 20 69 74 20 74 61 6B  65 73 20 74 68 65 6D 20  |, it takes them |
00000CC0: 31 30 20 6D 69 6E 75 74  65 73 20 74 6F 20 6D 65  |10 minutes to me|
00000CD0: 65 74 2E 20 48 6F 77 20  66 61 73 74 20 64 6F 65  |et. How fast doe|
00000CE0: 73 20 65 61 63 68 20 62  6F 79 20 72 75 6E 3F 00  |s each boy run?.|
00000CF0: 4A 69 6D 00 4B 65 76 69  6E 00 4B 65 6E 20 61 6E  |Jim.Kevin.Ken an|
00000D00: 64 20 4A 69 6D 20 72 75  6E 20 74 6F 77 61 72 64  |d Jim run toward|
00000D10: 73 20 65 61 63 68 20 6F  74 68 65 72 20 61 74 20  |s each other at |
00000D20: 64 69 66 66 65 72 65 6E  74 20 72 61 74 65 73 20  |different rates |
00000D30: 66 6F 72 20 74 68 65 20  73 61 6D 65 20 6C 65 6E  |for the same len|
00000D40: 67 74 68 20 6F 66 20 74  69 6D 65 2E 00 48 6F 77  |gth of time..How|
00000D50: 20 66 61 73 74 20 64 6F  65 73 20 65 61 63 68 20  | fast does each |
00000D60: 62 6F 79 20 72 75 6E 00  6A 00 4A 69 6D 27 73 00  |boy run.j.Jim's.|
00000D70: 6B 00 4B 65 76 69 6E 27  73 00 6A 00 6B 00 72 75  |k.Kevin's.j.k.ru|
00000D80: 6E 00 60 44 6A 2B 44 6B  20 3D 20 54 6F 74 61 6C  |n.`Dj+Dk = Total|
00000D90: 27 00 4A 69 6D 27 73 20  64 69 73 74 61 6E 63 65  |'.Jim's distance|
00000DA0: 2B 4B 65 76 69 6E 27 73  20 64 69 73 74 61 6E 63  |+Kevin's distanc|
00000DB0: 65 20 3D 20 54 6F 74 61  6C 20 64 69 73 74 2E 00  |e = Total dist..|
00000DC0: 60 44 6A 2B 44 6B 20 3D  20 54 6F 74 61 6C 27 00  |`Dj+Dk = Total'.|
00000DD0: 72 75 6E 00 60 44 6A 2B  44 6B 20 3D 20 54 6F 74  |run.`Dj+Dk = Tot|
00000DE0: 61 6C 27 00 4A 69 6D 27  73 20 64 69 73 74 61 6E  |al'.Jim's distan|
00000DF0: 63 65 2B 4B 65 76 69 6E  27 73 20 64 69 73 74 61  |ce+Kevin's dista|
00000E00: 6E 63 65 20 3D 20 54 6F  74 61 6C 20 64 69 73 74  |nce = Total dist|
00000E10: 2E 00 6D 65 74 65 72 73  20 70 65 72 20 73 65 63  |..meters per sec|
00000E20: 6F 6E 64 20 28 60 6D 2F  73 65 63 27 29 00 35 00  |ond (`m/sec').5.|
00000E30: 6D 2F 73 65 63 00 73 65  63 6F 6E 64 73 2E 20 28  |m/sec.seconds. (|
00000E40: 60 73 65 63 27 29 00 33  00 73 65 63 00 6D 65 74  |`sec').3.sec.met|
00000E50: 65 72 73 2E 20 28 60 6D  27 29 00 31 00 6D 00 41  |ers. (`m').1.m.A|
00000E60: 66 74 65 72 20 26 68 31  30 20 6D 69 6E 75 74 65  |fter &h10 minute|
00000E70: 73 26 68 2C 20 74 68 65  79 20 77 65 72 65 20 36  |s&h, they were 6|
00000E80: 20 6B 69 6C 6F 6D 65 74  65 72 73 20 61 70 61 72  | kilometers apar|
00000E90: 74 2E 20 52 65 6D 65 6D  62 65 72 3A 20 31 20 6D  |t. Remember: 1 m|
00000EA0: 69 6E 75 74 65 20 3D 20  36 30 20 73 65 63 6F 6E  |inute = 60 secon|
00000EB0: 64 73 2E 00 4A 69 6D 20  69 73 20 31 30 20 6D 69  |ds..Jim is 10 mi|
00000EC0: 6E 75 74 65 73 2C 20 77  68 69 63 68 20 69 73 20  |nutes, which is |
00000ED0: 60 36 30 30 27 20 73 65  63 6F 6E 64 73 2E 00 63  |`600' seconds..c|
00000EE0: 33 00 36 30 30 00 4B 65  76 69 6E 00 4A 69 6D 00  |3.600.Kevin.Jim.|
00000EF0: 4B 65 76 69 6E 00 60 36  30 30 27 00 63 33 00 36  |Kevin.`600'.c3.6|
00000F00: 30 30 00 26 68 54 68 65  79 20 6C 69 76 65 20 36  |00.&hThey live 6|
00000F10: 20 6B 69 6C 6F 6D 65 74  65 72 73 20 61 70 61 72  | kilometers apar|
00000F20: 74 26 68 2E 20 52 65 6D  65 6D 62 65 72 3A 20 31  |t&h. Remember: 1|
00000F30: 20 6B 69 6C 6F 6D 65 74  65 72 20 3D 20 31 30 30  | kilometer = 100|
00000F40: 30 20 6D 65 74 65 72 73  2E 00 36 20 6B 69 6C 6F  |0 meters..6 kilo|
00000F50: 6D 65 74 65 72 73 20 28  60 36 30 30 30 27 20 6D  |meters (`6000' m|
00000F60: 65 74 65 72 73 29 00 36  30 30 30 00 62 6F 79 00  |eters).6000.boy.|
00000F70: 4A 69 6D 20 72 75 6E 73  20 73 6C 6F 77 65 72 20  |Jim runs slower |
00000F80: 74 68 61 6E 20 4B 65 76  69 6E 2E 00 6A 00 4A 69  |than Kevin..j.Ji|
00000F90: 6D 27 73 00 37 00 4B 65  76 69 6E 27 73 00 4A 69  |m's.7.Kevin's.Ji|
00000FA0: 6D 27 73 00 26 71 4B 65  76 69 6E 20 63 61 6E 20  |m's.&qKevin can |
00000FB0: 72 75 6E 20 32 20 6D 65  74 65 72 73 20 66 75 72  |run 2 meters fur|
00000FC0: 74 68 65 72 20 74 68 61  6E 20 4A 69 6D 20 65 61  |ther than Jim ea|
00000FD0: 63 68 20 73 65 63 6F 6E  64 26 71 00 26 76 2B 32  |ch second&q.&v+2|
00000FE0: 00 4B 65 76 69 6E 20 63  61 6E 20 72 75 6E 20 32  |.Kevin can run 2|
00000FF0: 20 6D 65 74 65 72 73 00  66 75 72 74 68 65 72 20  | meters.further |
00001000: 74 68 61 6E 20 4A 69 6D  00 73 65 63 6F 6E 64 00  |than Jim.second.|
00001010: 38 00 2B 32 00 62 6F 79  00 60 36 30 30 20 20 5C  |8.+2.boy.`600  \|
00001020: 66 30 36 2A 20 20 26 76  27 20 5C 66 31 33 3D 20  |f06*  &v' \f13= |
00001030: 4A 69 6D 27 73 20 64 69  73 74 61 6E 63 65 00 36  |Jim's distance.6|
00001040: 30 30 26 76 00 60 36 30  30 20 20 5C 66 30 36 2A  |00&v.`600  \f06*|
00001050: 28 26 76 2B 32 29 27 5C  66 31 33 3D 20 4B 65 76  |(&v+2)'\f13= Kev|
00001060: 69 6E 27 73 20 64 69 73  74 61 6E 63 65 00 36 30  |in's distance.60|
00001070: 30 28 26 76 2B 32 29 00  6A 00 6B 00 6A 00 6B 00  |0(&v+2).j.k.j.k.|
00001080: 4A 69 6D 27 73 00 36 30  30 26 76 00 4B 65 76 69  |Jim's.600&v.Kevi|
00001090: 6E 27 73 00 36 30 30 28  26 76 2B 32 29 00 60 36  |n's.600(&v+2).`6|
000010A0: 30 30 30 27 20 6B 6D 00  4A 69 6D 27 73 00 4B 65  |000' km.Jim's.Ke|
000010B0: 76 69 6E 27 73 00 60 36  30 30 26 76 2B 36 30 30  |vin's.`600&v+600|
000010C0: 28 26 76 2B 32 29 3D 36  30 30 30 27 00 36 30 30  |(&v+2)=6000'.600|
000010D0: 26 76 2B 36 30 30 28 26  76 2B 32 29 3D 36 30 30  |&v+600(&v+2)=600|
000010E0: 30 00 34 00 26 71 48 6F  77 20 66 61 73 74 20 64  |0.4.&qHow fast d|
000010F0: 6F 65 73 20 65 61 63 68  20 62 6F 79 20 72 75 6E  |oes each boy run|
00001100: 3F 26 71 00 4A 69 6D 00  4A 69 6D 00 34 00 34 00  |?&q.Jim.Jim.4.4.|
00001110: 37 00 34 00 4B 65 76 69  6E 00 26 76 2B 32 00 4B  |7.4.Kevin.&v+2.K|
00001120: 65 76 69 6E 00 26 76 2B  32 00 26 76 2B 32 20 3D  |evin.&v+2.&v+2 =|
00001130: 20 36 00 36 00 38 00 36  00 4A 69 6D 27 73 00 4A  | 6.6.8.6.Jim's.J|
00001140: 69 6D 20 72 61 6E 20 36  30 30 26 76 20 6D 65 74  |im ran 600&v met|
00001150: 65 72 73 2E 20 36 30 30  20 2A 20 34 20 3D 20 60  |ers. 600 * 4 = `|
00001160: 32 34 30 30 27 20 6D 65  74 65 72 73 2E 00 32 34  |2400' meters..24|
00001170: 30 30 00 4B 65 76 69 6E  27 73 00 4B 65 76 69 6E  |00.Kevin's.Kevin|
00001180: 20 72 61 6E 20 36 30 30  28 26 76 2B 32 29 20 6D  | ran 600(&v+2) m|
00001190: 65 74 65 72 73 2E 20 36  30 30 20 2A 20 28 34 2B  |eters. 600 * (4+|
000011A0: 32 29 20 3D 20 60 33 36  30 30 27 20 6D 65 74 65  |2) = `3600' mete|
000011B0: 72 73 2E 00 33 36 30 30  00 4A 69 6D 20 61 6E 64  |rs..3600.Jim and|
000011C0: 20 4B 65 76 69 6E 27 73  00 36 30 30 30 00 40 66  | Kevin's.6000.@f|
000011D0: 50 61 75 6C 20 6C 69 76  65 73 20 31 20 6D 69 6C  |Paul lives 1 mil|
000011E0: 65 20 61 63 72 6F 73 73  20 61 20 6C 61 6B 65 20  |e across a lake |
000011F0: 66 72 6F 6D 20 4C 6F 72  72 69 2E 20 48 65 20 63  |from Lorri. He c|
00001200: 61 6E 20 73 77 69 6D 20  34 20 79 61 72 64 73 20  |an swim 4 yards |
00001210: 6D 6F 72 65 20 74 68 61  6E 20 4C 6F 72 72 69 20  |more than Lorri |
00001220: 65 61 63 68 20 6D 69 6E  75 74 65 2E 20 49 66 20  |each minute. If |
00001230: 74 68 65 79 20 73 77 69  6D 20 74 6F 77 61 72 64  |they swim toward|
00001240: 73 20 65 61 63 68 20 6F  74 68 65 72 20 74 68 65  |s each other the|
00001250: 79 20 77 69 6C 6C 20 6D  65 65 74 20 61 66 74 65  |y will meet afte|
00001260: 72 20 31 36 20 6D 69 6E  2E 20 48 6F 77 20 66 61  |r 16 min. How fa|
00001270: 73 74 20 64 6F 65 73 20  65 61 63 68 20 6F 66 20  |st does each of |
00001280: 74 68 65 6D 20 73 77 69  6D 3F 00 50 61 75 6C 00  |them swim?.Paul.|
00001290: 4C 6F 72 72 69 00 54 68  65 79 20 73 77 69 6D 20  |Lorri.They swim |
000012A0: 74 6F 77 61 72 64 73 20  65 61 63 68 20 6F 74 68  |towards each oth|
000012B0: 65 72 20 66 6F 72 20 31  36 20 6D 69 6E 75 74 65  |er for 16 minute|
000012C0: 73 20 61 74 20 64 69 66  66 65 72 65 6E 74 20 72  |s at different r|
000012D0: 61 74 65 73 2E 20 54 68  65 20 74 6F 74 61 6C 20  |ates. The total |
000012E0: 64 69 73 74 61 6E 63 65  20 69 73 20 31 20 6D 69  |distance is 1 mi|
000012F0: 6C 65 2E 00 48 6F 77 20  66 61 73 74 20 64 6F 65  |le..How fast doe|
00001300: 73 20 65 61 63 68 20 6F  66 20 74 68 65 6D 20 73  |s each of them s|
00001310: 77 69 6D 00 70 00 50 61  75 6C 27 73 00 6C 00 4C  |wim.p.Paul's.l.L|
00001320: 6F 72 72 69 27 73 00 70  00 6C 00 73 77 69 6D 00  |orri's.p.l.swim.|
00001330: 60 44 70 2B 44 6C 20 3D  20 54 6F 74 61 6C 27 00  |`Dp+Dl = Total'.|
00001340: 74 68 65 20 73 75 6D 20  6F 66 20 74 68 65 69 72  |the sum of their|
00001350: 20 64 69 73 74 61 6E 63  65 73 20 69 73 20 65 71  | distances is eq|
00001360: 75 61 6C 20 74 6F 20 74  68 65 20 74 6F 74 61 6C  |ual to the total|
00001370: 20 64 69 73 74 61 6E 63  65 2E 00 60 44 70 2B 44  | distance..`Dp+D|
00001380: 6C 20 3D 20 54 6F 74 61  6C 27 00 73 77 69 6D 00  |l = Total'.swim.|
00001390: 60 44 70 2B 44 6C 20 3D  20 54 6F 74 61 6C 27 00  |`Dp+Dl = Total'.|
000013A0: 74 68 65 20 73 75 6D 20  6F 66 20 74 68 65 69 72  |the sum of their|
000013B0: 20 64 69 73 74 61 6E 63  65 73 20 69 73 20 65 71  | distances is eq|
000013C0: 75 61 6C 20 74 6F 20 74  68 65 20 74 6F 74 61 6C  |ual to the total|
000013D0: 20 64 69 73 74 61 6E 63  65 2E 00 60 79 64 2F 6D  | distance..`yd/m|
000013E0: 69 6E 27 00 35 00 79 64  2F 6D 69 6E 00 6D 69 6E  |in'.5.yd/min.min|
000013F0: 75 74 65 73 20 28 60 6D  69 6E 27 29 00 33 00 6D  |utes (`min').3.m|
00001400: 69 6E 00 79 61 72 64 73  20 28 60 79 64 27 29 00  |in.yards (`yd').|
00001410: 32 00 79 64 00 26 68 54  68 65 79 20 77 69 6C 6C  |2.yd.&hThey will|
00001420: 20 6D 65 65 74 20 61 66  74 65 72 20 31 36 20 6D  | meet after 16 m|
00001430: 69 6E 26 68 00 50 61 75  6C 20 69 73 20 60 31 36  |in&h.Paul is `16|
00001440: 27 20 6D 69 6E 75 74 65  73 2E 00 69 00 31 36 00  |' minutes..i.16.|
00001450: 4C 6F 72 72 69 00 50 61  75 6C 00 4C 6F 72 72 69  |Lorri.Paul.Lorri|
00001460: 00 60 31 36 27 20 6D 69  6E 75 74 65 73 00 69 00  |.`16' minutes.i.|
00001470: 31 36 00 26 68 50 61 75  6C 20 6C 69 76 65 73 20  |16.&hPaul lives |
00001480: 31 20 6D 69 6C 65 20 61  63 72 6F 73 73 20 61 20  |1 mile across a |
00001490: 6C 61 6B 65 20 66 72 6F  6D 20 4C 6F 72 72 69 26  |lake from Lorri&|
000014A0: 68 2E 00 31 20 6D 69 6C  65 20 28 60 31 37 36 30  |h..1 mile (`1760|
000014B0: 27 20 79 61 72 64 73 29  2E 00 31 37 36 30 00 70  |' yards)..1760.p|
000014C0: 65 72 73 6F 6E 00 4C 6F  72 72 69 20 73 77 69 6D  |erson.Lorri swim|
000014D0: 73 20 73 6C 6F 77 65 72  20 74 68 61 6E 20 50 61  |s slower than Pa|
000014E0: 75 6C 2E 00 6C 00 4C 6F  72 72 69 27 73 00 38 00  |ul..l.Lorri's.8.|
000014F0: 50 61 75 6C 27 73 00 4C  6F 72 72 69 27 73 00 26  |Paul's.Lorri's.&|
00001500: 68 48 65 20 63 61 6E 20  73 77 69 6D 20 34 20 79  |hHe can swim 4 y|
00001510: 61 72 64 73 20 6D 6F 72  65 20 74 68 61 6E 20 4C  |ards more than L|
00001520: 6F 72 72 69 20 65 61 63  68 20 6D 69 6E 75 74 65  |orri each minute|
00001530: 26 68 00 26 76 2B 34 00  50 61 75 6C 20 73 77 69  |&h.&v+4.Paul swi|
00001540: 6D 73 20 34 20 79 61 72  64 73 00 66 75 72 74 68  |ms 4 yards.furth|
00001550: 65 72 20 74 68 61 6E 20  4C 6F 72 72 69 00 6D 69  |er than Lorri.mi|
00001560: 6E 75 74 65 00 37 00 2B  34 00 70 65 72 73 6F 6E  |nute.7.+4.person|
00001570: 00 60 28 26 76 2B 34 29  20 5C 66 30 36 2A 20 20  |.`(&v+4) \f06*  |
00001580: 31 36 27 20 5C 66 31 33  3D 20 50 61 75 6C 27 73  |16' \f13= Paul's|
00001590: 20 64 69 73 74 2E 00 31  36 28 26 76 2B 34 29 00  | dist..16(&v+4).|
000015A0: 60 26 76 20 20 5C 66 30  36 2A 20 20 20 31 36 20  |`&v  \f06*   16 |
000015B0: 20 5C 66 31 33 3D 20 4C  6F 72 72 69 27 73 20 64  | \f13= Lorri's d|
000015C0: 69 73 74 2E 00 31 36 26  76 00 70 00 6C 00 70 00  |ist..16&v.p.l.p.|
000015D0: 6C 00 50 61 75 6C 27 73  00 31 36 28 26 76 2B 34  |l.Paul's.16(&v+4|
000015E0: 29 00 4C 6F 72 72 69 27  73 00 31 36 26 76 00 31  |).Lorri's.16&v.1|
000015F0: 37 36 30 00 50 61 75 6C  27 73 00 4C 6F 72 72 69  |760.Paul's.Lorri|
00001600: 27 73 00 60 31 36 28 26  76 2B 34 29 20 2B 20 31  |'s.`16(&v+4) + 1|
00001610: 36 26 76 20 3D 20 31 37  36 30 27 00 31 36 28 26  |6&v = 1760'.16(&|
00001620: 76 2B 34 29 2B 31 36 26  76 3D 31 37 36 30 00 35  |v+4)+16&v=1760.5|
00001630: 33 00 26 71 48 6F 77 20  66 61 73 74 20 64 6F 65  |3.&qHow fast doe|
00001640: 73 20 65 61 63 68 20 6F  66 20 74 68 65 6D 20 73  |s each of them s|
00001650: 77 69 6D 3F 26 71 00 4C  6F 72 72 69 00 4C 6F 72  |wim?&q.Lorri.Lor|
00001660: 72 69 00 35 33 00 35 33  00 38 00 35 33 00 50 61  |ri.53.53.8.53.Pa|
00001670: 75 6C 00 26 76 2B 34 00  50 61 75 6C 00 26 76 2B  |ul.&v+4.Paul.&v+|
00001680: 34 00 26 76 2B 34 20 3D  20 35 33 2B 34 20 3D 20  |4.&v+4 = 53+4 = |
00001690: 35 37 00 35 37 00 37 00  35 37 00 50 61 75 6C 27  |57.57.7.57.Paul'|
000016A0: 73 00 26 76 20 3D 20 35  33 20 73 6F 20 31 36 28  |s.&v = 53 so 16(|
000016B0: 26 76 2B 34 29 20 3D 20  31 36 28 35 37 29 20 3D  |&v+4) = 16(57) =|
000016C0: 20 60 39 31 32 27 00 39  31 32 00 4C 6F 72 72 69  | `912'.912.Lorri|
000016D0: 27 73 00 26 76 20 3D 20  35 33 2C 20 73 6F 20 31  |'s.&v = 53, so 1|
000016E0: 36 26 76 20 3D 20 31 36  28 35 33 29 20 3D 20 27  |6&v = 16(53) = '|
000016F0: 38 34 38 27 00 38 34 38  00 50 61 75 6C 20 61 6E  |848'.848.Paul an|
00001700: 64 20 4C 6F 72 72 69 27  73 00 31 37 36 30 00 7C  |d Lorri's.1760.||
00001710: 20                                                |                |
 A @Q{}@DG04&D(1,U/MEAS)&C(2,{})&C(3,{})
&D(4,TOT.)&D(5,RATE)&D(10,TIME)&D(15,DIS
T.)@RREAD@PREAD THE WHOLE PROBLEM. THINK
: WHAT ARE THE FACTS? WHAT IS BEING ASKE
D? (PRESS ANY KEY TO CONTINUE)@HWHAT ARE
 THE FACTS? {}@HWHAT IS BEING ASKED? &H{
}&H?@I(0)@RPLAN @PLET D{} = {} DIST. AND
 D{} = {} DIST. WRITE AN EQUATION TO REL
ATE D{}, D{} AND TOTAL DIST.@HTHEY {} TO
WARDS EACH OTHER UNTIL THEY MEET. THE SU
M OF THEIR DISTANCES IS THE TOTAL DISTAN
CE.@H{} SHOWS THAT {}@I(20,C0, )@PONE AN
SWER IS {}. CHANGE YOUR ANSWER IF IT IS 
NOT EQUIVALENT. (PRESS RETURN)@HTHEY {} 
TOWARDS EACH OTHER UNTIL THEY MEET. THE 
SUM OF THEIR DISTANCES IS THE TOTAL DIST
ANCE.@H{} SHOWS THAT {}@I(20,C0, )@RDATA
 ENTRY@PFILL IN THE UNITS BY WHICH RATE,
 TIME AND DISTANCE ARE MEASURED. (USE AB
BREVIATED FORM).@HRATE OF SPEED IS COMMO
NLY MEASURED IN MILES PER HOUR (MI/HR), 
METERS PER MINUTE (M/MIN), ETC.@HTHE RAT
E OF SPEED IN THIS PROBLEM IS MEASURED I
N {}.@I(6,C{},{})@HTIME IS COMMONLY MEAS
URED IN SECONDS(SEC), MINUTES(MIN), HOUR
S(HR), DAYS(DA), ETC.@HTIME IN THIS PROB
LEM IS MEASURED IN {}.@I(11,C{},{})@HDIS
TANCE IS COMMONLY MEASURED IN FEET(FT), 
YARDS(YD), METERS(M), MILES(MI), KILOMET
ERS(KM), ETC.@HDISTANCE IN THIS PROBLEM 
IS MEASURED IN {}.@I(16,C{},{})@PENTER T
HE FACTS FROM THE PROBLEM INTO THE GRID.
@H{}@HTHE TIME FOR {}@I(12,{},{})@HTHE T
IME FOR {} IS THE SAME AS THE TIME FOR {
}.@HTHE TIME FOR {} IS ALSO {}.@I(13,{},
{})@H{}@HTHE TOTAL DISTANCE IS {}@I(19,I
,{})@PCHOOSE A VARIABLE TO REPRESENT THE
 RATE OF SPEED FOR EACH {}.@HUSE A VARIA
BLE TO REPRESENT THE SLOWER SPEED. IN TH
IS CASE, {}@HUSE A LETTER SUCH AS '{}' T
O REPRESENT {} RATE OF SPEED.@I({},I,&V)
@HREPRESENT {} RATE IN TERMS OF "&V" ({}
) RATE. {}@H`{}' SHOWS THAT {} {} EACH {
}.@I({},I,&V{})@RPARTS@PWRITE AN EXPRESS
ION TO REPRESENT THE DISTANCE TRAVELLED 
BY EACH {}.@HRATE * TIME = DISTANCE@HRAT
E  \F06* TIME \F13= DISTANCE \N{}@I(17,I
,{})@HRATE * TIME = DISTANCE@HRATE  \F06
* TIME  \F13= DISTANCE \N{}@I(18,I,{})&D
(20, )@RWHOLE@PSUBSTITUTE YOUR EXPRESSIO
NS FOR D{} AND D{} IN THE EQUATION : D{}
+D{}= TOTAL.@H{} DISTANCE = {}, {} DISTA
NCE = {} AND TOTAL = {}.@H{} DIST.+{} DI
ST. = TOTAL DIST. \N{}@I(20,I,{})@S@RCOM
PUTE@PSOLVE THE EQUATION FOR "&V". USE P
APER AND PENCIL AND ENTER THE FINAL EQUA
TION, OR USE THE CALCULATOR.@HISOLATE "&
V" ON ONE SIDE OF THE EQUATION.@HTHE CAL
CULATOR SOLVES EQUATIONS FOR YOU AND DIS
PLAYS THE STEPS IN THE SOLUTION.@I(20,I,
&V={})@PENTER YOUR ANSWERS TO THE PROBLE
M IN THE CHART. REMEMBER THE QUESTION. {
}&W(20)@HTHE RATE OF SPEED FOR {} IS THE
 VALUE OF "&V".@HTHE RATE OF SPEED FOR {
} IS THE VALUE OF "&V". &V = {}, SO ENTE
R `{}'.@I({},I,{})@S&W(20)@HTHE RATE OF 
SPEED FOR {} IS THE VALUE OF {}.@HTHE RA
TE OF SPEED FOR {} IS THE VALUE OF {}. {
}, SO ENTER `{}'.@I({},I,{})@S@RCHECK@PR
EREAD THE QUESTION. CHECK YOUR ANSWERS. 
EVALUATE THE REMAINING EXPRESSIONS IN TH
E CHART.@HSUBSTITUTE FOR "&V" IN THE EXP
RESSION FOR {} DISTANCE. THEN CALCULATE 
THE RESULT.@H{}@I(17,I,{})@HSUBSTITUTE F
OR "&V" IN THE EXPRESSION FOR {} DISTANC
E. THEN CALCULATE THE RESULT.@H{}@I(18,I
,{})&D(0,CHECK YOUR WORK. THE SUM OF {} 
DISTANCES SHOULD BE {}. GET READY FOR A 
NEW PROBLEM.)@FKEVIN CAN RUN 2 METERS FU
RTHER THAN JIM EACH SECOND. THEY LIVE 6 
KILOMETERS APART. IF THEY RUN TOWARDS EA
CH OTHER, IT TAKES THEM 10 MINUTES TO ME
ET. HOW FAST DOES EACH BOY RUN?.JIM.KEVI
N.KEN AND JIM RUN TOWARDS EACH OTHER AT 
DIFFERENT RATES FOR THE SAME LENGTH OF T
IME..HOW FAST DOES EACH BOY RUN.J.JIM'S.
K.KEVIN'S.J.K.RUN.`DJ+DK = TOTAL'.JIM'S 
DISTANCE+KEVIN'S DISTANCE = TOTAL DIST..
`DJ+DK = TOTAL'.RUN.`DJ+DK = TOTAL'.JIM'
S DISTANCE+KEVIN'S DISTANCE = TOTAL DIST
..METERS PER SECOND (`M/SEC').5.M/SEC.SE
CONDS. (`SEC').3.SEC.METERS. (`M').1.M.A
FTER &H10 MINUTES&H, THEY WERE 6 KILOMET
ERS APART. REMEMBER: 1 MINUTE = 60 SECON
DS..JIM IS 10 MINUTES, WHICH IS `600' SE
CONDS..C3.600.KEVIN.JIM.KEVIN.`600'.C3.6
00.&HTHEY LIVE 6 KILOMETERS APART&H. REM
EMBER: 1 KILOMETER = 1000 METERS..6 KILO
METERS (`6000' METERS).6000.BOY.JIM RUNS
 SLOWER THAN KEVIN..J.JIM'S.7.KEVIN'S.JI
M'S.&QKEVIN CAN RUN 2 METERS FURTHER THA
N JIM EACH SECOND&Q.&V+2.KEVIN CAN RUN 2
 METERS.FURTHER THAN JIM.SECOND.8.+2.BOY
.`600  \F06*  &V' \F13= JIM'S DISTANCE.6
00&V.`600  \F06*(&V+2)'\F13= KEVIN'S DIS
TANCE.600(&V+2).J.K.J.K.JIM'S.600&V.KEVI
N'S.600(&V+2).`6000' KM.JIM'S.KEVIN'S.`6
00&V+600(&V+2)=6000'.600&V+600(&V+2)=600
0.4.&QHOW FAST DOES EACH BOY RUN?&Q.JIM.
JIM.4.4.7.4.KEVIN.&V+2.KEVIN.&V+2.&V+2 =
 6.6.8.6.JIM'S.JIM RAN 600&V METERS. 600
 * 4 = `2400' METERS..2400.KEVIN'S.KEVIN
 RAN 600(&V+2) METERS. 600 * (4+2) = `36
00' METERS..3600.JIM AND KEVIN'S.6000.@F
PAUL LIVES 1 MILE ACROSS A LAKE FROM LOR
RI. HE CAN SWIM 4 YARDS MORE THAN LORRI 
EACH MINUTE. IF THEY SWIM TOWARDS EACH O
THER THEY WILL MEET AFTER 16 MIN. HOW FA
ST DOES EACH OF THEM SWIM?.PAUL.LORRI.TH
EY SWIM TOWARDS EACH OTHER FOR 16 MINUTE
S AT DIFFERENT RATES. THE TOTAL DISTANCE
 IS 1 MILE..HOW FAST DOES EACH OF THEM S
WIM.P.PAUL'S.L.LORRI'S.P.L.SWIM.`DP+DL =
 TOTAL'.THE SUM OF THEIR DISTANCES IS EQ
UAL TO THE TOTAL DISTANCE..`DP+DL = TOTA
L'.SWIM.`DP+DL = TOTAL'.THE SUM OF THEIR
 DISTANCES IS EQUAL TO THE TOTAL DISTANC
E..`YD/MIN'.5.YD/MIN.MINUTES (`MIN').3.M
IN.YARDS (`YD').2.YD.&HTHEY WILL MEET AF
TER 16 MIN&H.PAUL IS `16' MINUTES..I.16.
LORRI.PAUL.LORRI.`16' MINUTES.I.16.&HPAU
L LIVES 1 MILE ACROSS A LAKE FROM LORRI&
H..1 MILE (`1760' YARDS)..1760.PERSON.LO
RRI SWIMS SLOWER THAN PAUL..L.LORRI'S.8.
PAUL'S.LORRI'S.&HHE CAN SWIM 4 YARDS MOR
E THAN LORRI EACH MINUTE&H.&V+4.PAUL SWI
MS 4 YARDS.FURTHER THAN LORRI.MINUTE.7.+
4.PERSON.`(&V+4) \F06*  16' \F13= PAUL'S
 DIST..16(&V+4).`&V  \F06*   16  \F13= L
ORRI'S DIST..16&V.P.L.P.L.PAUL'S.16(&V+4
).LORRI'S.16&V.1760.PAUL'S.LORRI'S.`16(&
V+4) + 16&V = 1760'.16(&V+4)+16&V=1760.5
3.&QHOW FAST DOES EACH OF THEM SWIM?&Q.L
ORRI.LORRI.53.53.8.53.PAUL.&V+4.PAUL.&V+
4.&V+4 = 53+4 = 57.57.7.57.PAUL'S.&V = 5
3 SO 16(&V+4) = 16(57) = `912'.912.LORRI
'S.&V = 53, SO 16&V = 16(53) = '848'.848
.PAUL AND LORRI'S.1760.| 
C64 Preview

> CLICK IMAGE PREVIEW FOR FULL MODAL